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A Combinatorics of RNA Structures with Quadruplexes

Here we describe a more detailed combinatorial model of secondary structures
with G-quadruplexes than the simplified version outlined in the main text.

A1 Model

A secondary structure of length n is a noncrossing partial matching (matching
with isolated vertices) such that each base pair is of length at least 3. For sim-
plicity, we consider an arbitrary number of L > 2 stacked G-quartets and three
linkers of length I1, I and I3 > 1. We allow quadruplexes in any context with the
following exception: If (7, 7) is a base pair that encloses a single quadruplexes,
then at least one of three conditions is satisfied: (1) ¢ + 1 and j — 1 are both
unpaired; (2) ¢ + 1, i + 2, ¢ + 3 are unpairedm or (3) j —3, j — 2, j — 1 are
unpaired. We call such structures G-structures in the following.

A stack of length 7 consists of exactly 7 “parallel” arcs ((¢,7), (i + 1,5 —
1),...,(e+(r—=1),j— (1t —1))). We say that a G-structure is 7-canonical if all
stacks consist of at least 7 arcs.

The enumeration is based on the notion of shapes, that is, matchings in which
each stack consists of exactly one arc. The shape of an arbitrary G-structure s
is obtained by (1) contracting each G-quadruplex to a single vertex labelled ‘G’,
and (2) iteratively collapsing each stack to a single arc and then removing any
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isolated vertices from the resulting diagram as in the following example:

Contract quadruplexes by G vertices(red)

mm m

Remove isolated vertices

Remove isolated vertices Collapse-stack
A2 Generating functions

Let s,,; denote the number of all noncrossing shapes over 2n vertices with ¢
arcs of length 1 (l-arcs) and its corresponding generating function S(u,e) =
Yoo > Snuet. Denote by my the number of noncrossing matchings with ¢
arcs. Note that my; is the well-known ¢-th Catalan number. Using the generating
(u) = Lfite

function M(u for the matchings we have

1+ u(l+u)
S(u,e) = 1 —|—2u—ueM ((1 +2u—ue)2> '
In the following we will make use of several auxiliary functions:
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Our main result is

Theorem 1. The generating function of T-canonical G-structures is

_ T z?7 - PQ(x) Pg(it)
= zn:gnw = P3(2)S <(1 . xzf(glil(x) + Pl(x)) P3($)> '

Proof. We utilize the following combinatorial classes: £ (neutral class, consisting
of a single element of size 0), Z (vertices, with size 1), U (arcs, comprising two
vertices thus having size 2), and W (quadruple arcs taking 4 vertices).
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Claim 1. The generating function of the numbers q,, of quadruplexes on length
n is
211

Q)= T—ona—ap

Let Q denote the combinatorial class of G-quadruplexes. By construction, each
quadruplex consists of L > 2 stacked G-quartets and three linkers of length at
least 1. Thus we have @ = W? x SEQ(W) x (Z x SEQ(Z))3. This implies the
Claim 1.

Denote by p,, the number of G-structures of length n without base pairs out-
side quadruplexes with two additional restrictions: (1) its first and last vertices
are part of a quadruplex and (2) if there exist two consecutive G-quartets, then
there exists at least one isolated vertex between them.

Claim 2. The generating function of p,, is Po(z) = %

We proceed by induction on the number of G-quadruplexes. Let p¥ denote the
number of single stranded secondary structures with £ G-quadruplexes of length
n, then we have its corresponding generating function P (z) = Q(z)*- (£)kL
The claim follows by summing all & > 1.

Claim 3. Let A be a fixed noncrossing shape with s > 1 arcs and m > 0
1-arcs (arcs of length 1). Then the generating function of 7-canonical G-structures
containing arc length at least 3 that have shape X is given by

@)= Put) () (B

In order to prove the claim, we use the additional notations Z,,,,, for
red/blue/green vertices. We can construct an arbitrary 7-canonical G-structure
with arc-length at least 3 and shape A in the following way: Starting from the
shape A, insert at most one red isolated vertex into the (2s + 1) intervals except
the interval [i,4 + 1] for which that (¢,7+ 1) is an 1-arc in A. The corresponding
combinatorial class is My = U® x (€ + Z,)2* ™1, Next insert exactly one green
isolated vertex after each vertex j such that (j,j + 1) forms an 1-arc in A. This
yields the class My = M X Z".

Next, we inflate each arc into a stack of size t > 0. In case of ¢t > 1, between
the arcs of the obtained stack we insert a blue isolated vertex to the left or the
right, or on both sides in order to separate the arcs and for each such insertion
exactly one blue isolated vertex is used. This results in the combinatorial class
M3 from My by the substitution

U — Zut X (221,4—2;,2)1571.
>1

Now we inflate each arc in the resulting structure into a stack of size at least
7. The combinatorial class My results from M3 via the substitution U — 11{14
Next we inflate each red isolated vertex into either a sequence of isolated
vertices of length at least one or a Py-structure 97 in addition with two sequences

of isolated vertices (at least 1) at both ends of ¥ or a sequence of isolated vertices
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Fig. 1. From a

structure with G-

G-quadruplex is
shown as a vertex

structure

(at least 3) at one of the ends of ¥5. The corresponding class Mg is symbolically
obtained from M5 by the substitution Z, — Z3 x SEQ(Z)+ (2 x SEQ(Z))? x
Po+ 222 x SEQ(Z) x Pp.

