Decomposition of Cartesian Graph Products

Marc Hellmuth* and Marek Staude**

* ** Department of Computer Science, Bioinformatics, University of Leipzig, Haertelstrasse 16-18, D-

04107 Leipzig, Germany

mailto: * marc@bioinf.uni-leipzig.de

* marek@bioinf.uni-leipzig.de

Abstract

The Cartesian product GoH of graphs G and H is the graph with vertex set
V(G)xV(H) and (a,x)(b,y) is edge in E(GaH) whenever either (ab) in E(G) and x=y, or
a=b and (xy) in E(H). Every connected graph has a unique prime factor
decomposition with respect to the Cartesian product; see [3, Theorem 4.9]. G is
called prime if its unique prime factor decomposition has only one factor, that is, G
itself.

The implemented algorithm provides the decomposition of cartesian graph products
based on the decomposition with respect to the Djokowic-Winkler relation [1] [4] and
the tau relation [5]. The program is written in C++ and we used the well-known
BOOST graph library. The Algorithm runs in O(mn) time using O(m) space, here m
and n denotes the cardinality of the edge set and the vertex set, respectively [3]. The

following documentation shows how to use this program and how it is organized.

mailto:
mailto:marc@bioinf.uni-leipzig.de
mailto:marek@bioinf.uni-leipzig.de

Table of content

L HOW t0 US i e e 3
R] = 1 (PP PP PP UPPPPPPPRTTIN 3
1.2 SOUICE TIES ittt e e e e e e e e e e e e aaaae s 3
1.3 IMBINU o e 4

2 DOCUMENTALION oot e e e e e e eeee e 8
P R (=T= o | DT ¢=Tox (o] oY/ (I PP PPUPPPPPTPR 8
2.2 ReadAdjaCcenCyLIST()ccoeiiiiiiiieiiiiiiiii et 8
2.3 CarteSianPrOAUCT()oooeeeeeeeieieeeei i e 9
2.4 getVerteXKOOIA() . o e e et aaeae 9
2.5 edgESTOVEIICES() cierrruiieeiiiiiie e e e et e e e e aaa e 10
2.6 RELATION_djoko WINKIEI() «.cuuereeiiiiiii e 10
2.7 REIAONTAU() . ueu e e e e e e e e e e s 11
P24 S T o [T oo .o oo 1= | (o o T 11
2.9 outpULVErEXINAICES() uueeeeiiiiiee e e e 12
210 fINAUIGIAPN() coveneeieeie e 12
211 exXtraCtGraph() oo 13
2.12 testOfISOMOrPhISM() ..uuu e 13
2. 13 M@IN() c oo e ettt e e e et s 14

3 How to Interpret the RESUILS ... e 15
3.1 SeVEral GraphS . 15
3.2 SINGIE Graph ..o e 19

Table Of COMMEANTUS ...oiiiii e e 20

Table Of SCre@NSNOTS ..o 20

Table Of FUNCHIONS ..o e s 20

BiB i Og AP Y e 21

1 How to Use

This program is a terminal based application. After the successful compilation you
have different possibilities to start the program. Furthermore it's possible to enter a
graph or cartesian product manual or via source files. Notice that you have to install

the BOOST graph library* before compiling.

1.1 Start

Run this program with: “<name.exe>".

Command 1: example for program-start

$ cartesianProduct

Or commit a directory path: "<name.exe> < directory path >". This directory contains

several files with factors (graphs).

