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Abstract

This work is concerned with the prime factor decomposition (PFD) of strong productgraphs. In practice, graphs
often occur as perturbed product structures, so-calledapproximategraph products. The practical application of the
well-known ”classical” prime factorization algorithm is therefore limited, since most graphs are prime, although they
can have a product-like structure.

In this contribution, a new quasi-linear time algorithm forthe PFD with respect to the strong product for arbitrary
graphs is derived. This algorithm is based on a local approach that covers a graph by small factorizable subgraphs and
then utilizes this information to derive the global factors. Moreover, it will be discussed, how this new algorithm can
be modified to obtain a method for the recognition of approximate graph products.

Keywords: approximate product, strong product graph, prime factor decomposition, local covering, backbone,
color-continuation, S1-condition

1. Introduction

Graphs and in particular graph products arise in a variety ofdifferent contexts, from computer science [1, 13] to
theoretical biology [3, 8, 18, 36], computational engineering [24, 25] or just as natural structures in discrete mathe-
matics [10, 11, 14, 30]. Standard references with respect tograph products are due to Imrich et al. [19, 20].

The problem of computing so-calledapproximategraph products was posed several years ago in a theoretical
biology context [36]. The authors provided a concept concerning the topological theory of the relationships between
genotypes and phenotypes. In this framework a so-called “character” (trait orMerkmal) is identified with a factor
of a generalized topological space that describes the variational properties of a phenotype. Hence, the factorization
of the corresponding phenotype spaces may lead to remarkable insights into evolutionary processes. However, in
practical applications one often observes perturbed product structures, since structures derived from real-life data are
notoriously incomplete and/or plagued by measurement errors. In fact, even a very small perturbation, such as the
deletion or insertion of a single edge, can destroy the product structure completely, modifying a product graph to a
prime graph [5, 37]. Thus, for a given graphG that has a product-like structure, the task is to find a graphH that is a
nontrivial product and a good approximation ofG, in the sense thatH can be reached fromG by a small number of
additions or deletions of edges and vertices.

The recognition of approximate products has been investigated by several authors, see e.g. [6, 16, 17, 22, 37]. In
[22] and [37] the authors showed that Cartesian and strong product graphs can be uniquely reconstructed from each of
its one-vertex-deleted subgraphs. Moreover, in [23] it is shown thatk-vertex-deleted Cartesian product graphs can be
uniquely reconstructed if they have at leastk+ 1 factors and each factor has more thank vertices. A polynomial-time
algorithm for the reconstruction of one-vertex-deleted Cartesian product graphs is given in [9].
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Another systematic investigation into approximate product graphs showed that a further practically viable ap-
proach can be based onlocal factorization algorithms, that cover a graph by factorizable small subgraphs and attempt
to stepwisely extend regions with product structures. Thisidea has been fruitful in particular for the strong product
of graphs, where one benefits from the fact that the local product structure of neighborhoods is a refinement of the
global factors [16, 17]. In [16] the class of thin-neighborhood intersection coverable (NICE) graphs was introduced,
and a quasi-linear time local factorization algorithm w.r.t. the strong product was devised. In [17] this approach was
extended to a larger class of thin graphs which are whose local factorization is not finer than the global one, so-called
locally unrefined graphs.

In this contribution the results of [16] and [17] will be extended and generalized. The main result will be a
new quasi-linear time local prime factorization algorithmw.r.t. the strong product that works forall graph classes.
Moreover, this algorithm can be adapted for the recognitionof approximate products. This new PFD algorithm is
implemented inC++. In addition, theBoost Graph Librarywas used [33]. The source code can be downloaded from
http://www.bioinf.uni-leipzig.de/Software/GraphProducts.

This paper is organized as follows. First, we introduce the necessary basic definitions and give a short overview
of the ”classical” prime factor decomposition algorithm w.r.t. the strong product, that will be slightly modified and
used locally in our new algorithm. The main challenge will bethe combination and the utilization of the ”local
factorization information” to derive the global factors. To realize this purpose, we are then concerned with several
important tools and techniques. As it turns out, the so-calledS1-condition, thebackboneB(G) of a graphG and the
color-continuationproperty will play a central role. After this, we will derivea new general local approach for the
prime factor decomposition for arbitrary graphs, using theprevious findings. Finally, we discuss approximate graph
products and explain how the new local factorization algorithm can be modified for the recognition of approximate
graph products.

2. Preliminaries

2.1. Basic Notation

We only consider finite, simple, connected and undirected graphsG = (V,E) with vertex setV and edge setE. A
graph isnontrivial if it has at least two vertices. We define thek-neighborhoodof vertexv as the setNk[v] = {x ∈
V(G) | d(v, x) ≤ k}, whered(x, v) denotes the length of a shortest path connecting the verticesx andv. Unless there
is a risk of confusion, we call a 1-neighborhoodN1[v] just neighborhood, denoted byN[v]. To avoid ambiguity, we
sometimes writeNG[v] to indicate thatN[v] is taken with respect toG.

The degree deg(v) of a vertexv is the number of adjacent vertices, or, equivalently, the number of incident edges.
The maximum degree in a given graph is denoted by∆. If for two graphsH andG holdsV(H) ⊆ V(G) andE(H) ⊆
E(G) thenH is a called asubgraphof G, denoted byH ⊆ G. If H ⊆ G and all pairs of adjacent vertices inG are
also adjacent inH thenH is called aninducedsubgraph. The subgraph of a graphG that is induced by a vertex set
W ⊆ V(G) is denoted by〈W〉. A subsetD of V(G) is adominating setfor G, if for all vertices inV \D there is at least
one adjacent vertex fromD. We callD connected dominating set, if D is a dominating set and the subgraph〈D〉 is
connected.

