
How to Multiply Dynamic Programming
Algorithms

(Supplemental Material)

Christian Höner zu Siederdissen1, Ivo L. Hofacker1−3, and Peter F.
Stadler4,1,3,5−7

1 Dept. Theoretical Chemistry, Univ. Vienna, Währingerstr. 17, Wien, Austria
2 Bioinformatics and Computational Biology research group, University of Vienna,

A-1090 Währingerstraße 17, Vienna, Austria
3 RTH, Univ. Copenhagen, Grønneg̊ardsvej 3, Frederiksberg C, Denmark

4 Dept. Computer Science, and Interdisciplinary Center for Bioinformatics, Univ.
Leipzig, Härtelstr. 16-18, Leipzig, Germany

5 MPI Mathematics in the Sciences, Inselstr. 22, Leipzig, Germany
6 FHI Cell Therapy and Immunology, Perlickstr. 1, Leipzig, Germany

7 Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, USAx

1 DNA-Protein Alignment

In this section we discuss one elaborate and practically relevant example where
a grammar product of two simple grammars yields a complex result grammar.
The alignment of two sequences of the same type is typically simplified due to
mirrored operations. Recalling the alignment grammar from above, we speak of
in/del operations as an insertion in one sequence may just as well be described as
a deletion in the other sequence. In addition, it does not matter which sequence
is bound to which input tape.

The alignment of a protein sequence to a DNA sequence is, however, more
involved. In Fig. 1 we summarize this more elaborate example.

It is important to recognize that the grammar alone is a device that enu-
merates all possible alignments of a DNA sequence with a protein sequence. In
particular, the grammar itself will not disallow alignments that are biologically
unsound. However, each grammar created using our framework has all of its rules
tagged with function symbols. These functions symbols are also known as alge-
bra symbols [1]. Such a grammar is also very similar to S-attribute grammars
[2].

The DNA sequence is read in one of three reading frames (RFs), and a
deletion or insertion does not yield a “simple” in/del but also a frame shift. This
more advanced treatment of DNA characters in triplets is due to the translation
of DNA into protein in steps of three nucleotides, the “codons” of the genetic
code. In Fig. 1 frame shifts (with scoring functions rf1, rf2) are allowed only
at high cost as they change the transcription of following protein characters
completely. Staying within a frame is very cheap, even if this involves the deletion
of three characters (del).

2 Höner zu Siederdissen et al.

Grammar: DNA

NT: F{3}

T: c

F{i} -> stay <<< F{i} c c c

F{i} -> rf1 <<< F{i+1} c c

F{i} -> rf2 <<< F{i+2} c

F{i} -> del <<< F{i}

//

(F0)→ (F0) (F1)→ (F1) (c) (c) (c)

(F0)→ (F0) (c) (c) (c) (F1)→ (F2) (c) (c)

(F0)→ (F1) (c) (c) (F2)→ (F0) (c) (c)

(F0)→ (F2) (c) (F2)→ (F1) (c)

(F1)→ (F0) (c) (F2)→ (F2)

(F1)→ (F1) (F2)→ (F2) (c) (c) (c)
Grammar: DNAdone

NT: F{3}

T: empty

F{i} -> nil <<< empty

//

(F0)→ (ε)

(F1)→ (ε)

(F2)→ (ε)

Grammar: DNAstand

NT: F{3}

F{i} -> del <<< F{i}

//

(F0)→ (F0)

(F1)→ (F1)

(F2)→ (F2)

Grammar: PRO

NT: P

T: a

T: empty

P -> amino <<< P a

P -> del <<< P

//

(P)→ (P)

(P)→ (P) (a)

Grammar: PROdone

NT: P

T: empty

P -> nil <<< empty

//

(P)→ (ε)

Grammar: PROstand

NT: P

P -> del <<< P

//
(P)→ (P)

Product: DnaPro

DNA >< PRO

+ DNAdone >< PROdone

- DNAstand >< PROstand

//

(
F0
P

)
→

(
F0
P

)
(εa)

(
F1
P

)
→

(
F1
P

)
(ca) (cε) (cε)(

F0
P

)
→

(
F0
P

)
(cε) (cε) (cε)

(
F1
P

)
→

(
F2
P

)
(cε) (cε)(

F0
P

)
→

(
F0
P

)
(ca) (cε) (cε)

(
F1
P

)
→

(
F2
P

)
(ca) (cε)(

F0
P

)
→

(
F1
P

)
(cε) (cε)

(
F1
P

)
→ (εε)(

F0
P

)
→

(
F1
P

)
(ca) (cε)

(
F2
P

)
→

(
F0
P

)
(cε) (cε)(

F0
P

)
→

(
F2
P

)
(cε)

(
F2
P

)
→

(
F0
P

)
(ca) (cε)(

F0
P

)
→

(
F2
P

)
(ca)

(
F2
P

)
→

(
F1
P

)
(cε)(

F0
P

)
→ (εε)

(
F2
P

)
→

(
F1
P

)
(ca)(

F1
P

)
→

(
F0
P

)
(cε)

(
F2
P

)
→

(
F2
P

)
(εa)(

F1
P

)
→

(
F0
P

)
(ca)

