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Product Grammars for Alignment and Folding
Christian Höner zu Siederdissen, Ivo L. Hofacker, Peter F. Stadler

Abstract—We develop a theory of algebraic operations over linear and context-free grammars that makes it possible to combine
simple “atomic” grammars operating on single sequences into complex, multi-dimensional grammars. We demonstrate the utility of
this framework by constructing the search spaces of complex alignment problems on multiple input sequences explicitly as algebraic
expressions of very simple 1-dimensional grammars. In particular, we provide a fully worked frameshift-aware, semiglobal DNA-protein
alignment algorithm whose grammar is composed of products of small, atomic grammars.
The compiler accompanying our theory makes it easy to experiment with the combination of multiple grammars and different operations.
Composite grammars can be written out in LATEX for documentation and as a guide to implementation of dynamic programming
algorithms. An embedding in Haskell as a domain-specific language makes the theory directly accessible to writing and using grammar
products without the detour of an external compiler.
http://www.bioinf.uni-leipzig.de/Software/gramprod/

Index Terms—Linear grammar, context free grammar, product structure, multiple alignment, Haskell
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1 INTRODUCTION

THE well-known dynamic programming algorithms
for the simultaneous alignment of n sequences [1]

have a structure that is reminiscent of topological prod-
uct structures. This is expressed e.g. by the fact that
intermediary tables are n-dimensional. Here we explore
whether this intuition can be made precise and opera-
tional. To this end we build on the conceptual framework
of Algebraic Dynamic Programming (ADP) [2], [3]. In
this setting a dynamic programming (DP) algorithm
is separated into a context-free grammar (CFG) that
generates the search space and an evaluation algebra.
In this contribution we will mainly be concerned with a
notion of product grammars to facilitate the construction
of the search space.

Recent advances in RNA folding with pseudoknots
[4], RNA-RNA interactions [5], [6], or RNA consensus
structure prediction [7] have lead to the design of dy-
namic programming algorithms with dozens of interme-
diate tables. Their direct implementation in C or C++
is a major effort that is not only time-consuming but
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also error prone. The framework of algebraic dynamic
programming could improve this situation considerably,
but still does not provide a satisfactory solution because
even the underlying grammars with nearly a hundred
non-terminals are non-trivial to check. It is impossible
to explore variants and refinements of these algorithms
without major programming efforts unless ways and
means can be found to construct the underlying gram-
mars in a modular fashion. Product constructions are one
promising approach towards this end.

Before we delve into a more formal presentation,
consider the context-free grammar for pairwise sequence
alignment with affine gap costs as an example. Gotoh’s
algorithm [8] uses three non-terminals M , D, I , depend-
ing on whether the right end of the alignment is a match
state, a gap in the first sequence, or a gap in the second
sequence. The corresponding productions are of the form

M → M(uv )
∣∣ D(uv )

∣∣ I(uv )
∣∣ (

$
$

)

D → M( u− )
∣∣ D(u. )

∣∣ I( u− )

I → M(−v )
∣∣ D(−v )

∣∣ I( .v )
(1)

where u and v denote terminal symbols, ’−’ corresponds
to gap opening, while ’.’ denotes the (differently scored)
gap extension. The $ here takes the role of the “sentinel
character”, i.e., matches the end of the input. Each of the
non-terminals reads simultaneously from two separate
input tapes. To make this property more transparent in
the notation, we write M  (XX ), D  (XY ), and I  
( YX ). This yields productions such as

(XX )→ (XX )(uv ) ' (XuXv ) or

( YX )→ (XY )(−v ) '
(
X−
Y v

) (2)

Apart from the conspicuous absence of (YY ), i.e., align-
ments ending in an all-gap column, to which we will
return later, this notation strongly suggests to consider
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the 1-dimensional projections of the 2-dimensional pro-
ductions of Equ. (2), which obviously have the form

X → Xu
∣∣ Y u ∣∣ $ and Y → Y.

∣∣ X− (3)

This simple grammar either reads a symbol (non-
terminal X) or it ignores it (non-terminal Y ). Each copy
of the “step grammar” (3) operates on its own input
tape. This example suggests that dynamic programming
algorithms for alignment problems in general have a
product-like structure. Indeed, n-way alignments can be
seen as an n-fold product of the simple step grammar
with itself.

The aim of the present work is more general than
alignments. We introduce products of grammars as a
very general framework to facilitate a more effective de-
sign of dynamic programming algorithms. This requires
that we clarify the precise meaning of a product of CFGs.
Since alignment algorithms are naturally expressed as
left-linear CFGs we first develop a theory for this special
case and demonstrate in some detail how our framework
can facilitate the construction of complex alignment al-
gorithms. As a showcase application we consider mixed
nucleotide/protein alignments with frameshifts. We then
proceed to explore possibilities to generalize the product
construction to context free grammars in general and
show that normal forms can be employed to guide such
constructions. We find that the Greibach normal form
admits an associative product that conserves the normal
form but does not subsume the direct product of linear
grammars.

2 ALGEBRAIC OPERATIONS ON LINEAR
GRAMMARS

2.1 Notation

A CFG G = (N,T, P, S) consists of a finite set N of non-
terminals, a finite set T of terminals so that N ∩ T = ∅,
a set P of productions X → α where X ∈ N and
α ∈ (T∪N)∗, and a start symbol S ∈ N . Furthermore, we
need at least one special symbol $ denoting the empty
string, an “empty production” ∅ and the ε symbol de-
noting a “none”-symbol. This symbol emits nothing (like
$). As a parsing symbol, however, it succeeds always (in
contrast to $, which only succeeds on empty substrings).
In the next two sections we will consider in particular
left-linear grammars, i.e., those for which all productions
are of the form A→ Bx with A,B ∈ N and x ∈ T .

The example of Gotoh’s algorithm in the introductory
section motivates us to introduce algebraic operations
on grammars in a more systematic way. As a running
example, we will use one of the simplest alignment algo-
rithms. The Needleman-Wunsch algorithm [9] aligns two
sequences x1...n and y1...m so that the sum of matches
and in/del scores is maximized. The basic recursion over

the memoization table T reads

Tij = max


Ti−1,j + d

Ti,j−1 + d

Ti−1,j−1 +m(xi, yj)

0 if i = 0 and j = 0

(4)

In the recursive scheme, the base case is given by the
alignment of two empty substrings “on the left”, while
the other cases extend the already aligned part of the
strings to the left. This slightly unusual variant of the
algorithm was chosen to be identical to the grammatical
description that follows. The first two cases denote an
in/del operation with cost d, while m( . , . ) scores the
(mis)match xi with yj .

A two-tape grammar equivalent to the recursion in
Equ. (4) is

(XY )→ (XY )(aε )
∣∣ (XY )( εa )

∣∣ (XY )(aa )
∣∣ ( $

$

)
(5)

There are several differences between the formulation in
Equ. (4) and Equ. (5). The recursive formulation working
on the memoization table T does not store the alignment
directly but rather the score of each partial, optimal
alignment. The grammatical description, on the other
hand, describes the search space of all possible alignments
without any notion of scoring. In addition, recursive
descriptions usually include explicit annotations for base
cases, here the empty alignment. The production rule
(XY ) → ( εε ) has this role in our example. In general,
grammatical descriptions abstract away certain imple-
mentation details. Some of these will, however, become
important when constructing more complex grammars
from simpler ones, as we shall see below.