2.2. Graph Products

The vertex set of thestrong product G1 ⊠ G2 of two graphsG1 andG2 is defined asV(G1) × V(G2) = {(v1, v2) |
v1 ∈ V(G1), v2 ∈ V(G2)}, Two vertices (x1, x2), (y1, y2) are adjacent inG1 ⊠ G2 if one of the following conditions is
satisfied:

(i) (x1, y1) ∈ E(G1) andx2 = y2,
(ii) ( x2, y2) ∈ E(G2) andx1 = y1,

(iii) ( x1, y1) ∈ E(G1) and (x2, y2) ∈ E(G2).

TheCartesian product G1�G2 has the same vertex set asG1 ⊠ G2, but vertices are only adjacent if they satisfy (i) or
(ii). Consequently, the edges of a strong product that satisfy (i) or (ii) are calledCartesian, the othersnon-Cartesian.
The definition of the edge sets shows that the Cartesian product is closely related to the strong product and indeed it
plays a central role in the factorization of the strong products.
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Figure 1: The edge (a,b) is Cartesian in the left, and non-Cartesian in the right coordinatization

The one-vertex complete graphK1 serves as a unit for both products, asK1�H = H andK1⊠H = H for all graphs
H. It is well-known that both products are associative and commutative, see [19]. Hence a vertexx of the Cartesian
product�n

i=1Gi , respectively the strong product⊠n
i=1Gi is properly “coordinatized” by the vector (x1, . . . , xn) whose

entries are the verticesxi of its factor graphsGi . Two adjacent vertices in a Cartesian product graph, respectively
endpoints of a Cartesian edge in a strong product, thereforediffer in exactly one coordinate.

The mappingp j(x) = x j of a vertexx with coordinates (x1, . . . , xn) is calledprojectionof x onto the j − th factor.
For a setW of vertices of�n

i=1Gi , resp.⊠n
i=1Gi , we definep j(W) = {p j(w) | w ∈ W}. Sometimes we also writepA if

we mean the projection onto factorA.
In both products�n

i=1Gi and⊠n
i=1Gi , aG j-fiber or G j-layer through vertexx with coordinates (x1, . . . , xn) is the

vertex induced subgraphGx
j in G with vertex set{(x1, . . . x j−1, v, x j+1, . . . , xn) ∈ V(G) | v ∈ V(G j)}. Thus,Gx

j is
isomorphic to the factorG j for every x ∈ V(G). For y ∈ V(Gx

j ) we haveGx
j = Gy

j , while V(Gx
j ) ∩ V(Gz

j) = ∅ if
z < V(Gx

j ). Edges of (not necessarily different)Gi-fibers are said to be edgesof one and the samefactorGi .
Note, the coordinatization of a product is equivalent to a (partial) edge coloring ofG in which edgese = (x, y)

share the same colorc(e) = k if x andy differ only in the value of a single coordinatek, i.e., if xi = yi , i , k and
xk , yk. This colors theCartesian edgesof G (with respect to thegivenproduct representation). It follows that for
each colork the setEk = {e ∈ E(G) | c(e) = k} of edges with colork spansG. The connected components of〈Ek〉 are
isomorphic subgraphs ofG. Another important result concerning the connectedness ofproduct graphs is stated in the
next lemma.

Lemma 2.1([19]). Let G be a Cartesian product�n
i=1Gi , respectively, a strong product⊠n

i=1Gi . Then G is connected
if and only if every factor Gi is connected.

We are concerned with thePrime Factor Decomposition, for shortPFD, of graphs with respect to the strong
product.

Definition 2.2. A graph G isprimewith respect to the Cartesian, respectively the strong product, if it cannot be written
as a Cartesian, respectively a strong product, of two nontrivial graphs, i.e., the identity G= G1 ⋆ G2 (⋆ = �,⊠)
implies that G1 ≃ K1 or G2 ≃ K1.

As shown by Sabidussi [31] and independently by Vizing [35],all finite connected graphs have a unique PFD with
respect to the Cartesian product. The same result holds alsofor the strong product, as shown by Dörfler and Imrich
[4] and independently by McKenzie [29].

Theorem 2.3. Every connected graph has a unique representation as a Cartesian product, resp. a strong product, of
prime graphs, up to isomorphisms and the order of the factors.

2.3. Thinness

It is important to notice that although the PFD w.r.t. the strong product is unique, the coordinatizations might not
be. Therefore, the assignment of an edge being Cartesian or non-Cartesian is not unique, in general. Figure 1 shows
that the reason for the non-unique coordinatizations is theexistence of automorphisms that interchange the verticesb
andd, but fix all the others. This is possible becauseb andd have the same 1-neighborhoods. Thus, an important issue
in the context of strong graph products is whether or not two vertices can be distinguished by their neighborhoods.

3



0 1

2

3

0 1 22,3

G G/S

Figure 2: A graphG and its quotient graphG/S. The S-classes areSG(0) = {0}, SG(1) = {1}, andSG(2) = SG(3) = {2,3}.

This is captured by the relationS defined on the vertex set ofG, which was first introduced by D̈orfler and Imrich [4].
This relation is essential in the studies of the strong product.