(
F2
P

)
→

(
F2
P

)
(cε) (cε) (cε)(

F1
P

)
→

(
F1
P

)
(εa)

(
F2
P

)
→

(
F2
P

)
(ca) (cε) (cε)(

F1
P

)
→

(
F1
P

)
(cε) (cε) (cε)

(
F2
P

)
→ (εε)

Fig. 1. Atomic grammars for the DNA-Protein alignment example. (I) Nucleotides are
read in triplets (three nucleotides each). The DNA grammar switches between reading
frames. DNAdone and DNAstand handle the termining and looping case. (II) The PROtein
grammar works similarly, but reads only a single amino acid at a time. The expansion of
the DNA grammar is more complicated, as the indexed non-terminal symbol F expands
to three different non-terminals corresponding to the three possible reading frames.
(III) The grammar product of DNA and PROtein without the looping case “stand” and
with the terminating case “done”. In code, >< represents the direct product (⊗).

Multiplication of Dynamic Programming Algorithms (Supplement) 3

Correspondingly, the author of the DNA-Protein grammar will keep in mind
that production rules tagged with one of the rf1, rf2 rules should be given a
high cost when implementing the scoring algebra.

As each of the three frames, and shifts to the other two frames, is by itself
similar to the other two frames, a special encoding saves a lot of work. The F
non-terminal indicating the current frame is indexed with indices 0, 1, and 2.
Frame shifts are thus calculated modulo 3 instead of explicitly creating all three
frame indices F0 to F2 and their corresponding production rules.

The protein grammar, on the other hand, has the same simple structure as
our previous atomic components of the alignment grammar. Here, we indeed
only read a single amino acid, or handle a deletion.

The complexity of the DNA-protein alignment stems from the fact that we
need to “align” the different frame shifting possibilities in the DNA input while
matching zero to three nucleotides to zero or one amino acid in the protein
input. In addition, once a frame shift has occurred all following alignments of
three nucleotides against one amino acid are scored in the new reading frame
until another frame shift occurs or the alignment is completed.

In general, our framework simplifies the complexity of designing this algo-
rithm considerably. While the combined grammar is highly complex, the indi-
vidual grammars are rather simple. As already mentioned, the protein “stepping
grammar” is one of the simplest possible ones. The DNA grammar is more com-
plex as we need to handle stepping and frame shifts in all three reading frames.
But considering that we allow indexed non-terminals and calculations on these
indices (modulo 3 in the frame shift case), even the frame shift grammar has
only four rules, just twice as much as the simplest stepping grammar.

The resulting 24-production rule grammar is easily calculated in our frame
work. We like to point out that we may easily extend this grammar to allow
for, say, an alignment of two DNA sequences with two protein sequences. This
grammar can be calculated at basically no additional cost but would pose a
daunting task if implemented by hand.

In addition to the 24-production rule grammar, a set of 24 function types
is created. This signature, as called in Algebraic dynamic programming [1,
3], associates one type with each of the production rules. For example, the
production rule created from the product of F{i} -> stay <<< F{i} c c c

and P -> amino <<< P a creates, among others, the production rule
(
F0

P

)
→(

F0

P

)
(ca)(cε)(

c
ε).

The corresponding evaluation function stay_amino has type S× (N ×A)×
(N × E)× (N × E)→ S. This type specifies that stay_amino excepts the score
(of type S) of the alignments as calculated up to this position followed by tuples
of characters read from each tape. The first nucleotide character (of the set
N = {A,C,G,U}) is aligned with the corresponding amino acid character (of the
set A of the 20 amino acids). The remaining two nucleotides are aligned with
elements from the empty set (E which emits the “noninformative character”
represented by the empty tuple ()). This slightly unusual design allows us to

4 Höner zu Siederdissen et al.

effectively align the single amino acid character with three nucleotide characters.
Finally, the stay_amino function emits a score of type S.

The user can now implement the required scoring functions. stay_amino can,
for example, be implemented as follows:
stay_amino s (c1,a) (c2,()) (c3,()) = s + lookupCodon c1 c2 c3 a.
Here a function lookupCodon is presumed to exist that returns the score (prob-
ability, log-odds) of the alignment of the amino acid a with the triplet of nu-
cleotides c1 c2 c3.

Note that the creation of candidate alignments via the grammar is completely
separate from the actual scoring of such an alignment via scoring algebras. The
amalgamation of the two concepts grammar and algebra is done by the underly-
ing ADPfusion framework [3] which also optimizes the resulting code such that
its running time performance is competitive with hand-written C-based imple-
mentations.

References

1. Giegerich, R., Meyer, C.: Algebraic Dynamic Programming. In: Algebraic Method-
ology And Software Technology. Volume 2422. Springer (2002) 243–257

2. Lefebvre, F.: An optimized parsing algorithm well suited to rna folding. In: ISMB.
(1995) 222–230

3. Höner zu Siederdissen, C.: Sneaking around concatMap: efficient combinators for dy-
namic programming. In: Proceedings of the 17th ACM SIGPLAN international con-
ference on Functional programming. ICFP ’12, New York, NY, USA, ACM (2012)
215–226