Command 2: example for program-start with parameter value

$ cartesianProduct /homes/bioinf/TestCenter/graphen

1.2 Source files

The source file contains vertices and edges of a single graph or cartesian product.
You can choose any file name and file extension but the file content (the exact
definition of vertices and edges) is very important.
The following rules should be observed:
1. in case of ‘n’ vertices the vertex number goes from ‘0’ to ‘n - 1’ (without gaps)
2. edges like ‘fa b’ and ‘b a’ (a, b are vertices) in one graph are invalid (since we

have undirected graphs)

! www.boost.org/libs/graph (01/10/07)

http://www.boost.org/libs/graph

The following source file example shows the correct definition of vertices and edges

f h G1:
of grap c . ,

G1:

[EEY
[}
rm

Screenshot 1: example of the source file ‘singlegraph.dat’

I Vertex

Vertex

Edge

1.3 Menu

After the application started the first screen will show the program menu. In several
cases you can choose different ways to enter a graph or cartesian product and end

the program.

Screenshot 2: start menu

>>>> graph products <<<<

>> press "1" to read a directory with factors,
>> ""2" to read a product,

>> 3" for manual Input or

>> 0" for program end.

1. Read adirectory with factors:
In the first option you have to specify a directory respectively a directory path shown

in Screenshot 3.

Screenshot 3: read a directory with factors

>>>> graph products <<<<

>> press "1" to read a directory with factors,

>> ""2" to read a product,
>> "3" for manual iInput or
>> 0" for program end.

>> 1

>>>> read directory <<<<
>> directory-path: /homes/bioinf/TestCenter/graphen

If you have started the application with parameter value the program will select the

source directory automatically shown in Screenshot 4.

Screenshot 4: read a directory with factors (parameter value)

>>>> graph products <<<<

>> press "1" to read a directory with factors,

>> ""2" to read a product,
>> "3" for manual iInput or
>> 0" for program end.

>> 1

>>>> read directory <<<<
>> directory-path: /homes/bioinf/TestCenter/graphen
>> press ENTER to continue <<

2. Read aproduct:
In the second option you have to specify a file respectively a file path shown in

Screenshot 5.

Screenshot 5: read a file with single product

>>>> graph products <<<<

>> press "1" to read a directory with factors,

>> 2" to read a product,
>> "3" for manual iInput or
>> 0" for program end.

>> 2

>>>> read single product <<<<
>> file-path: /homes/bioinf/TestCenter/singlegraph.dat

3. Manual input:
Use option 3 for the manual input of graphs or cartesian products.
In the first step you have to specify the number of edges n. In the second step, you

specify source-vertex and target-vertex of n edges (Screenshot 6).

Screenshot 6: manual input of a single product

>>>> graph products <<<<

>> press "1" to read a directory with factors,

>> ""2" to read a product,
>> 3" for manual input or
>> 0" for program end.
>> 3

>>>> manual Input of a product <<<<
>> number of edges: 4

>> edge 0/3 <<
>> vertex source: O
>> vertex target: 1

>> edge 1/3 <<
>> vertex source: 1
>> vertex target: 2

>> edge 2/3 <<
>> vertex source: 0O
>> vertex target: 3

>> edge 3/3 <<
>> vertex source: 3
>> vertex target: 1

Result:

()

The program can take a lot of time for the calculations dependents from the number

of vertices. Please be patient :-)

Most of time will be lost in the calculation of the shortest path between all vertices

pairs (BOOST-Graph-Library function: floyd_warshall_all_pairs_shortest_paths()).

2 Documentation

2.1 readDirectory()

The function readDirectory() read the content (files) of a single directory. The file

paths are stored in a vector.

Function 1: readDirectory()

vector< string > readDirectory(const char* dir)

Input: const char* dir /l directory path

Output: vector< string > temp // vector of files-paths

2.2 ReadAdjacencylList()

The function AdjacencyList() read the content of the committed file and generates a

graph.

Function 2: ReadAdjacencyList()

myGraph ReadAdjacencyList(string sFileName,

int flag)
Input: string sFileName /I file path
int flag /I operation flag (if flag == 2 & add edge-id)

Output: myGraph g /Il single graph

2.3 cartesianProduct()

This function calculates the cartesian product of ‘n’ graphs. In the first step ‘graph_0’
and ‘graph_1" will be committed. Afterwards the parameter value ‘graphl’ will be the

result of the last calculation.