Definition 2.4. Let G be a given graph and x, y ∈ V(G) be arbitrary vertices. The vertices x and y are in relation S if
N[x] = N[y]. A graph is S -thin, or thin for short, if no two vertices are in relation S .

In [7], vertices x and y with xSy are calledinterchangeable. Note thatxS yimplies thatx andy are adjacent since,
by definition,x ∈ N[x] andy ∈ N[y]. Clearly,S is an equivalence relation. The graphG/S is the usual quotient graph,
more precisely:

Definition 2.5. Thequotient graphG/S of a given graph G has vertex set

V(G/S) = {Si | Si is an equivalence class of S}

and(Si ,S j) ∈ E(G/S) whenever(x, y) ∈ E(G) for some x∈ Si and y∈ S j .

Note that the relationS on G/S is trivial, that is, its equivalence classes are single vertices [19]. ThusG/S is
thin. The importance of thinness lies in the uniqueness of the coordinatizations, i.e., the property of an edge being
Cartesian or not does not depend on the choice of the coordinates. As a consequence, the Cartesian edges are uniquely
determined in an S-thin graph, see [4, 7].

Lemma 2.6. If a graph G is thin, then the set of Cartesian edges is uniquely determined and hence the coordinatization
is unique.

Another important basic property, first proved by Dörfler and Imrich [4], concerning the thinness of graphs is
stated in the next lemma. Alternative proofs can be found in [19].

Lemma 2.7. For any two graphs G1 and G2 holds(G1⊠G2)/S ≃ G1/S⊠G2/S . Furthermore, for every x= (x1, x2) ∈
V(G) holds SG(x) = SG1(x1) × SG2(x2).

This result directly implies the next corollaries.

Corollary 2.8. A graph is thin if and only if all of its factors with respect tothe strong product are thin.

Corollary 2.9. Let G be a strong product G= G1 ⊠ G2. Consider a vertex x∈ V(G) with coordinates(x1, x2). Then
for every z∈ SG(x) holds zi ∈ SGi (xi), i.e. the i-th coordinate of z is contained in the S -class of the i-th coordinate of
x.

2.4. The Classical PFD Algorithm

In this subsection, we are concerned with the PFD of graphs with respect to the strong product. We give a short
overview of the classical PFD algorithm that is used locallylater on.

The key idea of finding the PFD of a graphG with respect to the strong product is to find the PFD of a subgraph
S(G) of G, the so-calledCartesian skeleton, with respect to the Cartesian product and construct the prime factors of
G using the information of the PFD ofS(G).
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Figure 3: A prime graphG and its Cartesian SkeletonS(G) induced by thick-lined edges. Thin-lined edges are marked as dispensable in the
approach of Hammack and Imrich. On the other hand, the thick-lined edges are marked as Cartesian in the approach of Feigenbaumand Scḧaffer.
However, in both cases the resulting Cartesian skeletonS(G) spansG. Hence, the vertex sets of theS(G)-fiber (w.r.t. Cartesian product) and the
G-fiber (w.r.t. strong product) induce the same partitionV(S(G)) = V(G) of the respective vertex sets.

Definition 2.10. A subgraph H of a graph G= G1 ⊠G2 with V(H) = V(G) is calledCartesian skeletonof G, if it has
a representation H= H1�H2 such that V(Hv

i ) = V(Gv
i ) for all v ∈ V(G) and i ∈ {1,2}. The Cartesian skeleton H is

denoted byS(G).

In other words, theHi-fibers of the Cartesian skeletonS(G) = H1�H2 of a graphG = G1 ⊠ G2 induce the same
partition as theGi-fibers on the vertex setsV(S(G)) = V(G). As Lemma 2.6 implies, if a graphG is thin then the set
of Cartesian edges and thereforeS(G) is uniquely determined. The remaining question is: How canone determine
S(G)?

The first who answered this question were Feigenbaum and Schäffer [7]. In their polynomial-time approach,
edges are marked as Cartesian if the neighborhoods of their endpoints fulfill some (strictly) maximal conditions in
collections of neighborhoods or subsets of neighborhoods in G.

The latest and fastest approach for the detection of the Cartesian skeleton is due to Hammack and Imrich [12]. In
distinction to the approach of Feigenbaum and Schäffer edges are marked as dispensable. All edges that are dispens-
able will be removed fromG. The resulting graphS(G) is the desired Cartesian skeleton and will be decomposed with
respect to the Cartesian product. For an example see Figure 3.

Definition 2.11. An edge(x, y) of G isdispensableif there exists a vertex z∈ V(G) for which both of the following
statements hold.

1. (a) N[x] ∩ N[y] ⊂ N[x] ∩ N[z] or (b) N[x] ⊂ N[z] ⊂ N[y]
2. (a) N[x] ∩ N[y] ⊂ N[y] ∩ N[z] or (b) N[y] ⊂ N[z] ⊂ N[x]

Some important results, concerning the Cartesian skeletonare summarized in the following theorem.

Theorem 2.12([12]). Let G = G1 ⊠ G2 be a strong product graph. If G is connected, thenS(G) is connected.
Moreover, if G1 and G2 are thin graphs then

S(G1 ⊠ G2) = S(G1)�S(G2).

Any isomorphismϕ : G→ H, as a map V(G)→ V(H), is also an isomorphismϕ : S(G)→ S(H).

