Publications - Published papers

Please find below publications of our group. Currently, we list 565 papers. Some of the publications are in collaboration with the group of Sonja Prohaska and are also listed in the publication list for her individual group. Access to published papers (access) is restricted to our local network and chosen collaborators. If you have problems accessing electronic information, please let us know:

©NOTICE: All papers are copyrighted by the authors; If you would like to use all or a portion of any paper, please contact the author.

Mitochondrial genome evolution in Ophiuroidea, Echinoidea, and Holothuroidea: Insights in phylogenetic relationships of Echinodermata

Marleen Perseke, Detlef Bernhard, Guido Fritzsch, Franz Brümmer, Peter F Stadler, Martin Schlegel

Download


PREPRINT 09-049:   [ Supplement ]
[ Publishers's page ]  paperID

Status: Published


Mol. Phylog. Evol. 56: 201-211 (2010).

Abstract


The genome architecture and amino acid sequences of six new complete mitochondrial genomes were determined from representatives of Hemichordata (1), Ophiuroidea (3), Echinoidea (1) and Holothuroidea (1) and were analysed together with previously known sequences. Phylogenetic analyses recovered three lineages within echinoderms, Crinoidea, Ophiuroidea and a group comprising Holothuroidea, Echinoidea, and Asteroidea. In contrast to previous analyses of mitogenomes, the increased data set recovered the classical echinoderm phylogeny of Eleutherozoa and Echinozoa in Maximum Likelihood and Bayesian analyses using hemichordate out-group representatives. However, an inconsistent ramification appeared with vertebrate outgroups and in Maximum Parsimony and Neighbour Joining reconstructions. The basal (consensus) gene orders of all three lineages could be derived from a hypothetical ancestral crinoid gene order by one single rearrangement in each lineage. The genome architecture was highly conserved in Echinoidea, whereas the highest gene order differences and large amounts of unassigned sequences (UAS) were detected in Ophiuroidea, supporting a higher evolutionary rate than in any other echinoderm lineage. The variability in gene order and UAS regions in ophiuroid genomes suggest dominating rearrangement mechanisms by duplication events.

Keywords


mitogenomes, gene rearrangements, echinodermata, phylogeny