Function 3: cartesianProduct()

myGraph cartesianProduct(myGraph graphl,
myGraph graph2,

vector<vector<vector<int>>>*vecKomp)

Input: myGraph graphl /I graph ‘n’ or cartesian product
/I of calculation
myGraph graph2 /I graph ‘n+1’
vector<vector<vector<int>>>* vecKkomp // stores the edge coordinates
/I of each graph
Output: myGraph cart_prod_graph // new single graph; cartesian product of

// graphl and graph2

2.4 getVertexKoord()

The function getVertexKoord() generate a vector with the coordinates of all vertices

of cartesian product.

Function 4: getVertexKoord()

vector< vector< int > > getVertexKoord(myGraph cpgraph,

vector<vector<vector<int>>> vecKomp)

Input: myGraph cpgraph /I cartesian product of all graphs
vector<vector<vector<int>>> vecKomp // vector of edge coordinates
Output: vector<vector<int>> vertex Il vector of vertex indices after the

Il calculation of cartesian product

2.5 edgesToVertices()

This Function converts the edges to vertices of the cartesian product. Result is a new

graph ‘graph2’ with vertices but without edges.

Function 5: getVertexKoord()

void edgesToVertices(myGraph cpgraph,
myGraph* graph2,

vector< myEdge >* edgeVector)

Input: myGraph cpgraph /l cartesian product of all input-graphs
myGraph* graph2 /I empty graph
vector<myEdge>* edgeVector // empty vector
Output: myGraph graph2 /I new graph contains 'n' vertices of 'n’
/I edges of cpgraph
vector<myEdge> edgeVector // stores edges (myEdge) of cpgraph

2.6 RELATION_djoko_winkler()

The function RELATION_djoko_winkler() weights at first all edges with weight ‘1’. The
second part determine shortest path between all vertices pairs. The last part

processed Djoko-Winkler-Relation and returns an object of type myGraph.

Function 6: RELATION_djoko_winkler()
myGraph RELATION_djoko_winkler(myGraph g,

myGraph graph2)

Input: myGraph g /I cartesian product graph
myGraph graph?2 /I graph with 'n' vertices of 'n' edges of cpgraph
Output: myGraph graph2 /I new graph

2.7 RelationTAU()

The function adds edges between two vertices, if the vertices have only one common

neighbour.

Function 7: RelationTAU()
myGraph RelationTAU(myGraph graph,

myGraph graph2)

Input: myGraph graph /I cartesian product graph
myGraph graph2 /l result of function RELATION_djoko_winkler()
Output: myGraph graph2 /I new graph

2.8 decomposition()

The function decomposition() extract connected components of cartesian product

graph based on BOOST-Library algorithm.

Function 8: decomposition()

vector<vector<int>> decomposition(myGraph graph,
myGraph graph2,

vector<myEdge> edgeVector)

Input: myGraph graph /I cartesian product graph
myGraph graph2 /I result of function RelationTAU()
vector<myEdge> edgeVector I/l contained edges (myEdge) of

/I cpgraph

Output: vector<vector<int>> compositionen // vector of connected-component-

/I elements of cartesian product graph

2.9 outputVertexindices()

This simple function displayed the vertex indices on the screen.

Function 9: outputVertexindices()

void outputVertexlndices(vector< vector< iInt > > vertex)

Input: vector<vector<int>> vertex Il vector of vertex indices after the

/I calculation of cartesian product

2.10 findUrGraph()

The function findUrGraph() try to extract the initial graphs based on the result of the

function decomposition() (connected-components).

Function 10: findUrGraph()
vector<myGraph> findUrGraph(

vector<vector<int>> vecVertexKoord,
vector<vector<int>> compositionen,

vector<myGraph> graphVector)

Input: vector<vector<int>> vecVertexKoord // vector of vertex indices after the
/I calculation of cartesian product
vector<vector<int>> compositionen // vector of connected-component-
/I elements of cartesian product
/I graph
vector<myGraph> graphVector /l vector of input graphs (factors)

Output: vector<myGraph> urGraph /l vector of initial graphs

2.11 extractGraph()

This function extract from cartesian product graph single graphs based on the
connected components. The result will be used for the test of isomorphism. The

operation based on functions of BOOST-Library.