Remark 1. Notice that the set of all Cartesian edges in a strong productG = ⊠
n
i=1Gi of connected, thin prime graphs

are uniquely determined and hence its Cartesian skeleton. Moreover, since by Theorem 2.12 and Definition 2.10 of
the Cartesian skeletonS(G) = �

n
i=1S(Gi) of G we know thatV(S(G)v

i ) = V(Gv
i ) for all v ∈ V(G). Thus, we can

assume without loss of generality that the set ofall Cartesian edges in a strong productG = ⊠
n
i=1Gi of connected, thin

graphs is the edge set of the Cartesian skeletonS(G) of G. As an example consider the graphG in Figure 3. After the
factorization ofS(G) all edges ofG are determined as Cartesian, sinceG is prime.

5



a0 a1 a2

a3

b0 b1 b2

b3

c0 c1 c2

c3

a0 a1 S1

b0 b1 S2

c0 c1 S3

a0 a1 S1

b0 b1 S2

c0 c1 S3

G −→ G/S −→ S(G/S)
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PFD of S(G/S) −→ PFD of G

Figure 4: Illustrated are the basic steps of the PFD of strongproduct graphs.

Now, we are able to give a brief overview of the global approach that decomposes given graphs into their prime
factors with respect to the strong product, see also Figure 4.

Given an arbitrary graphG, one first extracts a possible complete factorKl of maximal size, resulting in a graph
G′, i.e.,G ≃ G′ ⊠ Kl , and computes the quotient graphH = G′/S. This graphH is thin and therefore the Cartesian
edges ofS(H) can be uniquely determined. Now, one computes the prime factors ofS(H) with respect to the Cartesian
product and utilizes this information to determine the prime factors ofG′ by usage of an additional operation stated
in the next lemma.

Lemma 2.13. [19] Suppose that it is known that a given graph G that does notadmit any complete graphs as a factor
is a strong product graph G1 ⊠G2, and suppose that the decomposition G/S = G1/S⊠G2/S is known. Then G1 and
G2 can be determined from G, G1/S and G2/S .

In fact, if D(x1, x2) denotes the size of the S-equivalence class of G that is mapped into (x1, x2) ∈ G1/S ⊠ G2/S ,
then the size D(x1) of the equivalence class of G1 mapped into x1 ∈ G1/S is gcd{D(x1, y) | y ∈ V(G2)}. Analogously
for D(x2).

By repeated application of Lemma 2.13 one can determine the prime factors ofG′, see [19]. Notice thatG ≃
G′ ⊠ Kl . The prime factors ofG are then the prime factors ofG′ together with the complete factorsKp1, . . . ,Kp j ,
wherep1 . . . p j are the prime factors of the integerl. This approach is summarized in Algorithm 1 and 2.

Algorithm 1 PFD of graphs w.r.t.⊠

1: INPUT: a graphG
2: ComputeG = G′ ⊠ Kl , whereG′ has no nontrivial factor isomorphic to a complete graphKr ;
3: Determine the prime factorization ofKl , that is, ofl;
4: computeH = G′/S;
5: compute PFD and prime factorsH1, . . . ,Hn of H with Algorithm 2
6: By repeated application of Lemma 2.13 find all minimal subsets J of I = {1,2, . . . ,n} such that there are graphs

A andB with G = A⊠ B, A/S = ⊠i∈JHi andB = ⊠ j∈J\I H j . SaveA as prime factor.

7: OUTPUT: The prime factors ofG;
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Algorithm 2 PFD of thin graphs w.r.t.⊠

1: INPUT: a thin graphG
2: compute the Cartesian skeletonS(G);
3: factorS(G) = �i∈I Hi and assign coordinates to each vertex;
4: J← I ;
5: for k = 1, . . . , |I | do
6: for eachS ⊂ J with |S| = k do
7: computeA = �i∈SV(Hi) andA′ = �i∈I\SV(Hi);
8: computeB1 = 〈pA(G)〉 andB2 = 〈pA′ (G)〉;
9: if B1 ⊠ B2 ≃ G then

10: saveB1 as prime factor;
11: J← J\S;
12: end if
13: end for
14: end for

15: OUTPUT: The prime factors ofG;

However, Algorithm 1 and 2 just give an overview of the top level control structure to determine the PFD of a
given graph. Applying some smart ideas together with slightmodifications on those Algorithms one can bound the
time complexity as stated in the next Lemma 2.14, see [12].

Lemma 2.14([12]). The PFD of a given graph G= (V,E) with bounded maximum degree∆ can be computed in
O(|E|∆2) time.

3. The Local Way to Go - Tools

As mentioned, we will utilize the classical PFD algorithm and derive a new approach for the PFD w.r.t. the
strong product that makes only usage of small subgraphs, so-calledsubproductsof particular size, and that exploits
the local information in order to derive the global factors.Moreover, motivated by the fact that most graphs are prime,
although they can have a product-like structure, we want to vary this approach such that also disturbed products can
be recognized. The key idea is the following: We try to cover agiven disturbed productG by subproducts that are
itself ”undisturbed”. If the graphG is not too much perturbed, we would expect to be able to cover most of it by
factorizable 1-neighborhoods or other small subproducts and to use these information for the construction of a strong
productH that approximatesG.

However, for the realization of this idea several importanttools are needed. First, we give an overview of the
subproducts that will be used. We then introduce the so-calledS1-condition, that is a property of an edge that allows
us to determine Cartesian edges, even if the given graph is not thin. We continue to examine a subset of the vertex
set of a given graphG, the so-calledbackboneB(G). Both concepts, theS1-conditionand the backbone, have first
been investigated in [17]. We will see that the backbone is closely related to theS1-condition. Finally, in order to
identify locally determined fiber as belonging to one and thesame or to different global factors, the so-calledcolor-
continuationproperty will be introduced. As it turns out, this particular property is not always met. Therefore, we
continue to show how one can solve this problem for thin and later on for non-thin (sub)graphs.