We then inflate each green isolated vertex into either a sequence of iso-
lated vertices of length at least three or a Py-structure ¥ in addition with
two sequences of isolated vertices (at least 1) at both ends of ¥5. The cor-
responding class Mg is symbolically obtained from Mjs by the substitution
Z, — 23 x SEQ(Z) + (2 x SEQ(Z))? x Py.

We finally inflate each blue isolated vertex into either a sequence of isolated
vertices of length at least one or a Py-structure 93 in addition with two sequences
of isolated vertices at both ends of ¥35. The corresponding combinatorial class
M7 is symbolically obtained from Mg by the substitution 2, — Z x SEQ(Z) +
(SEQ(Z))? x Po.

Combine the steps together, the claim follows. The procedure is illustrated
in Fig. 1.

In particular, Qf_‘(x) depends only upon the number of arcs and 1-arcs in
A. Then by definition of the generating function S(u,e), we obtain G7(z) by
summing over all the possible shapes and the theorem follows. O

A3 Asymptotics

Let us briefly recall some facts concerning the singularity analysis of functional
composition [1]. Suppose f(z) and g(z), with g(0) = 0, have non-negative co-
effients and are analytic at the origin. We consider the composition h = f(g(z)).
Let p¢, pg, and pp, be the corresponding radii of the convergence, and let 7, =
g(pg). The asymptotic behavior of h then depends on the comparison of 7, and

P
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1. 74 > py (supercritical case) the singularity type is that of the external func-
tion f;

2. 74 < py (subcritical case) the singularity of f(g) is driven by that of the
inside function g;

3. 74 = py (critical case) the singularity type is a mix of the types of the internal
function and the external function and needs special attention.

Theorem 2. Let g], denote the number of T-canonical G-structures on length
n. Then we have for T =1,2

Here, pl_1 ~ 2.2903, ,02_1 ~ 1.8643, and ki, ko are positive constants.

Proof. Combining the expressions for S(u,e) and G7(x) we arrive at

o= 442 (343).

where Aj(x), As(z), As(x), and Ay(x) are fixed polynomials. Clearly Q7 (z) is
algebraic. Furthermore, since the composition scheme is supercritical [1] for the
cases T = 1 and 7 = 2, the singularity type is that of the external function, i.e.,
M(z). In particular, we have p;* = 2.2903 and p; * ~ 1.8643. O

For the corresponding structures without any G-quadruplex, we obtain the
results immediately by setting Q(z) = 0 in the above derivation. Thus, we obtain
Pyt ~ 2.2887 and p, " ~ 1.8489. Numerical values were obtained with Maple,
version 11.

B RNA Structure Prediction with and without
Quadruplexes

Human Telomerase RNA component hTERC

It has been previously shown that a G-quadruplex in the 5'— UTR of human
telomerase RNA hTERC is likely to hinder the formation of the P1 helix of this
ncRNA [2]. Since the P1 helix seems essential to serve as a template boundary
the quadruplex impairs the telomerase activity. Using the human telomerase
RNA (Acc. No.: AF221907) we investigated the difference in secondary structure
prediction of the newly implemented G-quadruplex aware RNAfold 2.0g and
RNAfold in its regular form. Our prediction results clearly confirm the formation
of the G-quadruplex in the 5'— UTR that is in conflict with the P1 helix (see Fig.
2). Furthermore, despite the template region beeing predicted within an unpaired
loop region by both methods, the probability of the template nucleotides to be
unpaired is much lower when taking the G-quadruplex formation into account.
This suggests that not only the template boundary function of the P1 helix is
disrupted but the template itself might be inaccessible for binding (see Fig. 3
and Fig. 4).
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Fig. 2. Secondary structure predictions for RNA component of human telomerase
(hTERC). The highlighted stretches of the RNA sequence represent the following re-
gions of interest: "template” (green), ”5 —part of P1 helix” (blue) and ” G-quadruplex
forming sequence” (yellow). (A) Predicted MFE structure without using G-quadruplex
capabilities of RNAfold 2.0. (B) Predicted MFE structure with G-quadruplex aware
RNAfold 2.0g.
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Fig. 3. Dot plot of hTERC (AF221907) predicted by RNAfold. Upper triangle shows
base pair probabilities. Highlighted in light blue are all interaction probabilities that
involve nucleotides from the ”template” region of the telomerase RNA. The lower part
contains the secondary structure plot of the MFE structure as reported by RNAfold.
Here, the probability for beeing unpaired within the ”template” region is colored by a
gradient from magenta to red.
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Fig. 4. Dot plot of hTERC (AF221907) predicted by the new Q-quadruplex aware
RNAfold 2.0g. In the upper triangle base pair probabilities are shown. Highlighted in
light blue are all interaction probabilities that involve nucleotides from the ”template”
region of the telomerase RNA. The lower part contains the secondary structure plot
of the MFE structure as reported by RNAfold 2.0g. Here, the probability for beeing
unpaired within the ”template” region is colored by a gradient from magenta to red.



