More detailed description of the data structures
and the chaining algorithm

This document covers additional information on the data structures imple-
mented in clasp and a more detailed description of the chaining algorithm
itself.

1 Johnson priority queues

As an extension of the concept of van Emde Boas trees [1], Johnson developed
a non-recursive approach that permits binary searches on tree paths in order to
perform efficient insert, delete, predecessor, and successor operations [2]. The
search for the successor of a leaf in a search tree is composed of two steps. In
the first one, the first internal node that has a right child is located on the path
from the leaf. The nodes on this path are denoted as right base with the leaf
as right base bottom and the node with non-empty right child as right base
top. Left base bottom and left base top are defined in similar manner. In the
second part, the predecessor is identified as the left-most leaf in the subtree
rooted by the right child of that right base top. While the path in the first step
is unique there are multiple possible paths during the second step depending
on the leaves initialized in the subtree. However, the second step is simply the
jump from the right child node to its left base bottom. If this base information is
stored in each node, searches for predecessors or successors will only require one
bottom-up binary search (until an internal node with the required right (or left)
base information is found) and two jumps, one upwards and one downwards.
Due to the semi-dynamic tree structure, the number of elements (leaves) and
hence the height h of the tree is defined at the point of initialization and base
information can be stored in internal nodes where binary searches from any leaf
to the root may jump, i.e., all nodes at depths h—1, h—2, h—4, ..., 1. In such
a way, predecessor and successor operations are supported in O(log(log(n)))
in time. Note that predecessor or successor queries of existing leaves can be
answered in O(1). Hence, range queries require at most one binary search for
the predecessor of the given upper boundary while the other elements within
the range are identified in constant time. This leads to a worst-time complexity
of O(log(log(n)) 4+ z) with z elements within the given range. Certainly, the
base information needs to be updated during each insert or delete operation
that requires O(log(log(n))) in time using binary searches as well. In summary,

Johnson presented a semi-dynamic priority queue that supports range queries
very efficiently by use of predecessor and successor operations.

2 Range trees

In the previous section, Johnson priority queues as one-dimensional sorted lists
have been introduced to permit several operations, e.g., predecessor or successor
searches. In such a way, it is possible to traverse a priority queue according to its
sorting order from minimum to maximum or wvice versa. Furthermore, requests
for all data elements with a key within given boundaries, commonly denoted as
range queries, can be answered. However, to limit sorting to only one dimen-
sion can be too restrictive in various applications and hence several approaches
[3] including kd-trees and range trees have been developed to overcome those
difficulties. In CHAINER [4], k-dimensional binary search trees (kd-trees) have
been implemented that support d-dimensional range queries with a worst-time
complexity of O(n'~"/? 4 2) where z elements are in the given range [5]. In
contrast, we incorporated the more efficient range tree padded with Johnson
priority queues.

A range tree is a d-dimensional binary search tree that stores points of the
d-dimensional Euclidean space under the condition that there are no two points
with an equal coordinate in any dimension [6, pp. 105-116]. A d-dimensional
range tree over a set of d-dimensional points consists of a binary search tree us-
ing the first coordinate of each point. Moreover, each node v stores an associate
structure over the canonical subset C'S(v) with each point restricted to its last
d — 1 coordinates. The canonical subset C'S(v) of any node v in T' consists of
all points stored in the leaves of the subtree rooted by v. Finally, an associate
structure over (d — 1)-dimensional points is again a (d — 1)-dimensional range
tree. In the case of 2-dimensional range trees padded with Johnson priority
queues, the stratified tree structure consists of a primary binary search tree
sorted by the first coordinate padded with Johnson priority queues as associate
structures over the canonical subsets sorted by the second coordinate. To answer
two-dimensional range queries using this tree structure, first, all splitting nodes
are identified whose canonical subsets contain only leaves with a first coordinate
within the given first-dimension range. To get the minimize the number of split-
ting nodes one requires that the father of each splitting node is not a splitting
node. The minimal set contains at most log(n) nodes with n leaves in the tree
and can be determined by a single top-down traversal. Then a range query is
executed in the associated Johnson queue of each splitting node. Together, this
results in a worst-time complexity of O(log(n)log(log(n))).

3 Fragment chaining algorithm

We implemented the fragment chaining algorithm, introduced by Abouelhoda
et al. [7, 8], in order to find optimal local chains, i.e., sets of non-overlapping

ordered fragments with maximal score. While the case of overlapping fragments
is explicitly excluded, gaps between fragments are allowed and may be penalized
according to different gap cost models. In general, the score of a chain is the
sum of their fragment scores minus the penalties for any gaps between adjacent
fragments. In the case of local fragment chaining, the fragment is chained to
another fragment or chain only if its score is equal to or higher than the necessary
gap costs.