3.1. Subproducts

In this subsection, we are concerned with so-calledsubproducts, also known asboxes[34], that will be used in the
algorithm.

Definition 3.1. A subproductof a product G⊠ H, resp. G�H, is defined as the strong product, resp. the Cartesian
product, of subgraphs of G and H, respectively.
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Figure 5: The 1-neighborhood〈N[(x, y)]〉 = 〈N[x]〉⊠ 〈N[y]〉 is highlighted by thick lined edges

As shown in [16], it holds that 1-neighborhoods in strong product graphs are subproducts:

Lemma 3.2([16]). For any two graphs G and H holds〈NG⊠H[(x, y)]〉 = 〈NG[x]〉⊠ 〈NH[y]〉.

For applications to approximate products it would be desirable to use small subproducts. Unfortunately, it turns
out that 1-neighborhoods, which would be small enough for our purpose, are not sufficient to cover a given graph
in general while providing enough information to recognizethe global factors. However, we want to avoid to use
2-neighborhoods, although they are subproducts as well, they have diameter 4 and are thus quite large. Therefore, we
will define further small subgraphs, that are smaller than 2-neighborhoods, and show that they are also subproducts.

Definition 3.3. Given a graph G and an arbitrary edge(v,w) ∈ E(G). Theedge-neighborhoodof (v,w) is defined as

〈N[v] ∪ N[w]〉

and the N∗v,w-neighborhoodis defined as

N∗v,w = 〈
⋃

x∈N[v]∩N[w]

N[x]〉.

If there is no risk of confusion we will denoteN∗v,w-neighborhoods just byN∗-neighborhoods. We will show in the
following that in addition to 1-neighborhoods also edge-neighborhoods of Cartesian edges andN∗-neighborhoods are
subproducts and hence, natural candidates to cover a given graph as well. We show first, given a subproductH of G,
that the subgraph that is induced by vertices contained in the union of 1-neighborhoodsN[v] with v ∈ V(H), is itself
a subproduct ofG.

a b

y ay by

a b

y ay by

Figure 6: Shown is a strong product graph of two paths. Noticethat the 2-neighborhood〈N2[(by)]〉 of vertex (by) is isomorphic toG.
lhs.: The edge-neighborhood〈N[(a, y)] ∪ N[(b, y)]〉 = 〈(N[a] ∪ N[b])〉⊠ 〈N[y]〉.
rhs.: TheN∗-neighborhoodN∗(ay),(by) = 〈∪z∈N[a]∩N[b] N[z]〉⊠ 〈∪z∈N[y] N[z]〉.

Lemma 3.4. Let G= G1 ⊠ G2 be a strong product graph and H= H1 ⊠ H2 be a subproduct of G. Then

H∗ =
〈
∪v∈V(H)N

G[v]
〉

is a subproduct of G with H∗ = H∗1 ⊠ H∗2, where H∗i is the induced subgraph of factor Gi on the vertex set V(H∗i ) =⋃
vi∈V(Hi ) NGi [vi ], i = 1,2.
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Proof. It suffices to show thatV(H∗) = V(H∗1) × V(H∗2). For the sake of convenience, we denoteV(Hi) by Vi , for
i = 1,2. We have:

V(H∗) =
⋃

v∈V(H)

NG[v] =
⋃

v∈V1×V2

NG[v].

Since the induced neighborhood of each vertexv = (v1, v2) in G is the product of the corresponding neighborhoods
NG1[v1] ⊠ NG2[v2] we can conclude:

V(H∗) =
⋃

{v1∈V1}×(v2∈V2}

(NG1[v1] × NG2[v2]) =
⋃

v1∈V1

NG1[v1] ×
⋃

v2∈V2

NG2[v2] = V(H∗1) × V(H∗2)

Lemma 3.5. Let G be a nontrivial strong product graph and(v,w) be an arbitrary edge of G. Then〈NG[v] ∩ NG[w]〉
is a subproduct.

Proof. Let v andw have coordinates (v1, v2) and (w1,w2), respectively. SinceNG[v] = NG1[v1] × NG2[v2] we can
conclude that

NG[v] ∩ NG[w] = (NG1[v1] × NG2[v2]) ∩ (NG1[v1] × NG2[v2])

= (NG1[v1] ∩ NG1[w1]) × (NG2[v2] ∩ NG2[w2]).

Lemmas 3.2, 3.4 and 3.5 directly imply the next corollary.

Corollary 3.6. Let G be a given graph. Then for all v∈ V(G) and all edges(v,w) ∈ E(G) holds:

〈N2[v]〉 and N∗v,w

is a subproduct of G. Moreover, if the edge(v,w) is Cartesian than the edge-neighborhood

〈N[v] ∪ N[w]〉

is a subproduct of G.

Notice that〈N[v] ∪ N[w]〉 could be a product, i.e., not prime, even if (v,w) is non-Cartesian inG. However,
the edge-neighborhood of a single non-Cartesian edge is nota subproduct, in general. The obstacle we have is that
a non-Cartesian edge ofG might be Cartesian in its edge-neighborhood. Therefore, wecannot use the information
provided by the PFD of〈N[x] ∪ N[y]〉 to figure out if (x, y) is Cartesian inG and hence, if〈N[x] ∪ N[y]〉 is a proper
subproduct. On the other hand, an edge that is Cartesian in a subproductH of G must be Cartesian inG. To check if
an edge (x, y) is Cartesian in〈N[x] ∪N[y]〉 that is Cartesian inG as well we use thedispensable-property provided by
Hammack and Imrich, see [12].