Our task will be to construct Equ. (5) from even
simpler, “atomic” constituents. These grammars are

S =({X}, {a}, {X → Xa
∣∣ Xε}, X) , (6)

N =({X}, {$}, {X → $}, X) , (7)
L =({X}, {}, {X → Xε}, X) . (8)

It is intentional that we use two different symbols for
the empty string here. The symbol $ is the “sentinel
character” matching only the end of the tape. In contrast,
ε is an “empty string” that can be read at any position. Of
course, this distinction is only relevant when parsing an
input. Upon generating the language from the grammar,
both $ and ε disappear in all concatenations.

The grammar S in Equ. (6) performs a “step”. It either
reads a single character on the right and recurses on the
left, or simply recurses. Note that by itself the rules do
not terminate. The grammar N , Equ. (7), matches the
empty input (or any empty substring of the input) and
immediately terminates. Finally, L (Equ. (8)) reproduces
the non-terminating loop case already seen in Equ. (6).

Intuitively, we can combine these three components
on a single tape as

S +N −L = ({X}, {a, $}, {X → Xa
∣∣ $}, X) (9)
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In order to make this intuition precise we need to give a
rigorous meaning to algebraic operations on grammars.
In the following we will do this for linear grammars.

Each operator introduced below primarily acts on sets
of production rules. They implicitly carry over to the in-
volved sets of terminals and non-terminals in an obvious
manner. Two production rules are equivalent if they are
isomorphic as in Equ. (14). This is of relevance insofar
that it leads to idempotency in one of the operators
below, but does not otherwise interfere with parsing1.
In the following we use the notation Pn to emphasize
that the productions operate on n tapes. We will refer to
dimG = n as the dimension of the grammar.

2.2 Algebraic Operations on Grammars
The + monoid. The + operator is defined as the union
of all production rules of the two grammars:

Pn1 + Pn2 = Pn1 ∪ Pn2 (10)

We enforce explicitly that the + operator requires that
the two operand grammars have the same dimension-
ality. The + operation forms a monoid over the set of
production rules. Since the production rules form a set,
isomorphic rules collapse to a single rule. The empty set
Pn = {} is a neutral element and Pn+Pn = Pn, i.e., the
+ monoid is idempotent. Isomorphism on production
rules is also symbolic, that is, X → X is isomorphic
to X → X but not to {X → Y, Y → X}, even though
the latter set of two rules reduces to the first. For our
example, we have (X → Xa

∣∣ Xε) + (X → $) = (X →
Xa

∣∣ Xε ∣∣ $).
Please note that the + operations has different se-

mantics than the usually encountered union of two
grammars. In particular, the union g∪h of two grammars
is typically defined in such a way that the intersec-
tion of non-terminals is empty, i.e. each non-terminal is
tagged with a unique identifier. This is in contrast to our
definition of the + operation, where we explicitly treat
symbols as equal if they have the same name.
The − operator. While the + operator unifies two sets of
production rules, the − operator acts as a set difference
operator

Pn1 − Pn2 = {p ∈ Pn1 |p /∈ Pn2 } (11)

As for +, it requires operands of the same dimensional-
ity. By construction, − is not associative. Thus does not
form a semigroup but merely a magma. The empty set of
production rules acts as the neutral element on the right.
This operator is important to explicitly remove produc-
tion rules that yield infinite derivations. In our example,
we need to remove {X → Xε}. With the help of − we
can write (X → Xa

∣∣ Xε) − (X → Xε) = (X → Xa).
We shall see that it is often convenient to “temporarily”
introduce productions that later on are excluded again
from the final algorithm.

1. This is not completely true in the context of stochastic linear
grammars: replication of a rule in an SCFG that already has duplicated
rules requires that we sum over the probabilities for isomorphic rules.

The ⊗ monoid. The definition of a direct product of left
linear grammars lies at the heart of this contribution.

Definition 1: Let G1 = (N1, T1, P1, S1) and G2 =
(N2, T2, P2, S2) be left-linear CFGs, i.e., all productions
are of the form A→ Bx or A→ y. Their direct product
G1 ⊗ G2 is the grammar G = (N,T, P, S) with non-
terminals N = N1 ×N2 ∪N1 × {ε} ∪ {ε} ×N2, terminals
T = T1×T2 ∪T1×{ε}∪ {ε}×T2, the start symbol of the
product is S =

(
S1

S2

)
. The productions are of the forms

(
A1

A2

)
→

(
B1

B2

)
(x1
x2
)
∣∣ (B1

ε )(x1
y2 )

∣∣ ( ε
B2

)( y1x2
)
∣∣ ( y1y2 )

(A1
ε )→ (B1

ε )(x1
ε )
∣∣ ( y1ε )

( ε
A2

)→ ( ε
B2

)( εx2
)
∣∣ ( εy2 )

(12)

where A1 → B1x1 and A1 → y1, are productions in P1

and A2 → B2x2 and A2 → y2 are productions in P2,
respectively.

By construction G is again a left-linear CFG that now
operates on two bands. It will be convenient to abuse the
notation and write productions of the form Ai → yi as
Ai → εyi. Hence all productions in the product grammar
can be written as

(
A1

A2

)
→

(
B1

B2

)
(x1
x2
) with Ai, Bi ∈ Ni∪{ε},

xi ∈ Ti ∪ {ε} subject to the following conditions: Ai = ε
implies Bi = xi = ε,

(
A1

A2

)
6= ( εε ), and ( εε ) on the r.h.s.

is omitted. We will also make use of notation (A1 →
B1y1) ⊗ (A2 → B2y2) for the product of two individual
productions. By construction, we have

dim(G1 ⊗ G2) = dimG1 + dimG2 (13)

The empty string ε in the 2-dimensional terminals and
non-terminals is not necessarily associated with termi-
nating the reading from the input band(s) as it denotes
the absence of a parsing symbol. The $ terminal symbol,
on the other hand, explicitly parses only the empty (sub)-
string.

To see that ⊗ is associative we need to demonstrate
that the productions of (G1⊗G2)⊗G3 and G1⊗ (G2⊗G3)
are isomorphic, i.e.,

(
(x1
x2
)

x3

)
→

(
(α1
α2

)
α3

)
'

( x1

(x2
x3
)

)
→

( α1

(α2
α3

)

)
(14)

This is most easily seen in the notation with the extra ε
symbols since in this case the αi are strings of length 2
that are simply decomposed in a column-wise fashion.
Hence multiple products are well-defined. Furthermore,
permutations of rows are isomorphisms. Thus G1⊗G2 '
G2 ⊗ G1, i.e. exchanging the order of factors affects the
order of the coordinates only. Due to the associativity
of ⊗, we can safely extend these constructions to more
than two factors. One easily checks that ⊗ and + are
distributive, i.e., (G1 + G′1) ⊗ (G2 + G′2) = G1 ⊗ G2 + G1 ⊗
G′2 + G′1 ⊗ G2 + G′1 ⊗ G′2.

