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Abstract

Motivation: The level of sequence conservation between related nucleic acids or proteins often varies
considerably along the sequence. Both regions with high variability (mutational hot-spots) and regions
of almost perfect sequence identity may occur in the same pair of molecules. The reliability of an
alignment therefore strongly depends on the level of local sequence similarity.
Results: The probability Pij of a match between position i in the first and position j in the second
sequence is computed using the the partition function over all canonical pairwise alignments. A
probabilistic backtracking procedure can then be used to generate ensembles of suboptimal alignments
with correct statistical weights.
A comparison between structure based alignments and large samples of stochastic alignments shows
that the ensemble contains correct alignments with significant probabilities even though the optimal
alignment deviates significantly from the structural alignment. Ensembles of suboptimal alignments
obtained by stochastic backtracking, or the match probability matrices themselves, are therefore
promising starting points for improved iterative multiple alignment procedures. In particular, it should
be possible to overcome the problem of fixating an incorrect pairwise alignment in an early iteration.
Availability: The software described in this contribution is available for downloading at
http://www.tbi.univie.ac.at/~ulim/probA/
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1 INTRODUCTION

The optimal alignment of two sequences may become
susceptible to small perturbations of the scoring param-
eters when the evolutionary relationship between two se-
quences becomes more distant (Vingron, 1996). In addi-
tion, the dynamic programming algorithms used to de-
rive the “optimal” alignment have an inherent ambiguity,
that arises from the non uniqueness of optimal solutions
and the particular scheme by which the search space is
evaluated (Giegerich, 2000). As a consequence, the reli-
ability of an alignment may vary considerable along the
sequence. Several approaches to dealing with this ef-
fect have been reported, starting with the investigation
of suboptimal alignments by Vingron and Argos (1990)
and Saqi and Sternberg (1991). The use of the partition
function of all alignments was pioneered by Miyazawa
(1994).

In this contribution we introduce a modified align-
ment algorithm, that avoids the generation of solutions
that are represented differently but are equivalent from

a semantic point of view. Furthermore we include a pa-
rameter governing the relative weight of alignment paths
with different scores (Kschischo and Lassig, 2000) and
extend previous approaches to stochastic pairwise align-
ments by a probabilistic backtracking procedure that can
be used to obtain ensembles of suboptimal alignments
with correct statistical weights. In the following section
we briefly review the theory of probabilistic alignments.
In section 3.2 we compare an ensemble of suboptimal
alignments with a “true” alignment of two proteins that
is obtained based on purely structural considerations. Fi-
nally we briefly discuss potential further applications of
stochastic alignments.

2 THEORY

2.1 Pairwise Alignments

We consider two sequences a = (a1a2 . . . am) and b =
(b1b2 . . . bn) taken from an alphabet A. An alignment A
of a and b is the sequence of pairs (a∗

j , b
∗
j ), 1 ≤ j ≤ ` ≤
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n + m such that

(i) a∗
j , b

∗
j ∈ A ∪ { }, where /∈ A is the so-called “gap

character”,

(ii) (a∗
j , b

∗
j ) 6= ( , )

(iii) There are strictly monotone functions
j′ : {1, . . . , m} → {1, . . . , `} and j ′′ : {1, . . . , n} →
{1, . . . , `} such that there is k ∈ {1, . . . , m} with
j′(k) = j whenever a∗

j 6= and l ∈ {1, . . . , n} with
j′′(l) = j whenever b∗j 6= .

Condition (iii) is just a fancy way of expressing the fact
that a∗ and b∗ are obtained from a and b by insert-
ing gaps without disturbing the linear order of the let-
ters. As a consequence, alignments decompose at all
(mis)matches in the following sense: If a∗

j 6= and b∗j 6=
we may write (a∗

j , b
∗
j ) = (a∗

j′(k), b
∗
j′′(l)) for some k ≤ m,

l ≤ n, and hence A is the concatenation of an alignment
A′ of the subsequences a[1..k − 1] and b[1..l − 1], the
match (ak, bl) and an alignment A′′ of the subsequences
a[k + 1..m] and b[l + 1..n].