We show that an edge (x, y) that is dispensable inG is also dispensable in〈N[x] ∪ N[y]〉. Conversely, we can
conclude that every edge that is indispensable in〈N[x] ∪ N[y]〉 must be indispensable and therefore Cartesian inG.
This implies that every edge-neighborhood〈N[x] ∪ N[y]〉 is a proper subproduct ofG if ( x, y) is indispensable in
〈N[x] ∪ N[y]〉.

Remark 2. As mentioned in [12], we have:

• N[x] ⊂ N[z] ⊂ N[y] implies N[x] ∩ N[y] ⊂ N[y] ∩ N[z].
• N[y] ⊂ N[z] ⊂ N[x] implies N[x] ∩ N[y] ⊂ N[x] ∩ N[z].
• If ( x, y) is indispensable thenN[x] ∩ N[y] ⊂ N[x] ∩ N[z] andN[x] ∩ N[y] ⊂ N[y] ∩ N[z] cannot both be true.
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Lemma 3.7. Let (x, y) be an arbitrary edge of a given graph G and H= 〈N[x] ∪ N[y]〉 Then it holds:

N[x] ∩ N[y] ⊂ N[x] ∩ N[z]

if and only if
N[x] ∩ N[y] ∩ H ⊂ N[x] ∩ N[z] ∩ H.

Proof. First notice thatN[x] ∩ N[y] ∩ H = N[x] ∩ N[y]. Furthermore, sinceN[x] ∩ N[z] ⊆ N[x] ⊆ V(H) we can
conclude that (N[x] ∩ N[z]) ∩ H = N[x] ∩ N[z], from what the assertion follows.

Lemma 3.8. Let (x, y) be an arbitrary edge of a given graph G and H= 〈N[x] ∪ N[y]〉. If

N[x] ⊂ N[z] ⊂ N[y]

then
N[x] ∩ H ⊂ N[z] ∩ H ⊂ N[y] ∩ H

.

Proof. First notice thatN[x] ∩ H = N[x], N[y] ∩ H = N[y], andN[z] ∩ H = (N[z] ∩ N[x]) ∪ (N[z] ∩ N[y]). Since
N[x] ⊂ N[z] ⊂ N[y] we can conclude that (N[z] ∩ N[x]) ∪ (N[z] ∩ N[y]) = (N[x]) ∪ (N[z]) = N[z]. Therefore
N[x] ∩ H = N[x] ⊂ N[z] = N[z] ∩ H andN[z] ∩ H = N[z] ⊂ N[y] = N[y] ∩ H.

Notice that the converse does not hold in general, sinceN[z] ∩ H ⊂ N[y] ∩ H = N[y] does not imply that
N[z] ⊂ N[y]. However, by symmetry, Remark 2, Corollary 3.6, Lemma 3.7 and 3.8 we can conclude the next
corollary.

Corollary 3.9. If an edge(x, y) of a thin strong product graph G isindispensablein 〈N[x] ∪ N[y]〉 and therefore
Cartesian in G then the edge-neighborhood〈N[x] ∪ N[y]〉 is a subproduct of G.

3.2. The S1-condition and the Backbone
The concepts of theS1-conditionand thebackbonewere first introduced in [17]. The main idea of our approach is

to construct the Cartesian skeleton ofG by considering PFDs of the introduced subproducts only. Themain obstacle
is that even thoughG is thin, this is not necessarily true for subgraphs, Fig. 7. Hence, although the Cartesian edges
are uniquely determined inG, they need not to be unique in those subgraphs. In order to investigate this issue in some
more detail, we also defineS-classes w.r.t. subgraphsH of a given graphG.

Definition 3.10. Let H ⊆ G be an arbitrary subgraph of a given graph G. Then SH(x) is defined as the set

SH(x) =
{
v ∈ V(H) | NG[v] ∩ V(H) = NG[x] ∩ V(H)

}
.

If H = 〈NG[y]〉 for some y∈ V(G) we set Sy(x) := S〈NG[y]〉(x)

In other words,SH(x) is theS-class that containsx in the subgraphH. Notice thatN[x] ⊆ N[v] holds for all
v ∈ Sx(x). If G is additionally thin, thenN[x] ( N[v].

1 2

3

z v x

y

Figure 7: A thin graph where〈N[v]〉 is not thin. The S-classes in〈N[v]〉 areSv(v) = {v}, Sv(z) = {z} andSv(x) = Sv(y) = {x, y}.

Since the Cartesian edges are globally uniquely defined in a thin graph, the challenge is to find a way to determine
enough Cartesian edges from local information, even if〈N[v]〉 is not thin. This will be captured by theS1-condition
and thebackboneof graphs.
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Figure 8: Determining Cartesian edges that satisfy theS1-condition. Given a graphG, one computes its quotient graphG/S. SinceG/S is thin the
Cartesian edges ofG/S are uniquely determined. Now one factorizesG/S and computes the prime factors ofG with Algorithm 1. Apply Lemma
3.13 to identify all Cartesian edges with respective colors(thick and dashed lined) inG that satisfy theS1-condition. The backboneB(G) is the
singleton{5}.