The canonical projection πi : G1 ⊗ G2 → Gi is obtained
by formally isolating the i-th coordinate and contracting
the empty strings ε and the empty productions ∅ = (ε→
ε). Clearly we have πi(T ) = Ti, πi(N) = Ni, πi(S) = Si,
and πi(P ) = Pi. The grammar product ⊗ thus has the
basic properties of a well-defined product.
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Let lan(G) denote the language generated by G. Note
that a “string” in lan(G) is, by construction, a sequence of
terminals, each of which is either of the form (x1

x2
) with

x1 ∈ T1 and x2 ∈ T2, or of the form (x1
ε ) with x1 ∈ T1, or

of the form ( εx2
) with x2 ∈ T2. Thus lan(G1⊗G2) consists

of alignments of strings αi ∈ Gi. To see this, note that
each string αi ∈ Gi is generated from si using a finite
sequence ℘i = (p1i , p

2
i , . . . ) of productions. Any partial

matching of the ℘1 and ℘2 that preserves the sequential
order of the two input sequences gives rise to a sequence
℘ of productions of the product grammar by matching
all unmatched pki with the empty production ∅. By
construction πi(℘) = ℘i, i.e., ℘ derives an alignment of
the input strings β1 and β2. Conversely, given a sequence
℘ of productions of the product grammar, we know
that πi(℘) is a sequence of productions of Gi; hence it
constructs strings in lan(Gi). It follows that the product
language satisfies

πi(lan(G1 ⊗ G2)) = lan(Gi) (15)

Similarly, we find that parse trees have a natural
alignment structure. Let τ be a parse tree for an input
β ∈ lan(G1⊗G2). Its interior nodes are labeled by the pro-
ductions, i.e., pairs of the form

(
A1→B1x1

A2→B2x2

)
, (A1→B1x1

ε ),
or ( ε

A2→B2x2
). The projections πi(τ) are explained by

retaining only the i-th coordinate of the vertex label and
contracting all vertices labeled by ε in πi(τ) yields a valid
parse tree for πi(β) w.r.t. Gi. Thus τ is a tree alignment
of the parse trees for the two input strings.

The direct product ⊗ forms a monoid on grammars
with arbitrary dimensions since

Pm1 ⊗ Pn2 = {(p1 ⊗ p2)m+n|pm1 ∈ Pm1 , pn2 ∈ Pn2 } , (16)

where p1⊗p2 is explained in Def. 1. The neutral element
of the ⊗monoid is the zero-dimensional grammar which
has one production rule ε0 → ε0 that neither reads
nor writes anything as it does not operate on a tape.
Albeit rather artificial at first glance, it is useful to have
a neutral element available. For our example, we have

(X → Xa|X)⊗ (X → Xa|X)

= (XX )→ (XX )(aa )
∣∣ (XX )(aε )

∣∣ (XX )( εa )
∣∣ (XX )

(17)

This grammar contains the 2-dimensional loop rule
(XX ) → (XX ), derived from (X → X) ⊗ (X → X)
that eventually needs to be eliminated. To this end, it
will be convenient to consider yet another operation on
productions.
The structure-preserving power ∗ For any k-
dimensional grammar G and any natural number
n ∈ Z, G ∗ n denotes the k × n-dimensional grammar
with the same structure. Each k-dimensional (terminal or
non-terminal) symbol (α1, . . . , αk)

> is transformed to an
k×n-dimensional symbol ((α1 . . . αk), . . . , (α1 . . . αk))

top.
Note that for a grammar with a single production rule
we have G⊗G ≡ G ∗ 2.

For our example grammar, this operation is useful
as short-hand for both Equ. 7 and Equ. 8. In the case

of linear grammars, the ∗ operator is mostly useful as
shorthand to expand singleton grammars. It is worth
noting, however, that some algorithms in computational
biology, notably the Sankoff algorithm [10], work on
multiple tapes with a grammar structured very similar
to the one-dimensional relatives. We will return to the
topic in section 3.3.

We can now construct the full Needleman-Wunsch
alignment grammar from the much simpler 1-
dimensional constituents of Eqns.(6–8) in the following
way:

NW = S ⊗ S +N ∗ 2− L ∗ 2 , (18)

Written in terms of the productions only, this can be
rephrased as

(X → Xa|Xε)⊗ (X → Xa|Xε)
+ (X → $) ∗ 2− (X → Xε) ∗ 2

= (XX )→ (XX )(aa )
∣∣ (XX )(aε )

∣∣ (XX )( εa )
∣∣ ( $

$

) (19)

Again we have used a distinct symbol $ to highlight the
termination case deriving fromN . Since our construction
of the Needleman-Wunsch grammar is based on well-
defined algebraic operations we can readily use the same
approach to construct much more complex alignment
algorithms. Before we proceed, however, we need to
address the technical issue of loop rules.

2.3 Grammars with Loops
In Equ. (18) we explicitly added a terminating base case
X → $ and removed a production rule with infinite
derivations X → X , or, equivalently X → Xε. Why
do we insist on performing this operation explicitly
instead of modifying the definition of the direct product
⊗ accordingly?

The main reason lies in performance considerations.
An “intelligent” product operator would first need to
determine which rules have infinite derivations. For
linear grammars with only one non-terminal a rule is not
infinite if a single terminal (except ε) is present. $ rules
are also fine, as long as only the empty word case X → $
is present. Productions of the form {X → Y, Y → X},
however need to be followed up to a depth of the
number of production rules present. For context-free
grammars, the complexity will increase further, as in
general multiple non-terminals may exist on the right-
hand side. For both convenience and efficiency (by a
constant factor), it does not seem to be desirable to
transform the grammar into Chomsky normal form. The
second problem is the need for rewriting. In the case
of {X → Y, Y → X}, rewriting yields X → X by
inserting the rules for Y wherever Y is used. More
complicated grammars might quite easily require major
rewrites before all loop cases can be removed.

Finally, using looping productions can be conceptually
useful during construction. In case of Equ. 6, we either
want to read a character in a “step” X → Xa or perform
an in/del with a “stand” X → Xε. The direct product
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of Equ. (6) then yields all possibilities of stepping or
standing on two (or more) tapes. Of these cases we
only want to remove the case where all tapes “stand”.
This case is quite easily determined as Equ. 8 and just
needs to be scaled (with ∗) to the correct dimension and
subtracted from the complete grammar.

2.4 Implementation
We have implemented a small compiler for our grammar
product formalism with four output targets. First, we
generate LATEX output. This supports researchers in the
development of complex, multiple dimensional linear
and context-free (in 2-GNF) grammars, facilitates the
comparison with the intended model for an elaborate
alignment-like algorithm. It assists implementation of
the grammar in the users’ programming language of
choice as the mathematical description of the recurrences
reduces the chance that a production rule or recursion is
simply forgotten.

