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Abstract This paper proposes a Particle Swarm Optimization (PSO) algorithm called

HelixPSO for finding RNA secondary structures that have a low energy and are similar

to the native structure. HelixPSO is compared to the recent algorithms RnaPredict,

SARNA-Predict, SetPSO, and RNAfold. For a set of standard RNA test sequences it

is shown that HelixPSO obtains a better average sensitivity than SARNA-Predict and

SetPSO and is as good as RNA-Predict and RNAfold. When best values for different

measures (e.g., number of correctly predicted base pairs, false positives, and sensitivity)

over several runs are compared, HelixPSO performs better than RNAfold, similar to

RNA-Predict, and is outperformed by SARNA-Predict. It is shown that HelixPSO

complements Rna-Predict and SARNA-Predict well since the algorithms show often

very different behavior on the same sequence. Furthermore, a parallel version of the

HelixPSO is proposed and it is shown that good speedup values can be obtained for

small to medium size PC clusters.
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1 Introduction

Ribonucleic acid (RNA) plays — beyond their function in protein coding — an im-

portant role for many cell functions, such as controlling gene expression, catalyzing

chemical reactions or complementing protein enzyme based activity [8]. The secondary

structure of RNA can be used to infer and explain its function (e.g., [32,22]). Deter-

mining the secondary structure of an RNA often constitutes an essential step towards

predicting the tertiary structure.

Different algorithmic approaches exist for RNA secondary prediction. Sequence

information alone is sufficient for comparative sequence analysis ([45]) as well as ther-

modynamic optimization ([48]) and combinations of both [7]. Thermodynamic folding

algorithms rely on an energy model that assumes additive contributions from stacked

base pairs and various types of loops ([21,38]). The corresponding energy values can

be obtained, e.g., with measuring absorbance melting curves or with micro calorimetry

([18]).

The prediction of RNA secondary structures is particularly difficult when pseudo-

knots are involved. One reason for this is that little is known about energy models

involving pseudo-knots [16]. Another reason is that thermodynamic structure predic-

tion involving pseudoknots is an NP-hard problem for the standard energy model [10].

While the benchmark for RNA folding algorithms mfold [47], uses Dynamic Pro-

gramming (DP), a number of attempts have been made to apply metaheuristics to the

domain. Most of the proposed algorithms are genetic algorithms (GAs) and it has been

argued that GAs can simulate the actual folding process of an RNA sequence and there-

fore achieve higher prediction rates of base pairs than DP [13]. Among those authors

proposing GAs for predicting RNA secondary structure are [29], [3], [12], and [4]. Initial

approaches were rather crude, but continuous refinement achieved greater prediction

accuracy than DP [30]. Massively parallel implementations [31] as well as efficient

algorithms for small architectures exist [34]. RnaPredict and its parallelized version

P-RnaPredict are GAs for predicting RNA secondary structure that have evolved to

levels of prediction quality comparable to mfold ([44,42]). Recently, the Simulated An-

nealing algorithm SARNA-Predict has been introduced ([35,36]). The first attempt to

predict RNA secondary structures with PSO (a method called SetPSO) was proposed

by Neethling and Engelbrecht [24].

In this paper we propose the PSO algorithm HelixPSO for finding RNA secondary

structures that have a low free energy and a high number of correctly predicted base

pairs when compared to known native structures. A preliminary version of HelixPSO

that was used only for finding secondary structures with low free energy was described

in [20]. The optimization behavior of HelixPSO is compared to the algorithms RnaPre-

dict ([44,42]), SARNA-Predict ([35,36]), and SetPSO ([24]) on standard sets of RNA

test molecules. A parallel version of HelixPSO is also proposed in this paper and it is

shown that is efficient for small and medium size PC Clusters.

A short overview on RNA secondary structure is given in Section 2. A description

of related approaches for RNA secondary structure prediction is given in Section Sec-

Related. HelixPSO is introduced in Section 4. The parallel version of HelixPSO is

described in Section 5. The experiments are described in Section 6 and results are

presented in Section 7. Conclusions and future work are given in Section 8.
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2 RNA Secondary Structure

An RNA molecule is basically a sequence of four different types of nucleotides. Each nu-

cleotide has one of the bases adenine (A), guanine (G), cytosine (C), or uracil (U). The

sequence or chain of nucleotides is called the primary structure of the RNA molecule.

The secondary structure is the result of hydrogen bonds between nucleotides that are

not neighbors in the chain. Typically these hydrogen bonds occur only between G and

C, or A and U, or G and U (or vice versa). The so connected nucleotide bases are

called base pairs. In this paper we only consider canonical base pairs, which are GC,

CG, AU, UA, or GU, or UG (the first base is the one with the smaller index in the

chain). A main element of secondary RNA structures are helices, which are sets of two

or more adjacent base pairs that form a ladder like structure. Thus, a helix of length

k ≥ 2 consists of k base pairs with indices (i, j),(i + 1, j − 1) . . . , (i + k, j − k) where

1 ≤ i < i + k < j − k < j ≤ n and n is the length of the RNA sequence. An RNA

secondary structure is defined by a set of base pairs, where each base can pair to no

more than one base. Furthermore, pairing bases must be at least three bases apart

and two base pairs must not cross, i.e.: i) j − i > 3 for each base pair (i, j) and ii)

for any two different base pairs (i, j), (i′, j′) either i < i′ < j′ < j or i′ < i < j < j′

holds. When ii) does not hold, the structure is referred to as a pseudo knot. Pseudo

knots do occur in nature, but energy models exist only for few types of pseudo knots

and corresponding computations are significantly more complex. As has been done by

many authors, we consider here only secondary structures without pseudo knots.

Several algorithms for secondary structure prediction start by computing the set

H of all potential helices of an RNA molecule. This is done by iterating over all pairs

of bases, checking if they can pair, and if so, whether they can be extended to a helix.

If this is the case, that helix is added to H. These algorithms then try to find a subset

of H that defines an optimal (in some sense) secondary structure. This is also done by

algorithms RnaPredict and HelixPSO. These secondary structures are then evaluated

to yield a free energy. The energies attributed to RNA secondary structures are free

energies because they comprise both enthalpic and entropic contributions (arising from

summing over different spatial conformations of the unpaired loop regions) and are

referred to as ∆G (in Kcal/mol). The native structure usually has a free energy of

about 5-10% from the minimum free energy of the sequence. In general, the free energy

of an RNA secondary structure decreases with helix size. But the energy also depends

on the type of base pairs. There exist several functions to compute the free energy of

an RNA secondary structure. In this paper we use the RNAeval algorithm from the

well known ViennaRNA package ([14,15]).

3 Related Approaches

In this section we describe three algorithms for secondary structure prediction that are

used for comparison in this paper.

3.1 RnaPredict

The genetic algorithms RnaPredict and P-RnaPredict by Wiese and coworkers ([42])

find low energy RNA conformations by applying selection, mutation and crossover op-
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Algorithm 1 RnaPredict

Initialize population with random permutations
for i = 1 to number of iterations do

for j = 1 to (population size/2) do
Select chromosomes c, c′ from population
if random() < pc then

offspring o, o′=CX(c, c′)
if random() < pm then

Mutate(o)
Mutate(o′)

Add best child and best parent to new population
else

Add c and c′ to new population
population=new population
global best=FindGlobalBest(population)

return global best

erators to a population of chromosomes. Each chromosome corresponds to an ordering

of the elements in the set H and is a permutation of the indices of the elements in

H (with respect to some (arbitrary but fixed) enumeration of the helices in H). How-

ever, not all of these helices can be incorporated into the same secondary structure.