Let fieg-%, fend.x denote the start and end position of a fragment f in the
database sequence x. The start and end positions in the query y are denoted
by freg-y and fena.y, respectively. Let f and f’ be two non-overlapping ordered
fragments, i.e., assume fena.x < f. .2 and fepa.y < fp,,-y. Linear gap costs
q1(f’, f) between the fragments f and f’ are calculated by:

gl(f/af):)‘gl'Am(f/yf)‘f'egl'Ay(f/yf) (1)

with Aa:(fl7f) = |fl§eg'x - fe'rwl~5r -]-|; Ay(fl7f) = |fl;eg'y - fend~y - 1|; and
weighting parameters Ay ,€¢4, > 0. Hence, for Ay ,e4 > 0 linear gap costs
penalize any distance between fragments on query and database sequence. This
scoring system may not be suitable, however, when scattered blocks of local
sequence conservation are expected.

The more flexible sum-of-pair gap cost model introduced by Myers and Miller
[9] allows to penalize differences of the distances between adjacent fragments on
query and database only. The sum-of-pair gap costs gsop(f’, f) between non-
overlapping ordered fragments f and f’ is given by

sop(f',) = Nguoy, - (max{Aa(f', f), Dy (f', £)} (2)
_mln{Aw(fl7f)ﬂAy(fl7f)})
+ €gsop min{Am(fla f)7 Ay(f/a f)}

with parameters Ay, €4,,, = 0. Intuitively, Ay, expresses the penalty to align
an anonymous character with a gap position while €y, is the penalty to align
two anonymous characters. With ¢, , = 0, the chaining only minimizes the
distance difference between fragments.

The chaining algorithm falls into the category of sparse dynamic program-
ming, introduced by Eppstein et al. [10]. Sparse dynamic programming is a
technique to design an efficient dynamic programming algorithm in which only
a small set of entries within the dynamic programming matrix matters for the
optimization of the objective function. Hence, we can take advantage of the
sparsity of the fragment space and traverse the list of start and end points
sorted by their database position, known as line-sweep. Note that end points
are sorted before start points. In consequence, if a start point of a fragment is
scanned, the end points of all non-overlapping preceding fragments will already
have been processed. The line-sweep method is used to construct optimal chains
in the following way. For any start point, the optimal predecessor to the cor-
responding fragment is identified by means of range maximum queries (RMQs)
over the set of active chains, i.e., set of chains constructed from fragments with

already processed end points. For any end point, on the other hand, a novel
chain is constructed by connecting the corresponding fragment to its optimal
predecessor and marking the end point as active. Note that the optimal pre-
decessor might be non-existent due to the local chaining condition and hence
the novel chain consists only of the current fragment. To identify optimal pre-
decessors efficiently, the algorithm and its underlying data structure crucially
depends on the selected gap cost model, e.g., linear or sum-of-pair gap costs.
Otherwise, the score to each possible predecessor would need to be computed
explicitly, yielding a quadratic algorithm. Thus, it is necessary to express the
gap costs implicitly in terms of a weight for fragments, denoted as geometric
cost of a fragment. They are defined by use of a fixed terminus point ¢ with
t.x > fena-w and t.y > fenq.y for any fragment f. In the following, the algo-
rithms in both gap cost models vary considerably and hence will be described
separately.

Using the linear gap cost model, the geometric cost gcg, can be assigned to a
fragment f in terms of its linear gap costs to the terminus gcg, = g1(t, fena). In
such a way, the predecessor with maximal fragment priority, i.e., the maximal
fragments score reduced by its geometric cost, is optimal. During the line-
sweep, a Johnson priority queue stores active end points according to their
query position y. Note that one-dimensional range queries on the positions in
the query sequence are sufficient since only end points with smaller database
position can already be active. Importantly, the following assertion is true:

e (*)End points are only inserted into the Johnson priority queue if their
predecessor in the queue has a lower fragment priority, and successors of
inserted end points are deleted if they have a lower fragment priority. As a
consequence, the identification of the optimal predecessor of an end point
requires only one predecessor operation in the Johnson priority queue
using its query position.