This definition of the pairwise alignment contains one
important ambiguity: there is no way to distinguish be-
tween

A---XXXXB and AXXXX---B

AYYY----B A----YYYB

Therefore we restrict the definition of an alignment fur-
ther by excluding the second alternative. We say that
an alignment is canonical, if, between two consecutive
matches we always first have the gaps (if any) in the first
sequence a and then in the second sequence b. Note that
canonical alignments are uniquely determined by their
sequence of (mis)matches which in turn is equivalent to
the alignment path (Durbin et al., 1998; Yu and Hwa,
2001).

2.2 Partition Function

In the probabilistic interpretation of the sequence align-
ment problem, see e.g. (Durbin et al., 1998), the score
S(A) of an alignment A is given as a (possibly rescaled)
log-odds ratio for obtaining the two aligned sequences
from a common ancestor compared to a chance event.
In particular, the score s(a, b) of a match (a, a) or mis-
match (a, b), a 6= b, of two aligned letters is obtained by
the log-odds ratio

s(a, b) = k log
fab

fafb

(1)

where k is an arbitrary positive constant, fa and fb are
the frequencies of the letters a and b in a prescribed
dataset and fab is the frequency of finding (a, b) in ho-
mologous positions. This framework is readily extended
to affine gap functions of the form

γ(lg) = −(go + gext(lg − 1)) . (2)

The gap-open penalty go and the gap-extension penalty
gext satisfy go > gext. Under these assumptions the align-
ment score function S(A) is additive

S(A) = S(A′) + s(ak, bl) + S(A′′) (3)

This observation is the basis of all dynamic programming
algorithm for pairwise alignments (Needleman and Wun-
sch, 1970). Not surprisingly, it will play a crucial role in
our discussion as well. The optimal alignment(s) can
be obtained efficiently using the dynamic programming
algorithm of Gotoh (1982).

It is not hard to verify that in this framework the
probability of a particular alignment A satisfies

Prob(A) ∝ e
S(A)

k , (4)

see e.g. (Yu and Hwa, 2001).
In a thermodynamic interpretation of the alignment

problem (Miyazawa, 1994; Kschischo and Lassig, 2000),
on the other hand, the score of the alignment A, S(A),
is the analogue of (negative) energy. The constant k,
that depends on the definition of substitution scores,
corresponds to Boltzmann’s constant. In addition, one
considers a parameter T that is analogous to the ther-
modynamic temperature. The partition function for the
alignment problem is defined in the usual way as

Z(T ) =
∑

A

e
S(A)
kT =

∑

A

eβS(A) , (5)

where β = 1/(kT ). Immediately, we see that

Prob(A; T ) =
1

Z(T )
eβS(A) (6)

where for T = 1 we recover the “true” probability. In
the limit T → 0 we have Prob(A; 0) = 0 for all align-
ments with a score S(A) less than the maximal score
S0 = maxS(A). In the limit T →∞, on the other hand,
all alignments have the same Prob(A;∞) = 1/Z(∞),
where Z(∞) =

(
m+n

n

)
is the total number of possible

canonical alignments. The temperature parameter T
thus governs the relative “importance” of the optimal
alignment(s) just as thermodynamic temperature deter-
mines the occupation of the ground state. In this sense
we can interpret T as a measure of our interest in sub-
optimal alignments.

Let Zi,j denote the partition function for the align-
ments of the subsequences a[1..i] and b[1..j]. The val-
ues Zi,j can be computed by recursions analogous to the
ones for the optimal alignment, see e.g. (Miyazawa, 1994;
Bucher and Hoffmann, 1996; Yu and Hwa, 2001):

ZM
i,j =

(
ZM

i−1,j−1 + ZE
i−1,j−1 + ZF

i−1,j−1

)
eβs(ai,bi)

ZE
i,j = ZM

i,j−1e
βgo + ZE

i,j−1e
βgext

ZF
i,j =

(
ZM

i−1,j + ZE
i−1,j

)
eβgo + ZF

i−1,je
βgext

Zi,j = ZM
i,j + ZE

i,j + ZF
i,j

(7)
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The matrix ZM
i,j contains the partition function over all

alignments that end in a (mis)match (ai, bj). Similarly,
ZE

i,j contains the partition function over all alignments in
which residue bj is aligned to a gap (i.e., all alignments
ending with a gap in sequence a) and ZF

i,j describes align-
ments ending with a gap in b. The boundary conditions
are:
ZM

0,0 = ZE
0,0 = ZF

0,0 = 1,

ZE
0,1 = eβgo , ZE

0,j = e(βgo+(j−1)gext) for j > 1,

ZF
1,0 = eβgo , ZF

i,0 = e(βgo+(i−1)gext) for i > 1.