The base pairing rules in 2 then determine which of the helices in H appear in the

secondary structure corresponding to the permutation. A subset of H that defines a

secondary structure is derived from a chromosome as follows. Starting with the open

chain that has no base pairings as secondary structure, the helix that corresponds to

the first element in the permutation is added to the open chain, thus forming a new

secondary structure. Then the helix that corresponds to the second element in the per-

mutation is added to the secondary structure if the combined structure still satisfies

the base pairing rules in Section 2. The entire permutation is traversed in this man-

ner and the secondary structures updated every time a helix can be added subject to

the base pairing rules. The secondary structure obtained at the end is then associated

with the permutation that produced it. As far less helices than the size of H fit into

a secondary structure, more than one permutation can produce the same secondary

structure. RnaPredict can be used in conjunction with a multitude of energy models

such as the Nussinov-Jacobson energy model, the individual nearest neighbor (INN)

model [28], and the individual nearest neighbor-hydrogen bond (INN-HB) model [46].

Mutation is done in RnaPredict by swapping two random indices in the permuta-

tion. Wiese et al. ([43,41]) have investigated the optimization behavior of RnaPredict

with a variety of crossover operators (such as edge recombination crossover (ERC)

[39], OX2 [33], cycle crossover (CX) [25], and Partially Mapped Crossover (PMC)[11])

and different selection operators (Keep-Best-Reproduction (KBR), Standard Roulette

Wheel Selection (STDS) [40]). Some versions of RnaPredict use 1-elitism. A pseudo

code of RnaPredict is given in Algorithm 1, where pc is the crossover probability and

pm is the mutation probability.

3.2 SetPSO

PSO is an iterative optimization heuristic for function optimization where a swarm of m

particles searches in a multidimensional space ([19]). Typically in PSO, each particle i

has a position xi and a velocity vi. The velocity is updated in each iteration t according
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to vi(t) = w · vi(t− 1) + c1 · r1 · (yi(t− 1)− xi(t− 1)) + c2 · r2 · (ŷi(t− 1)− xi(t− 1))

where: i) the inertia weight 0 < w < 1 controls the influence of the previous velocity,

ii) parameter c1 > 0 controls the impact of the personal best position found so far

(denoted yi and called pbest solution), iv) parameter c2 > 0 determines the impact of

the best position that has been found so far by any of the particles in neighborhood of

particle i (denoted ŷi and called lbest solution), v) random values r1 and r2 are drawn

with uniform probability from [0, 1]. After velocity update every particle i moves with

the new velocity to the new position according to xi(t) = xi(t−1)+vi(t). Then for each

particle i the objective function f is evaluated at its new position. If f(xi(t+1)) < f(yi)

(assuming the function has to be minimized) the personal best position yi is updated,

i.e. yi is set to xi(t).

The first PSO algorithm for finding RNA secondary structures with minimum free

energy has been proposed by Neethling and Engelbrecht and is called SetPSO ([24]).

As other PSO algorithms for discrete optimization problems, SetPSO differs from the

standard PSO scheme. Similar to RnaPredict, SetPSO searches on the set of helices of

a given RNA sequence and represents a secondary structure as a set of helices (which

must be feasible according to the rules given in Section 2). Hence, the position of a

particle is characterized by a set of helices.

Movement of a particle is defined in terms of addition and removal of helices from

the particle’s current set of helices. A set O of helices which is removed from the

particle’s position is computed from the empty set by adding a helix that is neither in

the pbest solution nor in the lbest solution with probability pI . A candidate set C of

helices which might be added to the particle’s position is computed from the empty

set by adding each helix of a target solution with probability pC and each helix from

the set of all helices with probability pR. The target solution is a combination of the

particle’s pbest and lbest solution. To avoid base pair conflicts, all helices in the set

O are removed before those of the set C are added (if feasible). The computation of

the sets O and C is called the velocity update and the actual computation of the new

solution is the position update. For more details of SetPSO see [24].

3.3 SARNA-Predict

SARNA-Predict is a Simulated Annealing algorithm. It employs the paradigm of cool-

ing a substance, in which relatively free movement of particles is possible at high

temperatures, while particle movement is gradually restricted until they are frozen

in place once the substance has been cooled. SARNA-Predict is characterized by its

state representation, perturbation/mutation function, evaluation function and decision

mechanism as well as the annealing schedule. The annealing schedule significantly in-

fluences the evaluation function and the decision mechanism. SARNA-Predict uses the

same permutation based state representation as RnaPredict. The mutation typically

executes more than one swap of elements of the permutation. The number of swaps

is proportional to the current temperature. The evaluation function computes the dif-

ference in free energy between the current structure and the structure of the previous

iteration. For more sophisticated energy models, this value is also temperature based.

The decision mechanism, which determines whether a new structure is accepted uses

probabilities from the Boltzmann distribution. That means secondary structures of

lower free energy are always accepted, while structures with higher energy than the

previous structure are accepted with a probability that declines exponentially with the
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energy difference but is scaled by the temperature. This has the effect that at high tem-

peratures early in the algorithm, the likelihood to accept worse solutions is relatively

high. AS the temperature drops to zero, so does the likelihood to accept worse solutions

in latter stages of the algorithm. This implements the trade off between exploration and

exploitation controlled by temperature that is characteristic for Simulated Annealing.

SARNA-Predict has been implemented with the INN-HB energy model and the efn2

energy model used by mfold.

4 HelixPSO

Since the proposition of the initial Nussinov algorithm, many approaches have been

employed to address the RNA secondary structure prediction problem. In the field of

evolutionary and nature inspired algorithms GAs make up the vast majority of such

algorithms. In particular, the consistent improvement of versions of RnaPredict over

the years raised its level of prediction quality, so that it now compares quite favorably

with mfold. Therefore it is interesting to apply other nature-inspired approaches in

this problem domain. Even though PSO is typically applied for continuous function

optimization there exists some mostly very recent applications of PSO for discrete

problems. To the best of our knowledge only two papers ([24,20]) exists where PSO

has been applied to RNA secondary prediction. Both of these papers concentrate on

minimum free energy secondary structures.

In this section, we define an extended version HelixPSO that is suitable to find

secondary structures which have a low free energy and a high number of correctly pre-

dicted base pairs with respect to the native structure. The source code of the HelixPSO

algorithm is available online 1. Similar to RnaPredict, HelixPSO encodes a secondary

structure as a permutation of the index set of all helices. The permutation determines

which elements of the set H of all helices of the input RNA sequence are included in

the secondary structure as explained in Section 3.1. The free energy of a secondary

structure is computed with the RNAeval algorithm of the ViennaRNA package ([14,

15]). Its energy and stacking parameters can be found in [21] and [38].

The fitness function of HelixPSO mostly takes into account free energy, but can be

adjusted to also consider agreement with the centroid structure, C. Each component

is scaled to [0,1]. The centroid is the structure with the smallest base pair distance

to the structures in the thermodynamic ensemble of a sequence, of which the mfE

is the member with the highest probability. It contains the base pairs which have a

probability of more than 50 % to be present in any structures the given sequence can

fold into. We used the RNAfold algorithm from the ViennaRNA package to compute

the centroid. The centroid contribution to the fitness is the ratio of matching base pairs

in a structure S and in the centroid divided by the number of base pairs in the centroid.

In other words, if the centroid were the native structure and S tried to predict C, the

fitness contribution due to matching with the centroid would be the sensitivity of S.

The energy component of the score is the ratio of the free energy of S to the minimum

free energy of the considered sequence, but at least 0 (in the case that the free energy

of S is positive). As shown in Equation 1, the obtained partial scores are multiplied by

λ and 1− λ, where λ is in [0,1], and added, again yielding a fitness score in [0,1].