The implementation of sum-of-pair gap costs, however, is more complicated.
This is owed to the distinction of cases in the definition of sum-of-pair gap
costs that geometrically corresponds to the first and second octant in the frag-
ment space. Since range queries can only be applied for orthogonal regions,
two octant-to-quadrant transformations are introduced and range queries are
applied on the set of transformed end points. However, these transformations
necessitate two-dimensional rather than one-dimensional range queries that are
executed in two range trees padded with Johnson priority queues, respectively,
for both octants. As before, it is possible to assign geometric costs gcg,,, and
9Cg.0p, 0 each octant. The fragment with the maximal fragment priority is
then the optimal predecessor in the octant. We can again make use of prop-
erty (*) so that the identification of the optimal predecessor requires only a
top-down traversal to locate splitting nodes in the primary search tree and one
predecessor operation in each Johnson queue associated to these nodes. Overall,
the fragment chaining algorithm therefore has a worst-case time complexity of
O(nlog(n)) with linear gap costs and O(nlog(n)log(log(n))) with sum-of-pair
gap costs.

Because the database is typically much larger than the query sequence, we
introduced a novel clustering approach to facilitate local fragment chaining.
According to the definition of local fragment chaining, the fragment score must
exceed the necessary gap costs to another fragment or chain to be interlinked.
Assuming a positive parameter A in the linear and sum-of-pair model, an upper
limit of the possible database distance between adjacent fragments can be esti-
mated at which the lower bound of their gap costs exceeds the highest possible
chain score. Fragments before and after such gap are split up into different
clusters where fragments from different clusters may never be part of the same
chain. The highest possible chain score maxscore is estimated during the line-
sweep as a product of the maximal observed fragment score per position and an
estimate of the query length max,. Let f and f’ be two arbitrary fragments
separated by a genomic distance of at least gap, the linear gap costs can be
bounded from below by

G (1) = Ag - D', 1) + a0 - Ay (', f) = Ag, - gap. (3)

With A, (f', f) > Ay(f', f), the sum-of-pair gap costs between f and f’ are
lower-bounded as follows.

gsop(f's) = Agaop * (Az(f, f) - Ay(f/y)+ €geap Ay(f/; f) (4)
=)‘gsop : Aw(f/a f) + (egsop -)\gsop)) Ay(f/a f)
> Ny - 9P+ (€g00p = Agooy) - By (f', f)
> Ag.op - gap +min{0, e, — Ag, .} - mazx,

The distance between adjacent fragments is calculated during the line-sweep
and if the resulting minimal gap penalty is larger than the current estimate
of the highest possible chain score maxcore, a new cluster is started with the
fragment after the gap. In the end, each of the clusters is chained separately,
improving both running time and memory consumption. In the worst case, all
fragments are in the same cluster leading to the same performance as without
clustering.

References

[1] Peter van Emde Boas, R. Kaas, and E. Zijlstra. Design and implementation
of an efficient priority queue. Mathematical Systems Theory, 10:99-127,
1977.

[2] Donald B. Johnson. A priority queue in which initialization and queue op-
erations take O(log log D) time. Mathematical Systems Theory, 15(4):295-
309, 1982.

[3] Jon Louis Bentley and Jerome H. Friedman. Data structures for range
searching. ACM Comput. Surv., 11(4):397-409, 1979.

[4]

[10]

M T Abouelhoda and E Ohlebusch. Chainer: Software for comparing
genomes. In Proceedings of the 12th International Conference on Intelligent
Systems for Molecular Biology + 3rd European Conference on Computa-
tional Biology, 2004.

Jon Louis Bentley. K-d trees for semidynamic point sets. In SCG 90:
Proceedings of the sizth annual symposium on Computational geometry,
pages 187-197, New York, NY, USA, 1990. ACM.

Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried
Schwarzkopf. Computational Geometry. Springer, February 2000.

Mohamed Ibrahim Abouelhoda and Enno Ohlebusch. Multiple genome
alignment: Chaining algorithms revisited. In Combinatorial Pattern
Matching: 14th Annual Symposium, CPM 2003, Morelia, Michoacn, Mex-
ico, June 25-27, 2003. Proceedings, volume 2676/2003 of Lecture Notes in
Computer Science. Springer Berlin / Heidelberg, 2003.

Mohamed Ibrahim Abouelhoda and Enno Ohlebusch. Chaining algorithms
for multiple genome comparison. Journal of Discrete Algorithms, 3(2-4):321
— 341, 2005.

Gene Myers and Webb Miller. Chaining multiple-alignment fragments in
sub-quadratic time. In SODA ’95: Proceedings of the sizth annual ACM-
SIAM symposium on Discrete algorithms, pages 38—47, Philadelphia, PA,
USA, 1995. Society for Industrial and Applied Mathematics.

David Eppstein, Zvi Galil, Raffaele Giancarlo, and Giuseppe F. Italiano.
Sparse dynamic programming I: linear cost functions. J. ACM, 39(3):519-
545, 1992.