The values ZM
i,0, ZM

0,j , ZE
i,0, and ZF

0,j for i ≥ 1 and j ≥ 1

may remain undefined. Note that the recursion for ZF
i,j

differs from the “usual” form in order to account for the
asymmetric definition of canonical alignments.

2.3 Match Probabilities

Using the partition function, the probability of each match
(i, j) between the two sequences can be calculated. A re-
lated approach based on Bayesian inference is discussed
in (Zhu et al., 1998). We define a class Ω of alignments
that meet certain criteria. The probability to find an
alignment that belongs to the class Ω is

Prob(Ω) =
1

Z

∑

A∈Ω

eβS(A) =
Z(Ω)

Z
(8)

The probability that i and j are matched is therefore
given by

Pij = Prob(Ωi,j) (9)

where Ωi,j is the class of alignments in which ai is matched
to bj . For each A ∈ Ωi,j the score of the whole alignment
A is the sum

S(A) = S(Ai,j
1,1) + S(Am,n

i,j )− s(ai, bj) (10)

where S(Ai,j
1,1) and S(Am,n

i,j ) are the scores of the partial
alignments. The probability of an (ai, bj) (mis)match is
now obtained from

Z(Ωi,j) =
∑

A∈Ωi,j

eβS(Ai,j
1,1)+βS(Am,n

i,j
)−βs(ai,bj)

= e−β s(ai,bj)×
∑

A∈A
i,j
1,1

eβS(Ai,j
1,1)

︸ ︷︷ ︸
ZM

ij

×
∑

A∈A
m,n
i,j

eβS(Am,n
i,j

)

︸ ︷︷ ︸�
ZM

ij

= ZM
ij ẐM

ij e−βs(ai,bj)

(11)

where ZM
ij = Z(Ai,j

1,1) is the partition function of the

set A
i,j
1,1 of all alignments of the partial sequences a[1..i]

and b[1..j] that end with a (mis)match of (ai, bj). Anal-

ogously ẐM
ij = Z(Ai,j

m,n) is the partition function of the

set Ai,j
m,n of all alignments of the partial sequences a[i..m]

and b[j..n] that begin with a (mis)match (ai, bj).
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Figure 1: Dot plot of the alignment between leghaemoglobin
from yellow lupin, Lupinus luteus, and chain A of human de-
oxyhaemoglobin. The horizontal axis of the dot plot is labeled
by Lupinus luteus leghaemoglobin, the vertical axes by chain
A of human deoxyhaemoglobin. Regions of high sequence
similarity are illustrated by large black dots representing high
match probabilities. In regions of lower sequence similarity
many different possibilities to align the two sequences exits.
The different possibilities to align these regions are depicted
by a multitude of small dots, each representing a match of
low probability. The alignment was prepared using the score
matrix Gonnet 120, T = 0.4.

Vingron and Argos (1990) observed that (3) can be
utilized to determine the score of an optimal alignment
that contains the (mis)match (ak, bl) by computing an
optimal alignment of the sub-sequences a[1..k − 1] and
b[1..l − 1] by “forward” recursion and an optimal align-
ment of the subsequences a[k +1..m] and b[l+1..n] by a
“backward” recursion in which the sequences are simply
read in the opposite direction. The same approach can
be exploited to compute the matrices ẐM , ẐF , and ẐE

by means of backward recursions that are analogous to
the forward recursions in equ.(7). Thus we obtain the
match probabilities as follows:

Pij =
ZM

ij ẐM
ij

Z
e−βs(ai,bj) (12)

Equ.(12) was first derived by Miyazawa (1994) who then
proceeds with a greedy method to extract a single “lo-
cally most probable” alignment from the match proba-
bility matrix (Pij).