1 http://www.bioinf.uni-leipzig.de/Software/HelixPSO/
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Fitness(S) = λ ∗ |S ∩ C|
|C| + (1− λ) ∗Min(0,

E(S)

mfE
), 0 <= λ <= 1 (1)

In HelixPSO, particles move with respect to target positions. For this each particle

i has an associated set of candidate target positions Ti and for each t ∈ Ti a weight

0 < w(t) < 1. The wight corresponds to the inertia weight in standard PSO algorithms.

The relative weight of a position in Ti determines the probability that it is chosen as

a target. Ti is initialized with a single random position, i.e., a permutation that is

generated randomly and that has weight 1.0. After each iteration of HelixPSO the

weight of each target solution is decreased by multiplication with a parameter ρ, 0 <

ρ < 1. A position that has a weight less than the value of a threshold parameter τ is

removed from Ti. The reason is that elements with a very small weight are unlikely to

be chosen as a target but require much memory space. Then the personal position and

either the global best or the cluster best position (details are given later) are added to

Ti with probability c1 ·r1 and c2 ·r2, respectively where r1 and r2 are random numbers

that are chosen uniformly from [0, 1]. The constants c1 > 0 and c2 > 0 refer to the

cognitive and social component respectively. Note, that this is similar to the impact

of the personal best and global best values for the standard PSO scheme The initial

weight of each position that is added to Ti is 1.0.

HelixPSO is a multi-swarm algorithm where the swarm of particles is partitioned

into several subswarms. Subswarms are used to encourage the swarm to search in

different areas of the search space. These subswarms are called clusters. All particles

in a cluster (with one exception) use their personal best position and the cluster best

position to update their set of candidate target positions. Only the cluster best particle

(i.e., the particle which has the best personal position within the cluster) does the

update with respect to its personal best and the global best position. The idea behind

this is to ensure that particles in a cluster stay close to each other, while the clusters

in their entirety should converge towards the global best solution.

When a particle i has chosen its target position from the set Ti the particle moves

towards the target as follows. The positions of some helices in the particle’s own per-

mutation vector are swapped to make it more similar to the permutation vector of

the target. As not every such swap causes a change in the corresponding secondary

structure each particle performs a series of α swaps, where α is a parameter of the

algorithm. A swap is done with probability β > 0 in direction of the target position as

described in the following. To find the first helix of the swap the permutation vector of

the particle is scanned from the beginning. Helices which are at the same place in the

particles and the targets permutation are skipped. Otherwise an index is chosen with

probability pS > 0. If an index j has been chosen the helix h of the target permutation

at place j is determined. Then the helix h′ at place j in the particle’s permutation is

swapped with helix h. Thus, after the swap, the particle and the target have the same

helix h′ at place j. To increase diversity, a random swap is performed with probability

1− β > 0. That is, for two randomly chosen helices their positions in the permutation

of the particle are exchanged.

When searching for minimum free energy structures the series of swaps is done

greedily in HelixPSO, that is a swap is accepted only when the new secondary structure

that is generated by the series of swaps improves over the secondary structure before

the swaps were done. The chance of random swapping is set to 10%. HelixPSO uses

1-elitism, i.e., after each iteration the particle at the worst position is reset to the

position of the global best particle. This, or a better value, also becomes the particle’s
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Algorithm 2 HelixPSO

Initialize the swarm by creating the particles, partition them into clusters and choose ran-
domly permutation vector for each particle.
Personal best position for each particle is set to the current position.
Calculate cluster best position for each cluster.
Calculate global best position.
j = 1
while (j < maximum number of solutions) do

for all particles p do
Let c denote the secondary structure of particle p.
for i = 1 to α do

Chose a target from Tp.
Chose an index idx in the permutation of particle p.
if rand() < 1− β or if no index was chosen then

Perform a random swap of indices in the permutation vector and let c′ be the
corresponding secondary structure.

else
In the permutation of the particle swap the helix at idx with the helix that is at
idx in the target permutation and let c′ be the corresponding secondary structure.

j++
Compute fitness of c′.
if fitness of c′ < fitness of c then

c = c′
Update pbest, cbest, and gbest.
Apply 1-elitism, i.e., reposition the worst particle to the global best.
For each particle p update Tp.

return gbest

personal best at the end of the next iteration, since the algorithm is greedy, i.e., a new

position is only accepted if it is better than the previous one. The movement vector of

this particle is not changed. Due to the fact that a particle in HelixPSO only moves

to a new position if that position has a lower free energy than the particle’s previous

position, significant aspects of the search space may remain unexplored for sequences

whose native structures are not to be found at a level that is close to the minimum free

energy. In particular, the algorithm tends to report a very limited set of structures on

repeated runs for some sequences.

When searching for the native sequence an alternative to the greedy acceptance rule

that is an annealing controlled acceptance function. The function that is used is based

on the successful exploration technique of SARNA-Predict. The rate of acceptance for

a structure depends on the energy difference between the previous and new position

of a particle under the Boltzmann distribution. If the energy of the new position is an

improvement, it is accepted. If the energy is worse, it is accepted with a probability

that depends on the current temperature and the energy difference between the new

structure and the old structure:

P (Accept) = e
−(Enew−Eold)

T (2)

The free energy is measured in Kcal/mol and temperature is in Kelvin. The tem-

perature starts high (500 K) at the beginning of the algorithm, but is gradually lowered

through multiplication with a constant factor given by the cooling rate whenever the

number of generated solutions hits an integer multiple of the sub chain size. Following

SARNA-Predict, where the value yielded good results for the majority of sequences,

we have chosen the sub chain size as 1800. The cooling rate is usually chosen to lie
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in [0.8, 0.99] for Simulated Annealing algorithms. For the start temperature, a lower

value means that less solution generations are needed until the cooling is completed,

which saves significant computation time. For this reason, we have chosen a starting

temperature of 500 K, which is ten times lower than the value for SARNA-Predict.

Tests have shown that in addition to this classical form of annealing, a version with

the unusual parameter value of 0.1 for the cooling rate leads to good results for some

long sequences. This causes a rapid cooling, such that exploration of higher energy

structures in the search space is only permitted at the early stages of the algorithm

but very quickly evolves towards the greedy acceptance heuristic of the default version

of HelixPSO.

Another difference between the version of HelixPSO that searches for minimum

free energy structures and the version that searches for the native structure is that at

the end of a run the most frequent structure in the population is reported as the result

(instead of reporting the structure with the lowest free energy). This is motivated by

the fact that the native structure of a sequence must be at a comparatively accessible

location of the folding landscape of the secondary structure space. Thus, the frequency

of a structure among particles gives a good indication not only of its quality (since many

particles were attracted to it) but also its accessibility. If a low lying structure is not

accessible, few particles would be able to get there without traveling over paths leading

over intermediate conformations whose highest point is too high to be accepted with

the annealing heuristic. A low energy, difficult to access structure is indeed not very

likely to be the native structure, since in vivo, the RNA molecule would fold into such

a structure only with a low probability, precisely because of its unfavorable location

in the energy landscape. For short sequences of less than 200 nucleotides in length, at

least one structure occurs more than once among the particles. For longer structures,

however, it is possible that this is not the case. In this case, the positions of the particles

are clustered with respect to their base pair distance, and a random structure from the

biggest cluster of particles is returned. Thus the notion of the most frequent particle is

approximated for sequences with large folding spaces by the notion of a neighborhood

of particles that lie close to each other. The clustering algorithm is implemented in the

AnalyzeDists program of the ViennaRNA package. The computational effort to perform

the clustering makes this approach unwieldy for large numbers of particles. For this

reason, the swarm size has been reduced from 500 to 200 for sequences of size greater

than 200 nucleotides, where the clustering is employed. Furthermore, an undistorted

assessment of the accessibility of structures in the space can only be achieved if the

elitism implemented in the original version of HelixPSO is removed. Otherwise, the

lowest lying structure will receive an additional particle every iteration for which it is

global best, which makes it very likely that it will accumulate more particles than any

other structure by the end of the algorithm irrespective of the energy difference that

has to be crossed for particles to get there.