In addition, we directly target the functional program-
ming language Haskell [11]. It is possible to emit a
Haskell module prototype which then needs to be ex-
tended with user-defined evaluation (scoring) algebras.
This mode mirrors the LATEX output. Advanced users
may make use of TemplateHaskell [12] and QuasiQuota-
tion [13] to directly embed our domain-specific language
as a proper extension of Haskell itself. Both Haskell-
based approaches ultimately make use of stream fu-
sion optimizations [14] by way of the ADPfusion [15]
framework that produces efficient code for dynamic
programming algorithms.

Currently, the emitted Haskell code for non-trivial
applications is slower than optimized C by a factor of
two [15]. Recent additions to the compiler infrastructure
[16], which provide instruction-level parallelism, will
reduce this factor further. As ADPfusion is built on top
of the Repa [17] library for CPU-level parallelism, we
can expect improvements in this regard to be available
for our dynamic programming algorithms in the near
future.

Finally, we provide colored, pretty-printed diagnostics
to aid during grammar development.

3 ALIGNMENT ALGORITHMS

The overwhelming majority of alignment programs
solve pairwise alignment problems by exact DP but use
heuristics to combine the pairwise solutions to multiple
alignments. The main reason is practicality. Full-fledged
n-way DP alignments have exponential running time
and hence are of little practical use for large n despite
of elaborate divide-and-conquer strategies have been
proposed to prune the search space, see e.g. [1]. Three-
way alignments nevertheless are employed in practise
in particular when high accuracy is crucial, see e.g.
[18], [19], [20], [21]. Four-way alignments were recently
explored for aligning short words from human language
data [22]. We suspect that DP approaches for moderate

values of n have not been explored for specialized appli-
cation because of the effort for their implementation. In
this section we demonstrate how the product construc-
tion can help, using a combined nucleic-acid/protein
alignment algorithm as an example.

3.1 Global, Semi-global, and Local Alignments
Global Alignments
The global alignment described above is the simplest
variant of pairwise sequence alignment. Needleman-
Wunsch style global alignments in grammatical form
have a very convenient structure. The global alignment
of k sequences (and therefore k tapes) can be written as
SWk =

⊗k
i=1 S − L ∗ k + N ∗ k, where

⊗k
i=1 S denotes

the k-fold product of a grammar with itself. By virtue of
having a monoidal (and hence associative) structure of
the ⊗ operator it is well-defined.

This property of the global alignment grammar was
quite useful in recent work on historical linguistics [23]
where all alignments for k-tuples with k ∈ {2, 3, 4}, or
two- to four-way alignments, were required. Scoring in
these grammars was done by algebras using the sum-
of-pairs scheme. We will come back to these kinds of
scoring schemes in the conclusion, as they open up
ways to describe automatic generation of algebras2 for
grammar products.

In many applications one is interested in local align-
ments that allow prefixes and suffixes to remain un-
aligned. It is possible to perform a local alignment
with an adapted scoring scheme (as done in the Smith-
Waterman algorithm [24]). Within the grammar-centered
framework explored here, however, it seems preferable
to devise a grammar that describes such a local align-
ment. Below we consider two natural extensions that
are practical importance as semi-global (glocal) or local
alignment algorithms.

Semi-global Alignments
We first modify the Needleman-Wunsch grammar,
equ.(18), in such a way that it models a semi-global
alignment, i.e., to allow the grammar to act locally on one
or more tapes. This allows us to construct scanning-type
algorithms that can be used in genome-wide applications
such as HMMer [25] and Infernal [26], [27]. The basic
idea is to replace the 1-dimensional “step grammar” by a
slightly more complex one that allows us to skip a prefix
or a suffix:

NL =({L}, {$}, {L→ $}, L) (20)
NX =({X}, {$}, {X → $}, X) (21)
L =({X}, {}, {X → Xε}, X) (22)
O =({X,R,L}, {a}, {R→ Ra

∣∣ Xε,X → L,L→ La}, R)
(23)

2. we do not use the term algebra product in this case as algebra
products already describe well-defined combinations of algebras in
ADP [2]
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Grammar: DNAlocal
N: F{3} R L
T: c e
S: R
R -> skp <<< R c
R -> lcl <<< F{i}
F{i} -> lcl <<< L
L -> skp <<< L c
//

Grammar: DNA
N: F{3}
T: c
F{i} -> stay <<< F{i} c c c
F{i} -> rf1 <<< F{i+1} c c
F{i} -> rf2 <<< F{i+2} c
F{i} -> del <<< F{i}
//

Grammar: DNAdone
N: F{3} R L
T: e
F{i} -> nil <<< e
R -> nil <<< e
L -> nil <<< e
//

Grammar: DNAstand
N: F{3}
F{i} -> del <<< F{i}
//

Grammar: PRO
N: P
T: a e
P -> amino <<< P a
P -> del <<< P
//

Grammar: PROdone
N: P
T: e
S: P
P -> nil <<< e
//

Grammar: PROstand
N: P
P -> del <<< P
//

Product: DnaPro
DNA >< PRO

+ DNAlocal >< PROstand
+ DNAdone >< PROdone
- DNAstand >< PROstand
//

Fig. 1. Atomic grammars for the DNA-Protein alignment example. (I) Nucleotides are read in triplets (three nucleotides
each). The genome is aligned locally to the complete amino acid sequence. Using DNAlocal, nucleotides can be
removed from the left or right end of the DNA sequence. The choice between local or global alignment for each tape is
made based on adding the grammar product DNAlocal >< PROstand. The DNA grammar switches between reading
frames. DNAdone and DNAstand handle the terminating and looping case. (II) The PROtein grammar works similarly,
but reads only a single amino acid at a time. The expansion of the DNA grammar is more complicated, as the indexed
non-terminal symbol F expands to three different non-terminals corresponding to the three possible reading frames.
(III) The grammar product of DNA and PROtein without the looping case “stand” and with the terminating case “done”.
In code, >< represents the direct product (⊗). The resulting 34-production rule grammar is shown in the Supplemental
Material together with an extended description.

The extension from a global to a semi-global (or glocal)
alignment is done using another grammar with a total of
four rules. These rules allow the removal of nucleotides
on the right (via R rules) or left (L rules) and switching
to and from the actual alignment grammar. The extended
step grammar O introduces the transitions from the right
“ignored” part R to the aligned part X , and finally from
X to the left “ignored” part L. It reads through the
“ignored” parts with R → Ra and L → La rules. The
“stop grammar” N now needs to recognizes the end of
the tape $ as the r.h.s. of the non-terminal L.

The combined semi-global grammar can be written as

SG = S ⊗ S +O ⊗ L− L ∗ 2 +NL ⊗NX (24)

has the eight productions

(RX )→ (RX )(aε )
∣∣ (XX )

(XX )→ (XX )(aa )
∣∣ (XX )( εa )

∣∣ (XX )(aε )
∣∣ ( LX )

( LX )→ ( LX )(aε )
∣∣ ( $

$

) (25)

with (RX ) as the start symbol. It embeds the core of the
alignment grammar, S ⊗S into a head and tail part that
steps through the first band only. By construction SG is
local only on the first tape, and global on the second
tape. Intuitively, we can understand it as SG ∼ NW +
O⊗L, i.e., as the Needleman-Wunsch grammar plus the
skipping of a prefix and suffix on the first tape.