Match probabilities can be conveniently visualized in
dot plots, where each possible match is represented by a
box with area Pij , plotted on a rectangular m × n grid
indexed by i and j. Such dot plots provide an excellent
overview of likely alignment alternatives, see figure 1.
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2.4 Stochastic Backtracking

For every position (i, j) of an alignment the probabil-
ity for matching residues ai and bj , for introducing a
gap in sequence a and for introducing a gap in sequence
b can be calculated. The stochastic backtracking algo-
rithm just like ordinary backtracking starts at final po-
sitions, (m, n), of the Z matrix.

The probabilities of the three possible alignment states
are obtained by the following reasoning: The probability
of the match (am, bn) is simply the fraction

match p =
ZM

m,n

Zm,n

i← m− 1 j ← n− 1

gap in a p =
ZE

m,n

Zm,n

i← m j ← n− 1

gap in b p =
ZF

m,n

Zm,n

i← m− 1 j ← n

One of the three possible states of the alignment is
selected in the following way depending on a random
number r, 0 ≤ r < 1: Residue am is matched to residue
bn if r < p(match), a gap is introduced in sequence a,
if the random number is p(match) ≤ r < (p(match) +
p(gap in a)), otherwise a gap is inserted in sequence b.

In the following steps of the stochastic backtracking,
the probability of each state is dependent on the previous
choice. If the positions were matched in the previous step
we have the probabilities

i← j ←

match p =
ZM

i−1,j−1e
βs(ai,bj)

Zi,j

i− 1 j − 1

gap in a p =
ZE

i−1,j−1e
βs(ai,bj)

Zi,j

i j − 1

gap in b p =
ZF

i−1,j−1e
βs(ai,bj)

Zi,j

i− 1 j

Here Zi,j = (ZM
i−1,j−1 +ZE

i−1,j−1+ZF
i−1,j−1)e

βs(ai,bj).
If the previous state of the alignment was a gap in se-
quence a, there are only two possibilities to extend the
alignment, either return to the match state or to add an-
other gap in sequence a. The probability to introduce a
gap in sequence b, p(gap in b) is zero, because the algo-
rithm is designed to arrange gaps in order gaps in a ⇒
gaps in b. Thus

i← j ←

match p =
ZM

i,j−1e
βgo

ZE
i,j

i− 1 j − 1

gap in a p =
ZE

i,j−1e
βgext

ZE
i,j

i j − 1

where ZE
i,j = ZM

i,j−1e
βgo +ZE

i,j−1e
βgext is the sum over

all alignments up to position (i, j) that end with a gap
in sequence a.

In the case that the previous state of the alignment
was a gap in sequence b, three possible states to continue
the alignment are available: return to the match state,
switch to a gap in sequence a, or continue the alignment
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Figure 2: Well-definedness of an ensemble of stochastic
alignments, measured by the probability of the optimal align-
ment. The blue lines correspond to the mean log-probabilities
of protein sequences, the red curves are for nucleic acids.
In each case, the upper (full) curve refers to alignments
of random sequences, while the lower (dotted) curve shows
the entropy values for alignments of two identical sequences.
The symbols indicate different classes of biological RNA se-
quences.

with another gap in sequence b. Thus
i← j ←

match p =
ZM

i−1,je
βgo

ZF
i,j

i− 1 j − 1

gap in a p =
ZE

i−1,je
βgo

ZF
i,j

i j − 1

gap in b p =
ZF

i,j−1e
βgext

ZF
i,j

i− 1 j

where ZF
i,j = (ZM

i−1,j + ZE
i−1,j)e

βgo + ZF
i−1,je

βgext is
the sum of all possible alignments up to position (i, j)
that end with a gap in sequence b.

At each step of the backtracking process the selec-
tion of the next alignment states is done stochastically.
Repeated application of this procedure yields an equilib-
rium sample of alignments.