Function 11: extractGraph()

myGraph extractGraph(myGraph graph,

vector<int> compositionen)

Input: myGraph graph /I cartesian product graph
vector<int> compositionen // vector of connected-component-elements of
/I cartesian product graph

Output: myGraph graph I/ single graph for the test of isomorphism

2.12 testOflsomorphism()

The function testOflsomorphism() test two graphs of isomorphism. The input graphs
are the result (graph) from the extractGraph()-function and one of the initial graphs

(factors).

Function 12: testOflsomorphism()

bool testOflsomorphism(myGraph extractedTestGraph,
myGraph urGraph)

Input: myGraph extractedTestGraph // connected-component based graph of
/I cartesian product graph
myGraph urGraph /I input graphs (same like factors)

Output: bool isomorph /I true or false

2.13main()

The main()-function is the first operation in each application. All other functions will be

called direct or indirect from the main().

Function 13: main()
int main(int argc, char* argv[l)

3 How to Interpret the Results

Dependent from the number of input-graphs, the application will display different

results.

3.1 Several Graphs

An example of application output after the calculation with several input-graphs is

shown in the Screenshot 7.

Input-graphs:

(1 z
Gq: [@ L
(
¢
GzZ i
°
1

For graphs G; and G,, we define the cartesian product G = G; x G as follows:

Cartesian product:

@ ~
-0 ~

- @------—-—-@Q

Screenshot 7: output after the calculation with several graphs

>> in process, please wait ...

>>>> connected components of cartesian product <<<<

>> total connected_components CC(n) = 2

>> number CC(0) of cartesian product = 2

>> comp O: vertex O s
>> comp O0: vertex 2 ST 1o
>> comp O: vertex 4 i

>> number CC(1) of cartesian product = 3 :

>> comp 0: vertex O :

>> comp 0: vertex 1 i

>>>> Test graphs of isomorphism <<<<

>> input-graph 1 of 2:

0 <-->1

1 <--—> 0 2

2 <-->1

>> extracted graph of cartesian product:

0 <-->1

1 <-->02

2 <-—>1

>> psomorphism = true

>> Input-graph 2 of 2:
0 <-->1

1<-->0
>> extracted graph of cartesian product:
0 <-—>1
1<-->0

>> gsomorphism = true

~

1. Connected components of cartesian product:
The cartesian product be made of n single graphs. After the decomposition we have
the connected components of the cartesian product. The connected components can

also called “under-graphs” or factors of cartesian product.

total connected_components:
The output total connected_components give us the number of factors of the

cartesian product.

>> total connected_components CC(n) = 2

Normally the number is n if n graphs have been committed. In other cases some
factors (Gi1, G,) of G are also connected graphs itself. The application, specially the
function decomposition() extract the connected components of the factors, too. So,

more than n connected components can be displayed.

number CC(n) of cartesian product:
The first line shows how often the connected component n exists in cartesian

product.

>> number CC(0) of cartesian product = 2

The following lines are the vertices of the first representative (comp 0) of the

connected component n (CC(n)).

>> comp O: vertex O
>> comp O: vertex 2
>> comp O: vertex 4

2. Test graphs of isomorphism:
In graph theory, a graph isomorphism is a bijection (a one-to-one and onto mapping)
between the vertices of two graphs G and H with the property that any two vertices u
and v from G are adjacent if and only if f(u) and f(v) are adjacent in H. If an
isomorphism can be constructed between two graphs, then we say those graphs are

isomorphic.

The input-graph is one of the graphs which were committed at application start.