5 Parallel Version of HelixPSO

Metaheuristics in general and PSO algorithms in particular are typically well suited

for parallelization (for a general overview see [2], for parallel variants of PSO see [9,

23]). Several parallel PSO algorithms have been proposed for different applications

(examples can be found in [17,26,27,37]).
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Length Organism(Accession Number) RNA class
117 Geobacillus stearothermophilus (AJ251080) 5S rRNA
118 Saccharomyces cerevisiae (X67579) 5S rRNA
120 Escherichia coli (V00336) 5S rRNA
122 Haloarcula marismortui (AF034620) 5S rRNA
123 Thermus Aquaticus (X01590) 5S rRNA
124 Deinococcus radiodurans (AE002087) 5S rRNA
394 Metarhizium anisopliae var. anisopliae(3) Group I intron, 23S rRNA

(AF197120)
454 Chlorella saccharophila (AB058310) Group I intron, 16S rRNA
456 Metarhizium anisopliae var. anisopliae(2) Group I intron, 23S rRNA

(AF197122)
468 Aureoumbra lagunensis (U40258) Group I intron, 16S rRNA
543 Hildenbrandia rubra (L19345) Group I intron, 16S rRNA
556 Acanthamoeba griffini (U02540) Group I intron, 16S rRNA
605 Porphyra leucosticta (AF342746) Group I intron, 16S rRNA
697 Caenorhabditis elegans (X54252) 16S rRNA
784 Drosophila virilis (X05914) 16S rRNA
940 Acomys cahirinus (X84387) 16S rRNA
945 Xenopus laevis (M27605) 16S rRNA
954 Homo sapiens (J01415) 16S rRNA
964 Ailurus fulgens (Y08511) 16S rRNA

1492 Sulfolobus acidocaldarius (D14876) 16S rRNA

Table 1 Test RNA sequences of different lengths from different species were tested and are
listed with their comparative RNA website accession number (Accession)

As the only information that needs to be shared by all particles in the swarm

are the cluster best and global best positions, HelixPSO is a promising candidate for

parallelization. This is particularly so, as dividing a swarm into subsets of particles and

assigning these to different processors reduces the amount of memory required for each

processor. Thus, even though memory requirements increase with sequence size, longer

sequences remain computable in reasonable time with a parallel version of HelixPSO.

For the parallelization that is proposed in this paper, the LAM/MPI implementation

([5]) of the Message Passing Interface was used. In that implementation the original

HelixPSO algorithm for energy minimization that uses elitism was used. Inter processor

communication was performed after every iteration of the algorithm to globally update

the most recent cluster and global best values. As the available PC cluster consisted

of a homogeneous set of up to 10 processors, the particle swarm was subdivided into

subsets of particles of equal size and each was assigned to one processor. These subsets

of particles are not equivalent to the clusters, as the number of subsets equals the

number of processors used and the number of clusters is a parameter set by the user

which (the default value used in this paper is seven).

After each iteration, the processors exchange information about their best particles

to determine a global best particle for the entire swarm. Similarly, all processors that

are responsible for the particles of the same cluster exchange their respective best

values of particles in that cluster to determine which particle performed best in the

whole cluster. At first glance this may appear ineffective, as more data are exchanged

with this setup than when all particles in a cluster share the same processor. However,

the main communication overhead is caused by processors that have to wait until

each processor has finished its iteration., This is necessary because the new global

best position has to be known on each processor before the next iteration can start.
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Exchanging information in order to determine the cluster best values does then not

add much overhead.

Elitism is performed by the processor that has the worst performing particle by

placing that particle at the position of the global best particle of the previous iteration.

Since the exchange of a permutation takes relatively long, it is only performed when

an improvement occurred since the last exchange. This is achieved as follows for the

global best (for the cluster best of each cluster this is done analogously): The free

energy of the best particles is obtained from each processor. Then, the global best

particle and the processor that computed it are determined. If the best energy value is

not better than the global best energy value of the previous iteration, the global best

position remains unchanged for the next iteration. Otherwise the processor on which

the new global best position was obtained broadcasts the permutation corresponding

to that position to all other processors. These processors then update their global best

position. Since the global best solution improves (usually) only rarely during the later

part of a run of HelixPSO, often only the exchange of the global best energy values for

each processor needs to be performed. The cluster best positions are updated similarly,

with the exception that processors which do not have particles of the cluster under

consideration send a dummy value.

Elitism is executed as follows. Each processor sends the energy of its worst particle,

from which the processor with the globally worst particle is determined. The processor

with the particle having the worst energy moves this particle to the global best positions

of the previous iteration. This effectively increases the influence of the global best

position on the swarm by placing additional particles to it.

6 Experiments

For the experiments we used RNA sequences of different lengths that have already been

used by other authors so that we can compare HelixPSO with RnaPredict, SARNA-

Predict and SetPSO. The 20 test sequences are available from the comparative RNA

website [6]. Table 1 lists the RNA sequences with their size, organism, RNA class and

accession number. The comparative RNA website also lists inferred native structures for

these sequences, which have been used by RnaPredict and SARNA-Predict to compare

their predictions. We will use the inferred native structures in our evaluation of the

experiments as well. As the name ’inferred’ suggests, it is not known with certainty

that these structures are indeed the native structures.

We compare our results to those of RnaPredict in [42], where the best values

obtained for 30 random seeds and 12 operator combinations are listed. Results for

SARNA-Predict are taken from [35,36], where 100 runs were executed for various pa-

rameter combinations on each test sequence. For SARNA-Predict best values as well

as average values are given. In these publications, the results of both RnaPredict and

SARNA-Predict are compared to mfold.

HelixPSO was run 30 times on each test sequence for these comparisons. The weight

λ of the centroid structure was equidistantly varied over [0,1]. For the calculation of

average values, the greedy heuristic was used and the frequency of random particle

movement was at 10 % or 50 %. For the tests reporting best values, all the enhancements

encouraging greater diversity were used. That means the chance of random movement

was either 10 % (the default) or 50 % (to encourage diversity). Also, all three acceptance

heuristics were used, i.e. greedy, as well as two forms of annealing. For regular annealing,
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the cooling rate was set to 0.9 for short sequences of less than 200 nucleotides and to

0.97 for all other sequences. For all sequences longer than 200 nucleotides, also a rapid

form of annealing was performed with cooling rate set to 0.1. These variations in

parameter settings are analogous to the use of multiple operators for RnaPredict and

different parameter sets for SARNA-Predict in the above publications. For the other

parameters the following standard values were used in HelixPSO: α = 25, β = 0.9,

λ = 0, ρ = 0.95, c1 = c2 = 3.0, pS = 0.01. The number of solutions was 50000 for

sequences of length less than 200 nucleotides, 100000 for sequences longer than that but

less than 1000 nucleotides and finally 200000 for the S. acidocaldarius sequence with

1492 nucleotides. This deviation from the original 280000 solutions is due to the fact

that for the annealing based acceptance function to lead to greater diversity, the process

must not go on for too long. Otherwise a stage is reached, where only structures with

very low free energy are returned. As the structure space grows with sequence length,

shorter sequences attain this stage earlier then longer sequences, hence less solutions

are needed. The second parameter that is different is that the number of particles has

been lowered from 500 to 200 for sequences longer than 200 nucleotides. This is due

to the fact that the returned structure is the one with the greatest frequency among

the particles. For long sequences, it may not be the case that two or more particles

are located at the same structure. In this case, the found structures are clustered and

a random structure from the greatest cluster is returned. Since the calculation of the

clusters takes too long to perform for 500 particles, the swarm size has been lowered for

longer sequences. HelixPSO was used on the set H of all maximal helices, i.e., helices

that can not be extended by adding further base pairs. For the parallelized version of

HelixPSO, we performed 10 runs each for 1, 2, 4, 8, and 10 processors on the RNA

sequences of A. lagunensis, D. virilis, X. laevis, and S. acidocaldarius with the standard

parameter set.