3 RESULTS

3.1 Alignment Well-definedness

Stochastic backtracking provides an ensemble of stochas-
tic alignments distributed according to the probability of
each alignment. If the alignment is well defined, the en-
semble will be dominated by the optimal, most likely,
alignment. A simple, entropy-like measure for the di-
versity of alignments is thus the probability of the opti-
mal alignment, or equivalently the difference between the
score of the optimal alignment S(Aopt) and the analogue
of the free energy of the ensemble

∆Sensemble = βS(Aopt)− ln Z = ln Prob(Aopt) (13)
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Figure 3: Reliably aligned region were extracted from 5 pairwise structure alignments computed with different on-line 3D
structure alignment programs. For each pairwise alignment the upper sequence is 1GDJ, the lower 2HHB A. The structure
alignment program used is indicated in the first column. The second column displays the structure alignments, reliably aligned
regions are indicated in yellow. In the consensus, which directly follows the different 3D structure alignments reliably aligned
regions are colored red. The alignment in the regions were no consistent alignment between the different structure alignment
exists is like in the structure alignment generated with CE.
Match probabilities in the 3D structure alignments and in the optimal alignment are indicated below in different colors. The
color code for match probabilities is specified on the right side of the figure. The figure was prepared using the Texshade
package http://homepages.uni-tuebingen.de/beitz/txe.html. Regions with high match probabilities that are included in
the optimal alignment as well as in the structure alignment consensus are indicated by a black line below the alignments.

In order to quantify the importance of suboptimal align-
ments we computed this entropy measure for random
nucleic acid and protein sequences of different length, as
well as several examples of real RNA sequences.

Figure 2 shows that nucleic acid sequence alignments
are less well defined than protein alignments and the val-
ues for biological nucleic acid sequences lie only slightly
below those for completely random nucleic acid sequences.
The entropy distribution of different pairwise alignments
of a set of functionally identical nucleic acids provides
a good measure of the relatedness of the members of
this set. The RNAse P RNA sequences, for example,
comprise a set of functionally identical sequences with
no conservation at the sequence level. The entropies of
pairwise alignments between different RNAse P RNA se-
quences correspond to entropies of random nucleic acid
sequences. In the case of 16S RNA, on the other hand,
the relationship on the sequence level is significantly higher.

3.2 A Structure-based Alignment

As an application of the algorithm we consider the align-
ment between leghaemoglobin from yellow lupin, Lupi-
nus luteus, PDB entry 1GDJ (Harutyunyan et al., 1995),
and chain A of human deoxyhaemoglobin, PDB entry
2HHB A (Fermi et al., 1984). The proteins 1GDJ and
2HHB A are dissimilar in sequence (pairwise identity
14%), but have quite similar structures. Therefore we
can use an alignment of their 3D structures as the stan-
dard to which purely sequence-based alignments must
be compared. For the analysis of the stochastic ensem-
ble one million stochastic alignments between 1GDJ and
2HHB A were generated.
The global 3D alignment of two proteins has been char-
acterized as NP hard (Lathrop, 1994), thus one has to
rely on heuristics to find good solutions. To reduce the
influence of the particular heuristic used, we employed
different Web-accessible structure alignment programs to
extract reliably aligned regions. The underlying assump-
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Figure 4: L.h.s.: Distribution of the fraction of stochastic alignments with different fractions of matches with the structure
alignment. The optimal alignment is indicated by the red line. The three sharp peaks in the curve correspond to stochastic
alignments containing one or more of the reliably aligned regions shown in figure 3. The first sharp peak at 41.6% corresponds
to alignments that include the N-terminal block; the second peak indicates alignments that have both of the longer reliable
sections at the N- and C-termini, while the third sharp peak at 100% corresponds to the correct alignments.
R.h.s.: Joint probability of finding an alignment with given fraction of matches in the structural consensus and a given
alignment score.

tion is that a region that is identically aligned by various
methods is, in fact, reliably aligned.

The programs we used are based on different prin-
ciples: Combinatorial Extension, CE1 (Shindyalov and
Bourne, 1998), uses similarity in local geometry of Cα;
TOP2 (Lu, 2000, 1996) and COMPARER3 (Šali and
Blundell, 1990) both utilize topological features for the
computation of 3D structure alignments; SARF24 (Alexan-
drov and Fischer, 1996) and MATRAS5, (Kawabata and
Nishikawa, 2000) employ secondary structure informa-
tion to generate structure alignments.