Definition 3.11. Given a graph G. An edge(x, y) ∈ E(G) satisfies theS1-conditionin an induced subgraph H⊆ G if

(i) x, y ∈ V(H) and

(ii) |SH(x)| = 1 or |SH(y)| = 1.

Note that|SH(x)| = 1 for all x ∈ V(H), if H is thin. From Lemma 2.7 we can directly infer that the cardinality
of an S-class in a product graphG is the product of the cardinalities of the correspondingS-classes in the factors.
Applying this fact to subproducts ofG immediately implies Corollary 3.12.

Corollary 3.12. Consider a strong product G= ⊠
n
i=1Gi and a subproduct H= ⊠

n
i=1Hi ⊆ G. Let x∈ V(H) be a given

vertex with coordinates(x1, . . . , xn). Then SH(x) = ×n
i=1SHi (xi) and therefore,|SH(x)| =

∏n
i=1 |SHi (xi)|.

The most important property of Cartesian edges that satisfytheS1-conditionin some quotient graphG/S is that
they can be identified as Cartesian edges inG, even ifG is not thin.

Lemma 3.13([17]). Let G= ⊠
n
i=1Gi be a strong product graph containing two S-classes SG(x), SG(y) that satisfy

(i) (SG(x),SG(y)) is a Cartesian edge in G/S and

(ii) |SG(x)| = 1 or |SG(y)| = 1.

Then all edges in G induced by vertices of SG(x) and SG(y) are Cartesian and copies of one and the same factor.

Remark 3. Whenever we find a Cartesian edge (x, y) in a subproductH of G such that one endpoint of (x, y) is
contained in aS-class of cardinality 1 inH/S, i.e., such thatSH(x) = {x} or SH(y) = {y}, we can therefore conclude
that all edges inH induced by vertices ofSH(x) andSH(y) are also Cartesian and are copies of one and the same
factor, see Figure 8.

Note, even ifH/S has more factors thanH Algorithm 1 indicates which factors have to be merged to one factor.
Again we can conclude that all edges inH that satisfy theS1-conditionare Cartesian and are copies of one and the
same factor, see Figure 9.

Moreover, sinceH is a subproduct ofG, it follows that any Cartesian edge ofH that satisfy theS1-conditionis a
Cartesian edge inG.

We consider now a subset ofV(G), the so-calledbackbone, which is essential for the algorithm.

Definition 3.14. Thebackboneof a thin graph G is the vertex set

B(G) = {v ∈ V(G) | |Sv(v)| = 1} .

Elements ofB(G) are calledbackbone vertices.

11
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Figure 9: Determining Cartesian edges that satisfy theS1-condition. We factorizeG/S and compute the prime factors ofG with Algorithm 1.
Notice that it turns out that the factors induced by thick anddashed lined edges have to be merged to one factor. Apply now Lemma 3.13 to identify
all Cartesian edges inG that satisfy theS1-condition. In this case, it is clear that the edge (0,3) has to be Cartesian as well and belongs to the single
prime factorG. The backboneB(G) is the singleton{5}.

Clearly, the backboneB(G) and theS1-conditionare closely related, since all edges (x, y) that contain a backbone
vertex, sayx, satisfy theS1-conditionin 〈N[x]〉. If the backboneB(G) of a given graphG is nonempty then Corollary
3.12 implies that no factor ofG is isomorphic to a complete graph, otherwise we would have|Sv(v)| > 1 for all
v ∈ V(G). The last observations lead directly to the next corollary.

Corollary 3.15. Given a graph G with nonempty backboneB(G) then for all v ∈ B(G) holds: all edges(v, x) ∈
E(〈N[v]〉) satisfy theS1-conditionin N[v].

The set of backbone vertices of thin graphs can be characterized as follows.

Lemma 3.16([17]). Let G be a thin graph and v an arbitrary vertex of G. Then v∈ B(G) if and only if N[v] is a
strictly maximal neighborhood in G.

As shown in [17] the backbone B(G) of thin graphs G is a connected dominating set. This allows us to cover the
entire graph by 1-neighborhoods of the backbone vertices only. Moreover, it was shown that it suffices to exclusively
use information about the 1-neighborhood of backbone vertices, to find all Cartesian edges that satisfy theS1-condition
in arbitrary 1-neighborhoods, even those edges (x, y) with x, y < B(G). These results are summarized in the next
theorem.

Theorem 3.17([17]). Let G be a thin graph. Then the backboneB(G) is a connected dominating set for G.
All Cartesian edges that satisfy theS1-conditionin an arbitrary induced 1-neighborhood also satisfy theS1-condition
in the induced 1-neighborhood of a vertex of the backboneB(G).

Consider now a subproductH of a thin graphG that entirely contains at least one 1-neighborhood of a backbone
vertexx ∈ B(G). We will show in the following that the set of Cartesian edges of H that satisfy theS1-conditionin H,
induce a connected subgraph ofH. This holds even ifH is not thin. For this we need the next two lemmas.

Lemma 3.18. Let G be a given thin graph, x∈ B(G) and H ⊆ G be an arbitrary induced subgraph such that
N[x] ⊆ V(H). Then|SH(x)| = 1 and x∈ B(H).

Proof. First notice that Lemma 3.16 andx ∈ B(G) implies that〈N[x]〉 is strictly maximal inG. Since〈N[x]〉 ⊆ H ⊆ G
we can conclude that〈N[x]〉 is strictly maximal inH. Hence, it holds|SH(x)| = 1 and in particularx ∈ B(H), applying
Lemma 3.16 again.