Local Alignments
The Smith-Waterman algorithm [24] for local sequence
alignment is usually implemented via the scoring
scheme. Including a neutral element (i.e. 0 for max-
optimizations where sub-scores are summed up) into the
optimization function yields a local alignment algorithm.
As for the semi-global alignment, we again employ
a grammar-based scheme to derive a local algorithm
from a global one. Our construction is based on the
observation that we can interpret the Smith-Waterman
algorithm as a “concatenation” of three interconnected
Needleman-Wunsch algorithms, where the first and the
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last one score only the excluded parts of the sequences.
This can be written as

SW = +2
i=0(S ⊗ Si − Li ∗ 2) +N2 ∗ 2 + T ∗ 2 . (26)

Here, S,L,N are derived from the global alignment
versions

Si =({Xi}, {a}, {Xi → Xia
∣∣ Xiε}, Xi)

Li =({Xi}, {}, {Xi → Xiε}, Xi)

N2 =({X2}, {$}, {X2 → $}, X2)

T =({X0, X1, X2}, {}, {X0 → X1, X1 → X2}, X0)

and T defines the transitions between the grammars. The
resulting product grammar contains 12 production rules
with

(
X0

X0

)
as start symbol.

(
X0

X0

)
→

(
X1

X1

) ∣∣ (X0

X0

)
( εa )

∣∣ (X0

X0

)
(aε )

∣∣ (X0

X0

)
(aa )(

X1

X1

)
→

(
X2

X2

) ∣∣ (X1

X1

)
( εa )

∣∣ (X1

X1

)
(aε )

∣∣ (X1

X1

)
(aa )(

X2

X2

)
→

(
$
$

) ∣∣ (X2

X2

)
( εa )

∣∣ (X2

X2

)
(aε )

∣∣ (X2

X2

)
(aa )

(27)

The naı̈ve formulation is not ideal in practise in that
it requires three memoization tables for the three non-
terminals

(
X0

X0

)
,
(
X1

X1

)
, and

(
X2

X2

)
. In case of a local scor-

ing system where the excluded parts of the alignment
(
(
X0

X0

)
and

(
X2

X2

)
) are scored by a constant, it is possible

to replace the O(nm) memo-tables with tables of size
O(1). This is possible by recognizing that every subword
(index) in such a table can be memoized by the same
single value. We will come back to this point in the
discussion section.

Symmetric and Asymmetric Scoring
It is important to recognize that the grammar alone is
a device that enumerates all possible alignments of a
DNA sequence with a protein sequence. In particular,
the grammar itself will not disallow alignments that
are biologically unsound. However, each grammar cre-
ated using our framework has all of its rules tagged
with function symbols. These function symbols are also
known as algebra symbols in the context of ADP [2]. In
this sense, our framework is very similar to S-attribute
grammars [28].

Nevertheless, we can support the construction of the
scoring algebra already during grammar design be ex-
plicitly making use of symmetries in the model. The
alignment of two sequences of the same type is usually
simplified due to mirrored operations. Recalling the
alignment grammar from above, we speak of in/del
operations as an insertion in one sequence that may
just as well be described as a deletion in the other
sequence. In addition, it does not matter which sequence
is bound to which input tape. In some applications
this symmetry is broken. For example, ancient DNA is
partially chemically degraded by cytosin deamination,
i.e., C is misread as T in sequencing [29]; to model
such effects, asymmetric substitution score matrices are

required. The same is true for alignments of lexical
data in a computational linguistics setting because sound
changes are directional between two languages [22]. To
enforce symmetry we may use the same non-terminal
symbols for each tape, while asymmetry can be indicated
by the use of different (or indexed) symbols on the
different tapes.

3.2 DNA-Protein Alignment

The problem of aligning a protein sequence to a nu-
cleic acid (RNA or DNA) sequence is a rather special-
ized problem that arises in particular in the context of
(homology)-based gene annotation. The best example is
probably NCBI’s prosplign, which aligns a protein
query sequence to a piece of genomic DNA allowing
also for introns. A detailed description of this dynamic
programming algorithm has not yet become available.
An interesting variation on this theme is gene annotation
in the presence of extensive insertion/deletion editing as
observed in the mitochondria of Physarum polycephalum
or trypanosomatids. Frequent changes of the reading
frame make it virtually impossible to identify homologs
of mitochondrial proteins by tblastn, thus calling for
specialized alignment algorithms [30], [31].

Our task is to align the amino acid sequence of a
protein that may be present in a mitochondrial genome
to the entire nucleic acid sequence of a mitogenome.
Since we suspect that mRNAs may be subject to insertion
or deletion editing, it is necessary to track frameshifts.
Fig. 1 shows a general version of such an approach.
The DNA sequence is read in one of three reading
frames (RFs), and a deletion or insertion does not yield
a “simple” in/del but also a frame shift to account for
the effect of in/dels on the translation of the DNA into
protein according to the “codons” of the genetic code. In
Fig. 1 frame shifts (with scoring functions rf1 and rf2)
are enabled. Staying within a frame is modelled either
by a (mis)match stay of by the deletion of all three char-
acters of a codon (del). Finally, the alignment is to be
calculated locally w.r.t. the DNA sequence but globally
w.r.t. the amino acid sequence. In the grammar of Fig. 1
this is achieved by adding a component grammar that
“skips” an unaligned prefix and suffix on the DNA band
while leaving the protein band untouched. This follows
the same insight as in the simpler alignment grammars
above.

As each of the three frames, and shifts to the other
two frames, is by itself similar to the other two frames, a
special encoding saves a lot of work. The F non-terminal
indicating the current frame is indexed with indices 0, 1,
and 2. Frame shifts are thus calculated modulo 3 instead
of explicitly creating all three frame indices F0 to F2 and
their corresponding production rules. Furthermore, all
alignments are local with respect to the DNA sequence
but global with respect to the protein sequence. The
product of an embedding grammar (DNAlocal) with a
grammar that does not read any amino acid character
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yields the correct semi-global embedding. For the protein
sequence, the corresponding PROstand grammar can
simply be reused.

The complexity of the DNA-protein alignment stems
from the fact that we need to “align” the different frame
shifting possibilities in the DNA input while matching
zero to three nucleotides to zero or one amino acid in
the protein input. In addition, once a frame shift has
occurred all following alignments of three nucleotides
against one amino acid are scored in the new reading
frame until another frame shift occurs or the alignment
is completed. Under normal circumstances, the scoring
algebra for the DNA-Protein grammar will assign very
high costs to frameshift productions rf1 and rf2. In
order to model the frequent cytosine insertions in P.
polycephalum, however, we simply use a moderate or low
penalty for rf1 when the incomplete codon is corrected
by the inclusion of a ’C’ that is not encoded in the DNA.