For the comparison with a Dynamic Programming algorithm, we the RNAfold

algorithm from the ViennaRNA package was used instead of mfold because this library

also used for energy evaluations and centroid information. Conveniently, RNAfold also

is faster than mfold. Since both mfold and the RNAfold algorithm implement the same

DP procedure to find the minimum free energy structure and both algorithms use

almost identical energy parameters, the comparison to RNAfold should give a good

indication for the comparison between HelixPSO and mfold as well. In these tests, the

values for SetPSO as published in [24] were used. The parameter values were: pC = 0.6,

pR = 0.5, pI was decreased linearly over the iterations from 0.9 to 0.1, swarm size 50,

and each run was done over 700 iterations for a total of 35000 solutions.

We investigated the influence of different parameters on the optimization behavior

of the HelixPSO variant that uses centroid information. One parameter was varied

at a time, the remaining values were as in the standard value set. The investigated

parameters were population size, inertia weight ρ, probability of random movement and

the cooling rate. Population values were only tested up to size 1000, as the clustering

algorithm that computes the output takes a very long time for large swarms. The A.

griffini sequence was used as an example, as it lies approximately in the middle of the

ranges featured by the sequences in the test set and yielded quite good predictions. Each

run was repeated 30 times. Because the standard error was quite high in comparison

to the differences in mean values, the runs for probability of random movement had to

be repeated 300 times. Table 2 shows the parameter ranges used in the experiments.
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Variable Value
particles 50, 100, 200, 500, 1000

ρ 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.98, 0.99
cooling rate 0.80, 0.85, 0.9, 0.93, 0.95, 0.97, 0.99

random 0.1, 0.2, 0.3, 0.4, 0.5

Table 2 HelixPSO parameter variations

7 Results

In this section we present results on the influence of some parameters on the opti-

mization behavior of HelixPSO and compare the behavior of HelixPSO with other

algorithms on the test RNAs.
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Fig. 1 Sensitivity of best solution found by HelixPSO for the A. griffini sequence after gen-
eration of 100000 solutions when different parameter values are varied and all other parameter
values are as in the standard value set; bars indicate the standard error

7.1 Influence of Parameters

The results of the test runs with different parameter values are displayed in Figure 1.

The results show that the population sizes in the range between 50 and 200 particles are

good. While 200 particles achieve the best solution quality, the difference is only 0.2-

0.3%. For population sizes of 500 and more the prediction quality decreases significantly

and also the runtime increases. Different values for the inertia weight cause sensitivity

variations of up to about 0.4%. The default value of 0.95 performed best with an average

sensitivity of 50.6%. Due to the size of the standard error, the improvement of an inertia
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weight of 0.95 over the remaining values is not very large. Figure 1 shows also that

different values for the cooling rate yield similar results for a range of values until a cut

off point at about 0.925. For values higher than the cut off point, the solution quality

decreases rapidly. But cooling rates between 0.8 and 0.95 produce average sensitivities

of about 47.5%, which is already significantly lower than sensitivity obtained by the

default parameter set, which is around 50%. It should be noted that the annealing

acceptance rule is advantageous for obtaining good best (i.e., measured over several

runs) solutions by introducing greater diversity in the explored solutions. But caution

should be used when an annealing schedule is used instead of the original greedy

acceptance function when good average (i.e., over several runs) solutions are sought.

The impact of the random movement probability parameter on the average performance

is much less significant than that of the annealing schedule. The difference between best

and worst sensitivities is about 0.5 only. A movement probability of 10% performs best

and 50% is the worst probability of the tested values.

7.2 Comparison to other algorithms

For a comparison of HelixPSO to other algorithms, we are reporting 6 prediction mea-

sures that have been used before in the literature for the evaluation of SARNA-Predict

and RnaPredict. Three measures are predicted base pairs (TP), false positives (FP),

and false negatives (FN). Based on these statistics the other three measures can be

calculated: the ratio between TP and count of base pairs in the natural fold (sensi-

tivity, abbreviated SE), the ratio between TP and predicted base pairs (specificity,

abbreviated SP) and finally the F-measure (abbreviated FM), which combines SE and

SP. The value of the F-measure is 2*SE*SP/(SE+SP). The values for SE, SP, and FM

are reported in percent in this section.

Organism Length HelixPSO RnaPredict SA DP SetPSO
S. cerevisiae 118 78.8 75.7/89.2 89.2 75.7 75.7
H. marismortui 122 76.3 - 71.1 76.3 42.1
H. rubra 543 31.6 22.9/31.7 27.2/33.8 37.7 -
A. griffini 556 48.8 - 31.3/35.0 47.3 -
D. virilis 784 18.7 11.5/17.7 11.8/12.9 15.5 12.8
X. laevis 945 30.4 - 24.0/27.0 24.3 23.0
H. sapiens 954 25.5 - 17.4/18.7 33.1 -
S. acidocaldarius 1492 38.6 - 24.9/29.7 54.5 -
Average - 43.6 - 37.1/39.7 45.6 -
Av., length > 500 - 32.3 - 22.7/26.2 35.4 -

Table 3 Comparison of average sensitivity of HelixPSO, RnaPredict, SARNA-Predict(SA),
RNAfold(DP) and SetPSO. The ranges indicate the best and worst reported values for a
sequence, which are due to the use of multiple operators for RnaPredict and various parameter
settings for SARNA-Predict. Averages are given for all sequences and also for the longer
sequences (length > 500 nucleotides) only.

For the performance with respect to average values taken over several runs only

the sensitivity values have been published for SARNA-Predict and RnaPredict. Table

3 shows the average sensitivity values for HelixPSO, RnaPredict, SARNA-Predict,

and SetPSO. RNAfold is deterministic, so the prediction accuracy of the minimum

free energy structure is given. The range of sensitivity values for SARNA-Predict and
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RnaPredict are due to the variation of operator types for RnaPredict and varying

parameter values for SARNA-Predict. They indicate the lowest and the highest value

reported for any of the given parameter combinations.

Compared to RnaPredict, the HelixPSO algorithm has a sensitivity in the lower

range of the values obtained by RnaPredict for the shortest sequence S. cerevisiae and

has almost exactly the same sensitivity as the highest value reported for RnaPredict

for the H. rubra sequence with length > 500. For the other sequence of length >

500 (D. virilis) HelixPSO has a higher sensitivity than the highest value given for

RnaPredict. On average over the two sequences of length > 500 HelixPSO achieves a

higher sensitivity of 25.2 than the average best values for the sensitivity of RnaPredict

with 24.7.

HelixPSO scores higher than the best values reported for SARNA-Predict for all

but the S. cerevisiae and H. rubra sequences. For the A. griffini sequence, HelixPSO

outperforms the highest values given by SARNA-Predict by more than 10%. Averaging

the SARNA-Predict values over the highest of values given by SARNA-Predict, He-

lixPSO performs better with an average sensitivity of 43.6% compared to 39.7% over

all test sequences. If only sequences of length > 500 are considered, the difference in

sensitivity values increases from 3.9% to 6.1%.

HelixPSO makes significantly better predictions than SetPSO for all four sequences

for which values have been published for SetPSO. For the H. marismortui sequence,

the difference in sensitivity is more than 30%.