Figure 3 shows the 3D structure alignments com-
puted by the specified on-line programs. The 3D align-
ments display three regions which can be aligned without
ambiguity. A region is accepted as reliably aligned if all
structure alignment methods agree on the alignment of
this region. About 65% of the structue alignment consen-
sus are classified as reliably aligned, this positions exhibit
significantly higher match probabilities than segments
for which no consistent structure alignment exists. Fur-
thermore, at least one of this reliable aligned segments
is found in the vast majority of stochastic alignments as
can be seen from Figure 4.

The correspondence between reliably aligned residues
and matches with higher match probabilities is not abso-

1http://cl.sdsc.edu/ce.html
2http://bioinfo1.mbfys.lu.se/TOP/webtop.html
3http://www-cryst.bioc.cam.ac.uk/~robert/cpgs/

COMPARER/comparer.html
4http://123d.ncifcrf.gov/run2.html
5http://bongo.lab.nig.ac.jp/~takawaba/Matras.html

lute. Whereas nearly all matches with P ≥ 0.7 are part
of reliably aligned regions, matches with lower match
probabilities are found both inside and outside the con-
sensus region, see Figure 3. The optimal alignment, on
the other hand, which includes per definition the highest
possible number of matches with high match probabili-
ties, contains only about 87% of the positions that are
classified as reliably aligned in the structure consensus.
On the other hand, some 3% of the suboptimal align-
ments include all of the reliable aligned positions of the
structure consensus. The retrieval of a biological correct
alignment is therefore dependent upon the inclusion of
the information provided by the suboptimal alignments.

The correlation between the score of a suboptimal
alignment and the percentage of reliably aligned posi-
tions in the structure consensus it includes can be seen
most easily from a plot of the joint probability of obtain-
ing an alignment with a given percentage of matches that
are contained in the structural consensus and a given
alignment score. The r.h.s. of Figure 4 shows that this
correlation is weak, especially for alignments with near
optimal score. Suboptimal alignments, that include all of
the reliably aligned positions of the consensus, can have
an alignment score nearly as high as the optimal align-
ment, that is a score of approx. 50, on the other hand
their scores can be as low as −100. This highlights the
fact that the score of an suboptimal alignment cannot be
regarded as a reliable measure of its accuracy.
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4 DISCUSSION

The stochastic version of Gotoh’s pairwise sequence align-
ment algorithm described in this contribution computes
the probability of each possible match in the alignment.
Thus it provides an internal measure of an alignments
reliability not only globally but also locally. The algo-
rithm has been implemented in C. In addition to com-
puting probabilities for individual matches our software
produces correctly weighted samples of alignments by
means of stochastic backtracking. The software package
probA is available for download6.

A comparison between structure based alignments
and large samples of stochastic alignments shows that
the ensemble contains correct alignments with significant
probabilities even though the optimal alignment deviates
significantly from the structural alignment. Such devi-
ations occur even in those regions where the structural
alignment appears to be very reliable.

This observation indicates that iterative multiple align-
ment programs are likely to be trapped in optimal pair-
wise alignments that may differ considerably from the
true alignment. It will be desirable therefore to develop
multiple alignment tools that are explicitly based on ei-
ther the match probability matrices P of the pairwise
alignments or that use ensembles of pairwise alignments.
It is important to notice, however, that the restriction
to canonical alignments is inappropriate in a multiple
alignment context. Considering the two situations

A---XXXXB and AXXXX---B

AYYY----B A----YYYB

CXXXXYYYC CXXXXYYYC

which correspond to the same canonical alignment of the
first two sequences, we see that only the second alter-
native, which is the one excluded by our definition of
the canonical alignments, can be extended to the correct
alignment of all three sequences.

The stochastic pairwise alignments are useful also in
a completely different context. Many tools in bioinfor-
matics require pairwise or multiple sequence alignments
as input data. The program probA provides a tool that
can be used to produce alignments with realistically dis-
tributed errors and varying overall quality (by varying
the temperature parameter T ). These can be used to in-
vestigate the sensitivity of method to realistic variations
of the input alignments.
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