Our framework simplifies the complexity of designing
this algorithm considerably. While the combined grammar
is highly complex, the individual grammars are rather
simple. As already mentioned, the protein “stepping
grammar” is one of the simplest possible ones. The
DNA grammar is more complex as we need to handle
stepping and frame shifts in all three reading frames. But
considering that we allow indexed non-terminals and
calculations on these indices (modulo 3 in the frame shift
case), even the frame shift grammar has only four rules,
just twice as much as the simplest stepping grammar.

The resulting 34-production rule grammar is easily
calculated in our frame work. We emphasize that one
may readily extend this grammar to allow for, say, an
alignment of two DNA sequences with two protein
sequences. This grammar can be calculated at basically
no additional cost but would pose a daunting task if
implemented by hand.

In addition to the 34-production rule grammar, a set
of (10+1) function types3 is created. This signature, as it
is called in Algebraic Dynamic Programming [2], [15],
associates one type with one or more of the production
rules. For example, the production rule created from
the product of F{i} -> stay <<< F{i} c c c and
P -> amino <<< P a creates, among others, the pro-
duction rule

(
F0

P

)
→

(
F0

P

)
( ca )(

c
ε )(

c
ε ).

The corresponding evaluation function stay_amino
has type S× (N ×A)× (N ×E)× (N ×E)→ S. This type
specifies that stay_amino accepts the score (of type
S) of the alignments as calculated up to this position
followed by tuples of characters read from each tape.
The first nucleotide character (of the set N = {A,C,G,T})
is aligned with the corresponding amino acid character
(of the set A of the 20 amino acids). The remaining two
nucleotides are aligned with elements from the empty
set (E which emits the “non-informative character” rep-
resented by the empty tuple ()). This design allows us

3. the 11th function type designates the optimizing choice function,
which is part of every evaluation algebra

to effectively align the single amino acid character with
three nucleotide characters. Finally, the stay_amino
function emits a score of type S.

General Scoring for Frameshift-aware Alignments:
The user can now implement the required scoring func-
tions. The scoring we describe here makes no assump-
tions on the knowledge of frequent cytosin (C) insertions.
Instead we implement scoring for a generic frameshift-
aware alignment algorithm which we then evaluate.

To this end we use three score lookup tables: (i) The
alignment of three nucleotides to a single amino acid is
performed by translating the codon into its respective
amino acid, after which the, say, BLOSUM similarity
matrices can be used to score the alignment. (ii) In case
of a frame shift combined with a (mis)match either only
one or two nucleotides are aligned with an amino acid.
For, say, two nucleotides on the DNA sequence there
are 12 possible codons: αc1c2, c1αc2, and c1c2α, where
α ∈ {A,C,G, T} and c1, c2 are the data of the DNA
sequence. The insertion that maximizes the BLOSUM sim-
ilarity is used to score the (mis)match. (iii) In addition to
the BLOSUM-based scores, 6 gap parameters are required.
Complete deletions of either a three-nucleotide codon
or an amino acid (gccc = −15, ga = −10), as well
as the frame shift versions are penalized. To model
the abundance of insertion editing sites, one-nucleotide
frameshifts receive only a moderate penalty (approxi-
mately four strong mismatches (−20), partially offset by
the BLOSUM-based match score for the repaired codon).
Aligning a single nucleotide to an amino acid incurs
a malus of −60, while nucleotide deletions incurring a
frameshift are heavily penalized with a malus of −45
or −75. Finally, given that we want to align the protein
semi-globally to the DNA sequence, transitions to and
from the flanking part of the DNA have zero cost.

It is important to keep in mind that the generation
of candidate alignments by the grammar is completely
separate from the concrete scoring of the alignment by a
scoring algebra. The amalgamation of the two concepts
grammar and scoring algebra is taken care of by the
ADPfusion framework [15], which also optimizes the
resulting code such that its running time performance
is competitive with hand-written C-based implementa-
tions.

Application of the Frame-Shift Grammar
To evaluate our DNA-Protein alignment algorithm we
use a scenario as a test case in which frameshifts are
rather frequent events. The mitochondrial genome of
the amoeba Physarum polycephalum has long resisted
comprehensive annotation because insertion editing is
so frequent in most of its transcripts that blastp-
based searches for homologs of known mitochondrial
proteins have long remained unsuccessful [30]. This
situation has changed only with the construction of a
dedicated DNA/protein alignment algorithm that specif-
ically modelled the C insertion [31], [32]. With the recent
characterization of the mitochondrial transcriptome of
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Fig. 2. Alignment of R. americana proteins to the P.
polycephalum mitogenome. The central panel displays
expression data from [33]. Above and below the known
protein-coding (P) and ncRNA (R) genes are shown (thick
black lines with delimiters for each gene) together with the
alignment scores (normalized per nucleotide) for the R.
americana proteins.

P. polycephalum [33] a comprehensive list of insertion
editing sites became available.

Here we test the implementation of the frameshift
DNA/protein alignment algorithm given in Fig. 1 for
the task of annotating the P. polycephalum mitogenome
(62,862 nt [34]) by homology search. We use the 67
protein sequences encoded by the mitochondrial genome
of Reclinomonas americana. This jakobid excavate is only
very distantly related to P. polycephalum. It has been
reported, however, to host the most complete, bacterial-
like protein complement of all mitogenomes investigated
so far [35]. We therefore aligned each of the Reclinomonas
americana proteins semi-globally against the mitogenome
of P. polycephalum.

The P. polycephalum mitogenome contains 39 protein
coding genes annotated in Redbase4 [33], 32 of which
have a homolog in R. americana. For 18 of these the best
hit of the DNA-Protein alignment correctly identifies
the genomic location of the gene in P. polycephalum
with only minor deviations of the exact start and stop
positions. In [31] 9 genes previously not identified in P.
polycephalum were annotated with a handcrafted DNA-
Protein alignment algorithm that specifically favours C
insertions using all proteins in NCBI’s non-redundant
protein database.

Our approach recovers 3 of these 9 proteins. However,
we have made no efforts to optimize parameters, our
algorithm does not distinguish between C insertions and
other frame-shifting insertions or deletions, and we use
only a single, evolutionary very remote mitogenome as
query. We recover also nearly half of the C insertion
sites. Using the P. polycephalum proteins as query, we find
nearly all editing sites located in the coding regions (e.g.
76 of the 79 in nad5).

The purpose of this application example, however, is
not to improve the annotation of the P. polycephalum mi-

4. http://bioserv.mps.ohio-state.edu/redbase/

togenome beyond the level of accuracy the was achieved
with the help of transcriptome sequencing [33]. Our
point is that a pilot study into this rather specialized
topic can be set up literally within a few hours with
the help of grammar products and the software support
described in section 2.4.

Applications such as the alignment of tens or more
protein sequences to full genomes, albeit a rather small
one in this case, require a modicum of performance con-
siderations. Since we need to scan a full genome (though
one only about 60 000 nt in length), we have opted
for a sliding window approach for the DNA sequence,
whereas the protein sequence is always aligned in full.