HelixPSO and RNAfold yield very similar sensitivity on the sequences of S. cere-

visiae, H. marismortui, A. griffini, and D. virilis. On average over all sequences RNAfold

achieves a slightly higher sensitivity of 45.6% than HelixPSO with an average sensitiv-

ity of 43.6%.

For SARNA-Predict and RnaPredict most results that have been reported in the

literature are not average results over several runs but best results over several runs.

In the following we present such best values for HelixPSO and compare them to the

results of SARNA-Predict, RnaPredict, and RNAfold. One problem with best values

is that they depend on the number of runs. But a more serious problem is that in

practice it is not possible to tell which of the structures that are returned by different

runs is best (unless the natural fold is already known). Hence, it is not clear which of

the predicted structures should be used in order to obtain the best one. This is clearly

different from, say, predicting low energy structures, in which case it is obvious which

structure in a set performs best (since energy models and evaluation functions exist).

Another problem is that only algorithms can profit from best values that are designed

to create very different solution over different runs. For a discussion of why reporting

an empirical maximum of a distribution is problematic, see Biratarri and Dorigo [1].

Tables 4 and 5 list the results of HelixPSO and RnaPredict for 19 sequences, taken

from [42]. On average HelixPSO has a slightly lower number of correctly predicted base

pairs (56.3 versus 58.7), a significantly smaller number of incorrectly predicted base

pairs (62.1 versus 78.8), and a slightly higher number of base pairs from the native

structure that where not predicted (78.5 versus 76.1). Note that average absolute num-

bers have to be interpreted with care since longer sequences typically have a greater

influence. Furthermore, HelixPSO has on average a slightly lower sensitivity (51.0% ver-

sus 52.0%), a higher specificity (58.7% versus 52.1%), and a higher F-measure (54.1%

versus 51.8%). All this holds also when only the sequences of length > 500 are consid-

ered.
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TP FP FN
Organism Length PSO GA PSO GA PSO GA
G. stearothermophilus 117 23 23 7 10 15 15
S. cerevisiae 118 30 33 6 6 7 4
E. coli 120 28 10 3 29 12 30
H. marismortui 122 29 27 0 3 9 11
T. Aquaticus 123 26 33 7 3 14 7
D. radiodurans 124 24 25 0 8 16 15
M. anisopliae (3) 394 59 75 44 46 61 45
C. saccharophila 454 85 86 50 51 41 40
M. anisopliae (2) 456 41 55 80 80 74 60
A. lagunensis 468 67 68 36 63 46 45
H. rubra 543 64 79 81 82 74 59
A. griffini 556 89 81 72 80 42 50
P. leucosticta 605 67 63 82 90 54 58
C. elegans 697 30 55 115 147 159 134
D. virilis 784 54 65 139 177 179 168
A. cahirinus 940 81 74 118 154 179 186
X. laevis 945 101 93 103 147 150 158
H. sapiens 954 84 89 123 161 182 177
A. fulgens 964 87 82 113 160 178 183
Average - 56.3 58.7 62.1 78.8 78.5 76.1
Av.,length > 500 - 73.0 75.7 105.1 133.1 133.0 130.3

Table 4 Comparison of best values of HelixPSO (PSO) and RnaPredict (GA), measuring
correctly predicted base pairs (TP), incorrectly predicted base pairs (FP) and base pairs in
native structure that were not predicted (FN).

SE SP FM
Organism Length PSO GA PSO GA PSO GA
G. stearothermophilus 117 60.5 60.5 76.7 69.7 67.6 64.8
S. cerevisiae 118 81.1 89.2 83.3 84.6 82.2 86.8
E. coli 120 70.0 25.0 90.3 25.6 78.9 25.3
H. marismortui 122 76.3 71.1 100.0 90.0 86.6 79.4
T. Aquaticus 123 65.0 82.5 78.8 91.7 71.2 86.8
D. radiodurans 124 60.0 62.5 100.0 75.8 75.0 68.5
M. anisopliae (3) 394 49.2 62.5 57.3 62.0 52.9 62.2
C. saccharophila 454 67.5 68.3 63.0 62.8 65.1 65.4
M. anisopliae (2) 456 35.7 47.8 33.9 40.7 34.7 44.0
A. lagunensis 468 59.3 60.2 65.0 51.9 62.0 55.7
H. rubra 543 46.4 57.2 44.1 49.1 45.2 52.8
A. griffini 556 67.9 61.8 55.3 50.3 61.0 55.5
P. leucosticta 605 55.4 52.1 45.0 41.2 49.6 46.0
C. elegans 697 15.9 29.1 20.7 27.2 18.0 28.1
D. virilis 784 23.2 27.9 28.0 26.9 25.4 27.4
A. cahirinus 940 31.2 28.5 40.7 32.5 35.3 30.3
X. laevis 945 39.3 37.1 49.5 38.8 43.8 37.9
H. sapiens 954 31.3 33.5 40.6 35.6 35.4 34.5
A. fulgens 964 32.8 30.9 43.5 33.9 37.4 32.3
Average - 51.0 52.0 58.7 52.1 54.1 51.8
Av.,length > 500 - 38.2 39.8 40.8 37.3 39.0 38.3

Table 5 Comparison of best values of HelixPSO (PSO) and RnaPredict (GA), measuring
sensitivity in % (SE), specificity in % (SP), and F-measure in % (FM).
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When considering the behavior of both algorithms on the different sequences it is

interesting that their results often differ greatly. For example, for C. elegans RnaPredict

has 55 correctly predicted base pairs, a sensitivity of 29.1%, and an specificity of 27.2%

whereas HelixPSO has only 30, respectively 15.9% and 20.7%. This is different for E.

coli where HelixPSO has 28 correctly predicted base pairs, a sensitivity of 70% and a

specificity of 90.3%, whereas RnaPredict has only 10, respectively 25% and 25.6%.

TP FP FN
Organism Length PSO SA PSO SA PSO SA
S. cerevisiae 118 30 33 6 6 7 4
H. marismortui 122 29 27 0 3 9 11
H. rubra 543 64 79 81 83 74 59
A. griffini 556 89 87 72 81 42 44
D. virilis 784 54 80 139 159 179 153
X. laevis 945 101 112 103 141 150 139
H. sapiens 954 84 116 123 128 182 150
S. acidocaldarius 1492 236 226 187 226 232 242
Averages - 85.9 95.0 88.9 103.4 109.4 100.3
Av.,length > 500 - 104.7 116.7 117.5 136.3 143.2 131.2

Table 6 Comparison of best values of HelixPSO (PSO) and SARNA-Predict (SA) with INN-
HB and INN energy models, measuring correctly predicted base pairs (TP), incorrectly pre-
dicted base pairs (FP) and base pairs in native structure that were not predicted (FN).

SE SP FM
Organism Length PSO SA PSO SA PSO SA
S. cerevisiae 118 81.1 89.2 83.3 84.6 82.2 86.8
H. marismortui 122 76.3 71.1 100.0 90.0 86.6 79.4
H. rubra 543 46.4 57.2 44.1 48.8 45.2 52.7
A. griffini 556 67.9 66.4 55.3 51.8 61.0 58.2
D. virilis 784 23.2 34.3 28.0 33.5 25.4 33.9
X. laevis 945 39.3 44.6 49.5 44.3 43.8 44.4
H. sapiens 954 31.3 43.6 40.6 47.5 35.4 45.5
S. acidocaldarius 1492 50.4 48.3 55.8 50.0 53.0 49.1
Averages - 52.0 56.8 57.1 56.3 54.1 56.3
Av.,length > 500 - 43.1 49.1 45.6 46.0 44.0 47.3

Table 7 Comparison of best values of HelixPSO (PSO) and SARNA-Predict (SA) with INN-
HB and INN energy models, measuring sensitivity in % (SE), specificity in % (SP), and F-
measure in % (FM).

