Publications - Published papers
Please find below publications of our group. Currently, we list 565 papers. Some of the publications are in collaboration with the group of Sonja Prohaska and are also listed in the publication list for her individual group. Access to published papers (
) is restricted to our local network and chosen collaborators.
If you have problems accessing electronic information, please let us know:

©NOTICE: All papers are copyrighted by the authors; If you would like to use all or a portion of any paper, please contact the author.
Simultaneous alignment and folding of protein sequences
Waldispühl J, O'Donnell CW, Will S, Devadas S, Backofen R, Berger B.
Download
PREPRINT 15-025:
[ Publishers's page ]
[ Publishers's page ]
Status: Published
J Comput Biol. 2014 Jul;21(7):477-91
Abstract
Accurate comparative analysis tools for low-homology proteins remains a difficult challenge in computational biology, especially sequence alignment and consensus folding problems. We present partiFold-Align, the first algorithm for simultaneous alignment and consensus folding of unaligned protein sequences; the algorithm's complexity is polynomial in time and space. Algorithmically, partiFold-Align exploits sparsity in the set of super-secondary structure pairings and alignment candidates to achieve an effectively cubic running time for simultaneous pairwise alignment and folding. We demonstrate the efficacy of these techniques on transmembrane β-barrel proteins, an important yet difficult class of proteins with few known three-dimensional structures. Testing against structurally derived sequence alignments, partiFold-Align significantly outperforms state-of-the-art pairwise and multiple sequence alignment tools in the most difficult low-sequence homology case. It also improves secondary structure prediction where current approaches fail. Importantly, partiFold-Align requires no prior training. These general techniques are widely applicable to many more protein families (partiFold-Align is available at http://partifold.csail.mit.edu/ ).