In addition, the algorithm makes use of multiple cores
on a single machine in a parallel setup. This algorithm
is embarrassingly parallel as all pairs of DNA win-
dows and proteins can be aligned simultaneously, given
enough resources.

The final ingredient to good performance is the im-
plementation of the dynamic programming algorithm
itself. We should investigate the actual performance of
our automatically generated grammar implementations
versus hand-written code, but this is mostly a question
delegated to the underlying ADPfusion framework.
We prefer a separation of concerns: grammar products
emphasize algebraic operations, the user need not be
concerned with low-level implementation details.

Our larger-scale DNA-Protein example performs quite
well – although we, of course, have no algorithm in C
to compare against. The alignments of the 67 protein
sequences of various lengths ranging from around 100
amino acids to several hundred to the approximately
60 000 nt of the mitogenome can be done in 289 minutes
on an Intel Xeon E5-2680 running at 2.7 GHz running in
single threaded mode.

3.3 Sankoff’s Consensus Structure Algorithm

A classical problem in RNA bioinformatics is the si-
multaneous computation of a pairwise alignment and
a consensus secondary structure of two input RNA
sequences. David Sankoff already noticed in [10] that this
problem smells of product structures.

For the sake of brevity we consider here only a variant
of the “Nussinov grammar” [36] that distinguishes the
non-terminal S for unconstrained structures and the
non-terminal B for secondary structures enclosed by a
base pair instead of the more commonly used “Zuker
grammar” that accounts for the full loop decomposition
[37]. The grammar NUS has the productions

S → $
∣∣ Sa ∣∣ SB

B → aSâ
∣∣ aBâ (28)

where the terminals a and â denote nucleotides that can
pair with each other. This is just a short hand for the 6
legal base pairs explicitly, i.e., aSâ = aSu

∣∣ cSg ∣∣ gSc ∣∣
gSu

∣∣ uSa ∣∣ uSg.
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The ∗-operation is easily generalized to arbitrary CFGs
in the form (A → αβ . . . γ) ∗ 2 = (AA ) → (αα )

(
β
β

)
. . . (γγ ),

where α, β, . . . , γ are either terminals or non-terminals.
The natural version of the Sankoff algorithm for two
input sequences is

(SS )→
(
$
$

) ∣∣ (SS )(aa ) ∣∣ (SS )(aε ) ∣∣ (SS )( εa )
(SS )→ (SS )(

B
B )

(BB )→ (aa )(
S
S )

(
â
â

) ∣∣ (aa )(BB )
(
â
â

) (29)

This can be expressed much more compactly in the form

SANK = NW + (S → SB, B → aSâ
∣∣ aBâ) ∗ 2 (30)

when we allow base pairs in either sequence only when
they also appear in the consensus. More complex gram-
mars are required when we allow e.g. also the breaking
of arcs, the insertion and deletion of entire base pairs,
or alignments of paired and unpaired bases, see e.g.
[7]. This begs the question whether such generalization
could be obtained as subsets of the product of NUS with
itself:

(SS )→
(
$
$

) ∣∣ ( $
Sa

) ∣∣ ( $
SB

) ∣∣ (Sa
$

) ∣∣ (SaSa ) ∣∣ ( SaSB )
∣∣

(
SB
$

) ∣∣ (SBSa ) ∣∣ (SBSB )

( SB )→
(

$
aSâ

) ∣∣ ( $
aBâ

) ∣∣ ( Sa
aSâ

) ∣∣ ( Sa
aBâ

) ∣∣ ( SB
aSâ

) ∣∣ ( SB
aBâ

)

(BS )→
(
aSâ
$

) ∣∣ (aSâ
Sa

) ∣∣ (aSâ
SB

) ∣∣ (aBâ
$

) ∣∣ (aBâ
Sa

) ∣∣ (aBâ
SB

)

(BB )→
(
aSâ
aSâ

) ∣∣ ( aSâ
aBâ

) ∣∣ (aBâ
aSâ

) ∣∣ (aBâ
aBâ

)
(31)

A closer inspection of this “formal” product reveals
several problems.

While some of the formal right hand sides have
natural explanations, such as (SaSa ) ' (SS )(

a
a ), others

require the introduction of ε symbols, such as
(
aSâ
Sa

)
'

(aε )(
S
S )(

â
a ). Other terms are more difficult to make sense

of. For instance, what should we mean by ( SaSB )? We
might write ( SaSB ) ' (SS )(

a
B ) leaving us with an unde-

sirable combination of a terminal and a non-terminal.
In line with our construction for linear grammars we
may include all order-preserving combinations in a form
such as the following ( SaSB ) ' (SS )(

a
ε )(

ε
B )
∣∣ (SS )( εB )(aε ) or

possibly even more general expansions. In contrast to
the linear grammars considered in the previous section
general CFGs can have arbitrary strings of terminals
and non-terminals as the r.h.s. of their productions. This
may lead to an exponentially large number of “padded”
terms in the interpretation of a formal product term. As
a consequence it becomes very difficult to establish the
algebraic properties of such a product.

A possible remedy comes from considering normal
forms, of which several types have been explored in
detail for CFGs. The two best known ones are the
Chomsky normal form (CNF) and the Greibach normal
form (GNF) [38], [39]. Both normal forms have been
useful both in practise and as a theoretical device. We
therefore explore here the possibility to construct direct
products of context-free grammars in Greibach normal

form as the 2-GNF has the useful property of a r.h.s.
with a single terminal followed by zero, one, or two non-
terminal symbols. This property simplifies questions of
alignment considerably.

3.4 A Product for Greibach Normal Forms

Every context free grammar that does not produce $ can
be transformed into an equivalent grammar with rules
of the form

A→ aBC
∣∣ bD ∣∣ c (32)

known as its Greibach normal form of order 2, or simply
2-GNF. If the empty string is produced, the rule S → $
must be added, where S is the start symbol. We ignore
this technicality for brevity of exposition. It is easily
included if one allows $ as a terminal symbol. It is
however mostly a question of semantics if a grammar
should consider empty input tapes legal input or not.