Tables 6 and 7 compare HelixPSO with SARNA-Predict as it is described in [35].

Both algorithms differ quite widely in their results. SARNA-Predict tends to predict

more base pairs correctly than HelixPSO, performing better on 5 out of 8 sequences

with an average number of 95.0 correctly predicted base pairs compared to a number

of 85.9 for HelixPSO. However, HelixPSO has a smaller number of false positives on all

sequences with the exception of the shortest sequence where both algorithms have the

same number of false positives. On average HelixPSO has 88.9 false positives compared

to 103.4 of SARNA-Predict. With respect to sensitivity and F-measure SARNA-Predict

performs better on 5 of the 8 sequences and HelixPSO performs better on the other 3

sequences. The average sensitivity of SARNA-Predict 56.8% and the avreage F-measure
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of 56.3%. HelixPSO has slightly lover average values of 52.0%, respectively 54.1%. With

respect to specificity, each of the two algorithm performs better than the other on 4

of the 8 eight sequences. On average, HelixPSO is slightly better with a specificity of

57.1% compared to a value of 56.3% for SARNA-Predict.

Considering the results it seems advantageous to use both algorithms — HelixPSO

and SARNA-Predict — instead of only one of them alone because they give good

results on different sequences. The example of sequence H. sapiens, for example, shows

that SARNA-Predict can correctly predict 116 correct base pairs but HelixPSO has

only 84 correct base pairs. On the other hand, for the X. laevis sequence, HelixPSO

has 103 false positives whereas the number for SARNA-Predict is 141.

TP FP FN
Organism Length PSO SA PSO SA PSO SA
S. cerevisiae 118 30 33 6 6 7 4
M. anisopliae (3) 394 59 70 44 64 61 45
A. lagunensis 468 67 84 36 46 46 29
H. rubra 543 64 89 81 68 74 49
A. griffini 556 89 97 72 68 42 34
D. virilis 784 54 98 139 134 179 135
X. laevis 945 101 116 103 121 150 135
H. sapiens 954 84 119 123 125 182 147
Averages - 68.5 88.3 75.5 79.0 92.6 72.3
Av.,length > 500 - 78.4 103.8 103.6 103.2 125.4 100.0

Table 8 Comparison of best values of HelixPSO (PSO) and SARNA-Predict (SA) with efn2
energy model, measuring correctly predicted base pairs (TP), incorrectly predicted base pairs
(FP), base pairs in native structure that were not predicted (FN).

SE SP FM
Organism Length PSO SA PSO SA PSO SA
S. cerevisiae 118 81.1 89.2 83.3 84.6 82.2 86.8
M. anisopliae (3) 394 49.2 60.9 57.3 52.2 52.9 56.2
A. lagunensis 468 59.3 74.3 65.0 64.6 62.0 69.1
H. rubra 543 46.4 64.5 44.1 56.7 45.2 60.3
A. griffini 556 67.9 74.0 55.3 58.8 61.0 65.5
D. virilis 784 23.2 42.1 28.0 42.2 25.4 42.2
X. laevis 945 39.3 46.2 49.5 48.9 43.8 47.5
H. sapiens 954 31.3 44.7 40.6 48.8 35.4 46.7
Averages - 49.7 62.0 52.9 57.1 51.0 59.3
Av.,length > 500 - 41.6 54.3 43.5 51.1 42.2 52.4

Table 9 Comparison of best values of HelixPSO (PSO) and SARNA-Predict (SA) with efn2
energy model, measuring sensitivity in % (SE), specificity in % (SP), and F-measure in %
(FM).

Tables 8 and 9 compare HelixPSO with an advanced version of SARNA-Predict

using the efn2 energy model as presented in [36]. The sequences that were used in that

context differ slightly from those in [35]. The H. marismortui and S. acidocaldarius

sequences have been replaced by M. anisopliae (2) and A. lagunensis. With the efn2

energy model, the prediction quality of SARNA-Predict improves strongly. SARNA-

Predict predicts more base pairs correctly than HelixPSO for all the listed sequences,
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with an average of 88.3 to 68.5 correctly predicted base pairs. However, HelixPSO still

outperforms SARNA-Predict with respect to false positives with an average value of

75.5 versus 79.0. Overall, SARNA-Predict scores higher in sensitivity, specificity and

F-measure, the latter with a value of 59.3% compared to 51.0% of HelixPSO.

TP FP FN
Organism Length PSO Fold PSO Fold PSO Fold
G. stearothermophilus 117 23 25 7 9 15 13
S. cerevisiae 118 30 28 6 14 7 9
E. coli 120 28 10 3 28 12 30
H. marismortui 122 29 29 0 5 9 9
T. Aquaticus 123 26 8 7 29 14 32
D. radiodurans 124 24 27 0 6 16 13
M. anisopliae (3) 394 59 67 44 54 61 53
C. saccharophila 454 85 93 50 50 41 33
M. anisopliae (2) 456 41 25 80 116 74 90
A. lagunensis 468 67 44 36 79 46 69
H. rubra 543 64 52 81 119 74 86
A. griffini 556 89 62 72 113 42 69
P. leucosticta 605 67 67 82 119 54 54
C. elegans 697 30 40 115 175 159 149
D. virilis 784 54 36 139 204 179 197
A. cahirinus 940 81 41 118 189 179 219
X. laevis 945 101 61 103 191 150 190
H. sapiens 954 84 88 123 168 182 178
A. fulgens 964 87 48 113 194 178 217
S. acidocaldarius 1492 236 255 187 242 232 213
Averages - 65.3 55.3 68.3 105.2 86.2 96.2
Av.,length > 500 - 89.3 75.0 113.3 171.4 142.9 157.2

Table 10 Comparison of best values of HelixPSO (PSO) and RNAfold (Fold), measuring
correctly predicted base pairs (TP), incorrectly predicted base pairs (FP) and base pairs in
native structure that were not predicted (FN).

In Table 10 and 11, the results for HelixPSO are compared with those of the mini-

mum free energy structure as calculated by the RNAfold algorithm of the ViennaRNA

package. HelixPSO performs significantly better. It has more correctly predicted base

pairs on 11 sequences whereas RNAfold is better on only 7 sequences (both algorithms

are equal on two sequence). Furthermore, HelixPSO has fewer incorrectly predicted

base pairs on all sequences except C. saccharophila, where both algorithms are tied.

On average, HelixPSO is leading 50.9 % to 42.2 % in sensitivity, 58.6 % to 40.6 % in

specificity, and 54.0 % to 41.1 % with respect to the F-measure. Altogether, the results

show that HelixPSO clearly outperforms RNAfold on the test sequences with respect

to the best values over several runs.

The run times of the serial version of HelixPSO are shown in Table 12. The run

times were measured on eight core 64 Bit PCs with Intel Xeon 2.33GHz processors

and 8 to 16 GB RAM. The variations in runtime due to differing parameter settings

are to be explained by two causes. When solution acceptance is greedy, no resources

are used to arrive at the decision whether to accept or reject a new structure. When

the annealing method of solution acceptance is employed, two energy evaluations are

required, one each for the previous and the new structure of the particle in question.