In this case G: C 1

NAY

>> pnput-graph 1 of 2:

0 <-->1
1 <-->02
2 <-->1

The extracted graph based on the result of decomposition()-function. The connected

components are cut out of the cartesien product.

>> extracted graph of cartesian product:

0 <-->1
1 <--—>02
2 <--—>1

>> jsomorphism = true

The isomorphism is true, if the above mentioned definition is applicable.

3.2 Single Graph

Screenshot 8 shows the application output after the calculation with a single graph.

The test of isomorphism is not possible, because we have only one graph.

Screenshot 8: output after the calculation with single graph

>> In process, please wait ...

>>>> connected components of cartesian product <<<<

>> total connected_components CC(n) = 2

>> number CC(0) of cartesian product = 2
>> comp O: vertex O
>> comp O: vertex 2
>> comp O: vertex 4
>> number CC(1) of cartesian product = 3

>> comp O: vertex O
>> comp O: vertex 1

>>>> graphs of connected components <<<<

>> graph 1 of 2:

0 <-—>1
1 <-->0 2
2 <-——> 1

>> graph 2 of 2:
0 <-—>1
1<-->0

For the description of total connected_components see “3.1 Several Graphs”.
After the line graphs of connected components you can see the connected

components of the input graph based on BOOST-Library function print_graph(graph).

Table of Commands

Command 1: example for program-Start ... 3

Command 2: example for program-start with parameter value..............cccccooviiiininenn, 3

Table of Screenshots

Screenshot 1: example of the source file ‘Gl.dat’..........ccooiiiiiiiiiiii 4
SCreenShOt 2: STAM MENUvviiiiiii e 4
Screenshot 3: read a directory With factors.........cccccco e 5
Screenshot 4: read a directory with factors (parameter value)ccccoevviiiiiiiiienn, 5
Screenshot 5: read a file with single productccccoeiiiiiiii 6
Screenshot 6: manual input of a single Productccccoviie i 7
Screenshot 7: output after the calculation with several graphs.............ccccooviiiiinnnnn 16
Screenshot 8: output after the calculation with single graph...........ccoccoiiiiiinns 19

Table of Functions

FUNCLion 1: re@dDir@CIONY() . ueeeiieriiee ittt bbb e aees 8
Function 2: ReadAdjaCceNnCYLIST() . ..coovrieeiiiiiieeiiiie et 8
Function 3: carteSianProdUCT()ccoviiiiiiiiieiiii e 9
Function 4: getVerteXKoord()ccooviiiiiiiiii e 9
Function 5: getVerteXKoord()oooreeiiioiieieeee e 10
Function 6: RELATION_djoKo_ WINKIEI()eveveeiiiiieeeeee et 10
Function 7: RelatiONTAU() ...vveeiiiiiee e 11
Function 8: deCOMPOSITION() ...ooivviiiiiiiiiie i 11
Function 9: outputVerteXINdiCeS()covviriiiiiiiiiiiici e 12
Function 10: fINAUIGaph() .. .ccooveiiiieiiici e 12
Function 11: exXtractGraph()ccveoriieiiieeie e 13
Function 12: testOfISOMOIPRISM()vveiiiieiiiiiie e 13

FUNCtion 13: MaIN()....c.cooiiiiiiiiiiiie e 14

Bibliography

[1] D. Djokovi¢, Distance preserving subgraphs of hypercubes, J. Combin. Theory
Ser. B 14 (1973), pp. 263-267.

[2] W. Imrich and J. Zerovnik, Factoring Cartesian-product graphs, J. Graph Theory
18 (1994), pp. 557-567.

[3] W. Imrich and S. KlavZar, Product Graphs: Structure and Recognition, Wiley, New
York (2000).

[4] P. Winkler, Isometric embeddings in products of complete graphs, Discrete Appl.
Math. 7 (1984), pp. 221-225.

[5] T. Feder, Product graph representations, J. Graph Theory 16 (1992), pp. 467—
488.