A natural product for grammars in 2-GNF, which we
denote by }, can be obtained as follows: Terminals in the
product are pairs of terminals of the input grammars,
and the set of non-terminals is, as in the case of linear
grammars, the Cartesian product of the sets of input
non-terminals augmented by non-terminals of the form
(Aε ) and ( εA ). The production rules of the product are the
following:

(A1 → a1B1C1)} (A2 → a2B2C2) =( (
A1

A2

)
→ (a1a2 )

(
B1

B2

)(
C1

C2

))
(A1 → a1B1C1)} (A2 → b2D2) =( (

A1

A2

)
→

(a1
b2

)(
B1

D2

)
(C1
ε )
∣∣ (a1

b2

)
(B1
ε )

(
C1

D2

))
(A1 → a1B1C1)} (A2 → c2) =( (

A1

A2

)
→ (a1c2 )(

B1
ε )(C1

ε )
)

(A1 → b1D1)} (A2 → a2B2C2) =( (
A1

A2

)
→

(
b1
a2

)(
D1

B2

)
( ε
C2

)
∣∣ ( b1

a2

)
( ε
B2

)
(
D1

C2

))
(A1 → b1D1)} (A2 → b2D2) =( (

A1

A2

)
→

(
b1
b2

)(
D1

D2

) ∣∣
(
b1
b2

)
(D1
ε )( ε

D2
)
∣∣ ( b1

b2

)
( ε
D2

)(D1
ε )

)
(A1 → b1D1)} (A2 → c2) =

( (
A1

A2

)
→

(
b1
c2

)
(D1
ε )
)

(A1 → c1)} (A2 → a2B2C2) =( (
A1

A2

)
→ ( c1a2 )(

ε
B2

)( ε
C2

)
)

(A1 → c1)} (A2 → b2D2) =
( (

A1

A2

)
→

( c1
b2

)
( ε
D2

)
)

(A1 → c1)} (A2 → c2) =
( (

A1

A2

)
→ ( c1c2 )

)

(33)

By construction, } is commutative (up to exchanging
the coordinates). One easily checks that the product
grammar is again in 2-GNF since the r.h.s. of each
production consists of a terminal followed by one or
two non-terminal symbols. As in the case of the linear
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grammars we explain the productions of non-terminals
of the form (Aε ) by the productions of A in the first
factor grammar, for instance (Aε ) → (aε )(

B
ε )(

C
ε ). The

distributive law (P1 + P2) } P3 = P1 } P3 + P2 } P3

also holds by construction.
To show that } is associative, it therefore suffices

to show that the product is associative for any three
productions. Since there are only 3 types of rules in a
2-GNF, it suffices to consider the 27 possible products
of triples of production rules, which altogether lead to
57 rules. We used a computational proof to establish
that associativity is indeed satisfied, see Supplemental
Material. It is important to note that the two “decoupling
rules” for (A1 → b2D2) } (A2 → b2D2) indicated by
the box in Equ.(33) are necessary for associativity of the
product.

Linear grammars can be understood as special cases
of 2-GNF with productions of the form A → Bx

∣∣ y
(except that we now deal with right linear instead of
left linear grammars). A comparison of the definition
of ⊗ in Equ.(12) and } in Equ.(33) shows that the
restriction of } to linear grammars does not recover (the
mirror image of) ⊗. The discrepancy are exactly the two
“decoupling rules” necessary for associativity of the }
product. For instance, the }-square of the step grammar
(X → aX|εX) has the productions

(XX )→(aa )(
X
X )
∣∣ (aa )(Xε ) ∣∣ (aa )( εX )

∣∣
(aε )(

X
X )
∣∣ (aε )(Xε ) ∣∣ (aε )( εX )

∣∣
( εa )(

X
X )
∣∣ ( εa )(Xε ) ∣∣ ( εa )( εX )

∣∣
( εε )(

X
X )
∣∣ ( εε )(Xε ) ∣∣ ( εε )( εX )

(34)

Only the first term in each line appears in the ⊗ product.
We have fully implemented definition of the} product

for the 2-GNF of Equ.(33), so that general CFGs in 2-GNF
can be defined and multiplied like linear (left-, right-
, and general linear) grammars in our domain-specific
language, providing access to an efficient implementa-
tion of the resulting multi-tape product grammars.

4 DISCUSSION

Our main contribution is a formal, abstract algebra
on linear grammars. This algebra provides operations
to create complex, multi-tape grammars from simple,
single-tape atomic ones. More informally, we have cre-
ated a method and implementation to “multiply” dy-
namic programming algorithms. We also provide a com-
piler framework that makes the grammars readily avail-
able for actual deployment with good performance of
the resulting code. Products of linear grammars make
it very easy to construct the grammars underlying key
algorithms in the field of string comparison starting from
almost trivial single-tape factors. This approach is par-
ticularly fruitful in highly specialized applications as it
drastically reduces the efforts required for implementing
prototypes, as the example of DNA/protein alignments
with frameshifts shows. The work presented here is

just a first step towards a general theory of grammar
products. Many questions, both theoretical and practical,
remain open.

Although we have succeeded in constructing an al-
gebraically meaningful product operation of CFGs in
normal form it is currently restricted to the Greibach
Normal Form. A fully generic version of the grammar
product currently eludes us. While this poses no theoret-
ical problem given that every CFG can be transformed
into an equivalent CFG in (Greibach) Normal Form, it
poses a problem in practice. Often, a production rule
is associated with a certain structural feature that one
wants to retain. Transformations into normal form also
increase the number of non-terminals (and thereby re-
source usage) by a polynomial depending on the number
of non-terminals [40].

It will also be important to explore both the interplay
of different operators on grammars (especially our +
operation and the union (∪) of grammars), and to for-
malize meaning and operation. This will provide, in the
long-term, a full-fledged algebraic framework in which
it should be easily possible to describe even complex
grammatical problems.

Another avenue of future research is the question of
semantic ambiguity of the resulting grammars. Simple
products of the same grammar yield ambiguous align-
ments on sequences of in-dels. This problem is typically
dealt with a good grammar design that explicitly allows
only one order of successive insertions and deletions on
multiple tapes. Automatic dis-ambiguation is probably
complicated but would further simplify the creation of
complex multi-tape grammars.

In this contribution we have focussed entirely on the
grammars underlying the dynamic programming algo-
rithms and disregarded almost entirely the construction
of scoring algebras for product grammars. We anticipate
that in many cases, a scoring algebra can be expressed as
a form of product itself where the two scoring functions
(one for each grammar) are themselves combined in
some well-defined form. One possibility is the use of
a folding operation to combine scores for subsets of
the individual dimensions. It then follows that given
two algebras AG1

and AG2
for grammars G1 and G2

we should be able to define an operation AG1 ⊗κ AG2

which generates appropriate algebras from algebras for
atomic grammars. As long as κ has some structure
similar to a fold or another operation on subsets of
the dimensions (of the grammars) involved, appropriate
products can be automatically defined. This will become
particularly useful when aiming at ADP-like [41] algebra-
products to explore the rich space of combined algebras
on grammars constructed from algebraic operations on
atomic grammars.

In Sec. 3.1 on local alignments we mentioned that
a naı̈ve memoization of the three non-terminals of the
Smith-Waterman algorithm leads to a three-fold increase
in memory usage compared to the usual implementation
based on one table and a neutral element in the scoring
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function. In case of local alignments, the evaluation func-
tions attached to each production rule return a constant
value, often the neutral element (i.e. a score of 0 for
summations), for all productions and all substrings.

We plan to extend our framework to make it possible
to evaluate combinations of grammars and algebras in
more complex ways. This should allow us to automati-
cally determine what kind of memo-table is required for
each grammar and algebra, thereby optimizing memory
consumption of the dynamic programming algorithms.

Good and optimal table designs based on yield size
analysis have been considered in [42], extending earlier
ideas on more restricted dynamic programming algo-
rithms [43]. Our proposed extension will consider not
only the yield size but the actual evaluation algebra,
thereby including more domain-specific knowledge.
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