The costs of energy evaluations grow with sequence length. Furthermore, a high rate of

random particle movement decreases the runtime. This is due to the fact that a random
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SE SP FM
Organism Length PSO Fold PSO Fold PSO Fold
G. stearothermophilus 117 60.5 65.8 76.7 73.5 67.6 69.4
S. cerevisiae 118 81.1 75.7 83.3 66.7 82.2 70.9
E. coli 120 70.0 25.0 90.3 26.3 78.9 25.6
H. marismortui 122 76.3 76.3 100.0 85.3 86.6 80.6
T. Aquaticus 123 65.0 20.0 78.8 21.6 71.2 20.8
D. radiodurans 124 60.0 67.5 100.0 81.8 75.0 74.0
M. anisopliae (3) 394 49.2 55.8 57.3 55.4 52.9 55.6
C. saccharophila 454 67.5 73.8 63.0 65.0 65.1 69.1
M. anisopliae (2) 456 35.7 21.7 33.9 17.7 34.7 19.5
A. lagunensis 468 59.3 38.9 65.0 35.8 62.0 37.3
H. rubra 543 46.4 37.7 44.1 30.4 45.2 33.7
A. griffini 556 67.9 47.3 55.3 35.4 61.0 40.5
P. leucosticta 605 55.4 55.4 45.0 36.0 49.6 43.6
C. elegans 697 15.9 21.2 20.7 18.6 18.0 19.8
D. virilis 784 23.2 15.5 28.0 15.0 25.4 15.2
A. cahirinus 940 31.2 15.8 40.7 17.8 35.3 16.7
X. laevis 945 39.3 24.3 49.5 24.2 43.8 24.3
H. sapiens 954 31.3 33.1 40.6 34.4 35.4 33.7
A. fulgens 964 32.8 18.1 43.5 19.8 37.4 18.9
S. acidocaldarius 1492 50.4 54.5 55.8 51.3 53.0 52.8
Averages - 50.9 42.2 58.6 40.6 54.0 41.1
Av.,length > 500 - 39.4 32.3 42.3 28.3 40.4 29.9

Table 11 Comparison of best values of HelixPSO (PSO) and RNAfold (Fold), measuring
sensitivity in % (SE), specificity in % (SP), and F-measure in % (FM).

swap is simpler to execute than the selection process of indices to be swapped when

a reference structure is used. The results show that for 6S RNAs of length up to 124

HelixPSO takes between 5 and 10 seconds for a run (which produces 50000 solutions).

For sequences longer than that but of length shorter than 1000 nucleotides HelixPSO

take approximately between 1 and 10 minutes (when producing 100000 solutions). For

the longest sequences of S. acidocaldarius HelixPSO took between half and hour and 4

hours to produce 200000 solutions, depending on the parameter settings used. It should

be noted that it is possible to reduce the number of iterations performed by HelixPSO

without suffering a dramatic loss in prediction quality.

Figure 2 shows the speedup (i.e., the runtime of the single processor HelixPSO

divided by the runtime of the multi-processor HelixPSO) achieved through paralleliza-

tion in a network of Intel Xeon 3.0 GHz dual core units with 4GB RAM. The results are

similar for all four test sequences. The speedup values correspond to an efficiency (i.e.

the speedup divided by the number of processors) of about 0.7 for the D. virilis and X.

laevis sequences and 0.8 for the A. lagunensis and S. acidocaldarius sequences when

using ten processors. It is notable that using two processors for the S. acidocaldarius

sequence takes less than half of the time of using one processor only. This super linear

speedup can be explained as a consequence of the increased memory requirements for

long sequences. It requires a single processor to swap out memory while a set of pro-

cessors can split up the particles and therefore distribute the memory requirements.

Altogether, the speedup curves show that parallel version of HelixPSO is interesting

for solving longer RNA sequences because it runs efficiently on small to medium size

PC clusters as they are available in many labs.

Figure 3 (left) shows the best secondary structure of the A. lagunensis RNA that

were found by HelixPSO during 30 runs with the standard value set with free energy
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Length Organism Runtime

117 G. stearothermophilus 7.1-10.7

118 S. cerevisiae 4.8-7.8

120 E. coli 7.0-10.6

122 H. marismortui 7.1-11.1

123 T. Aquaticus 7.6-11.6

124 D. radiodurans 6.3-10.0

394 M. anisopliae (3) 48.7-303.1

454 C. saccharophila 89.9-427.2

456 M. anisopliae (2) 84.8-430.1

468 A. lagunensis 61.0-349.2

543 H. rubra 118.2-531.5

556 A. griffini 89.6-405.4

605 P. leucosticta 135.0-562.4

697 C. elegans 52.5-249.2

784 D. virilis 69.9-281.8

940 A. cahirinus 116.5-453.2

945 X. laevis 146.8-529.0

954 H. sapiens 154.9-549.2

964 A. fulgens 123.0-483.6

1492 S. acidocaldarius 1958.3-14293.7

Table 12 Runtime of HelixPSO in seconds for different parameter settings (as explained in
the text)

as only scoring criterion, i.e., λ = 0.0. Clearly, when compared to the native structure

of the RNA that is shown in the right part of Figure 3 there are many differences. Two

other secondary structures that were the best found in two of 30 runs of HelixPSO,

with free energy and centroid information weighed equally, i.e.,λ = 0.5, are shown in

Figure 4. This figure illustrates that with λ = 0.5 the structures become more similar

to the native structure than for λ = 0.5.

In conclusion, we state that HelixPSO tends to make more accurate predictions

than SetPSO, though only results for four sequences have been published. HelixPSO

furthermore outperforms SARNA-Predict as far as average numbers are concerned.

There are not enough data for average results published on RnaPredict to allow a

meaningful comparison. HelixPSO also performs about 5% better than RnaPredict on

a comparison set of 19 sequences with respect to the F-measure, which is based on

all 5 of the other statistics. In turn, SARNA-Predict performs about 5% better than

HelixPSO on the 8 sequences for which SARNA-Predict was tested with the INN and

INN-HB energy models. When SARNA-Predict is used with the efn2 energy model, it

scores clearly higher than HelixPSO both with respect to correctly predicted base pairs

and false positives. Since RnaPredict compares quite well to mfold in [42], HelixPSO

also does on the 19 sequences that were tested.

8 Conclusions

In this paper we have proposed the Particle Swarm Optimization (PSO) algorithm

HelixPSO for the prediction of RNA secondary structures. HelixPSO uses thermody-
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Fig. 2 Speed-up of the HelixPSO algorithm as a function of the number of processors used
for the sequences A. lagunensis of length 468, D. virilis of length 784, X. laevis of length 945,
and S. acidocaldarius of length 1492; the dotted line indicates the ideal linear speedup

namic information as well as the centroid as a reference structure and is based on a

multiple swarm approach. Each particle has a target set of reference positions are used

to define the direction of movement of a particle. As an extension of the classical PSO

principle an acceptance function is used to decide whether a particle moves to the new

position.

It was shown experimentally fore 20 RNA test sequences from a variety of taxa,

different RNA classes and different lengths (ranging from 117 to 1492) that HelixPSO

performs on average better than the simulated annealing algorithm SARNA-Predict

and at least as good as the genetic algorithm RNA-Predict. With respect to best values

found over several runs, HelixPSO outperforms RnaPredict, but does not perform as

well as SARNA-Predict, in particular when it is used with the efn2 energy model.

HelixPSO also predicts native secondary structures more accurately than the dynamic

programming algorithm RNAfold and the other existing PSO algorithm SetPSO. The

results show that HelixPSO complements RnaPredict and SARNA-Predict well since

the algorithms perform very differently on several test sequences.

We also proposed a parallel version of HelixPSO and it was shown that it works

efficiently for smaller to medium size PC cluster. For future work it is planned to

implement HelixPSO as a multi-objective algorithm for optimizing free energy as well

as maximizing the conformance with a reference structure, such as the centroid used

in this paper. It is also planned to design a version of HelixPSO that delivers solutions

of a larger diversity over several runs in order to increase the performance with respect

to best results.
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Fig. 3 Best RNA secondary structure with respect to minimum free energy computed by
HelixPSO (left) and inferred native structure (right) for the M. anisopliae(3) RNA of length
394
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Fig. 4 Two best found RNA secondary structures of HelixPSO for the M. anisopliae(3) RNA
of length 394
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