Lemma 3.19. Let G be a given thin graph and H⊆ G be a subproduct of G such that there is a vertex x∈ B(G) with
N[x] ⊆ V(H). Then the set of all Cartesian edges of H that satisfy theS1-conditionin H induce a connected subgraph
of H.

Proof. Let⊠n
i=1Hi be any factorization ofH and (a,b) be an arbitrary Cartesian edge ofH (w.r.t. to this factorization)

that satisfies theS1-conditionin H. W.l.o.g we assume that|SH(a)| = 1. We denote the coordinates ofa with

12
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Figure 10: The Cartesian skeleton of the thin product graphG of two prime factors induced by one connected component of thick and dashed lined
edges. The backboneB(G) consists of the verticesz1, z2 andz3. In none of anyedge-neighborhoodH holds |SH(xi )| = 1, i = 1,2,3. Hence the
fiber induced by verticesx1, x2 andx3 does not satisfy theS1-conditionin any edge-neighborhood. To identify this particular fiberit is necessary
to useN∗-neighborhoods. By Lemma 3.22N∗-neighborhoods are also sufficient.

(a1, . . . ,an) and the ones ofx with (x1, . . . , xn). Clearly, the coordinatization need not to be unique, since H is not
supposed to be thin. However, we will construct a pathP from a to x that consists of Cartesian edges (v,w) such
that |SH(v)| = 1 and |SH(w)| = 1. Those Cartesian edges are uniquely determined inH, independently from the
coordinatization.

Notice that Lemma 3.18 implies that|SH(x)| = 1, sinceN[x] ⊆ V(H). Moreover, from Corollary 3.12 we can
conclude that|SHi (xi)| = 1 for all i. Analogously,|SHi (ai)| = 1 for all i. The index setI denotes the set of position
wherea andx differ. W.l.o.g we assume thatI = {1,2, . . . , k}. The pathP has edge set{(x, v1), (v2, v3), . . . , (vk−1,a)}
with verticesv j that have respective coordinates (a1,a2, . . . ,a j , x j+1, . . . , xn), j = 1, . . . , k − 1. Corollary 3.12 implies
that for all those vertices holds|SH(vk)| = 1 and hence in particular for all edges (u,w) ∈ {(x, v1), (v2, v3), . . . , (vn−1,a)}
holds|SH(u)| = 1 and|SH(w)| = 1, i.e., those Cartesian edges are uniquely determined inH. Finally, since all edges
have endpoints differing in exactly one coordinate all edges are Cartesian and hence all those Cartesian edges (a,b) are
connected to vertexx by a path of Cartesian edges that satisfy theS1-condition, from what the statement follows.

Corollary 3.20. Let G be a given thin graph, x∈ B(G) and let H⊆ G denote one of the subproducts〈N[x]〉, N∗x,y or
〈N[x] ∪ N[y]〉. In the latter case we assume that the edge(x, y) is Cartesian in H. Then the set of all Cartesian edges
of H that satisfy theS1-conditionin H induce a connected subgraph of H.

Last, we state two lemmas for later usage. Note, the second lemma refines the already known results of [17],
where analogous results were stated for 2-neighborhoods.

Lemma 3.21([17]). Let (x, y) ∈ E(G) be an arbitrary edge in a thin graph G such that|Sx(x)| > 1. Then there exists
a vertex z∈ B(G) s.t. z∈ N[x] ∩ N[y].

Lemma 3.22. Let G be a thin graph and(v,w) be any edge of G. Let N∗ denote the N∗v,w-neighborhood. Then it holds
that |SN∗ (v)| = 1 and |SN∗ (w)| = 1 , i.e., the edge(v,w) satisfies theS1-conditionin N∗.

Proof. Assume that|SN∗ (v)| > 1. Thus there is a vertexx ∈ SN∗(v) different fromv with N[x] ∩ N∗ = N[v] ∩ N∗,
which implies thatw ∈ N[x] and hence,x ∈ N[v] ∩ N[w]. Thus, it holdsN[x] ⊆ N∗. Moreover, sinceN[v] ⊆ N∗ we
can conclude thatN[v] = N[v] ∩ N∗ = N[x] ∩ N∗ = N[x], contradicting thatG is thin. Analogously, one shows that
the statement holds for vertexw.
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3.3. The Color-Continuation

The concept of covering a graph by suitable subproducts and determining the global factors needs some additional
improvements. Since we want to determine the global factors, we need to find their fibers. This implies that we
have to identify different locally determined fibers as belonging to different or to one and the same global fiber.
For this purpose, we formalize the termproduct coloring, color-continuationandcombined coloring. Remind, the
coordinatization of a product is equivalent to a (partial) edge coloring ofG in which edgese = (x, y) share the same
color c(e) = k if x andy differ only in the value of a single coordinatek, i.e., if xi = yi , i , k andxk , yk. This colors
theCartesian edgesof G (with respect to thegivenproduct representation).

Definition 3.23. A product coloringof a strong product graph G= ⊠
n
i=1Gi of n≥ 1 (not necessarily prime) factors is

a mapping PG from a subset E′ ⊆ E(G), that is a set of Cartesian edges of G, into a set C= {1, . . . ,n} of colors, such
that all such edges in Gi-fibers obtain the same color i.

Definition 3.24. A partial product coloringof a graph G= ⊠
n
i=1Gi is a product coloring that is only defined on edges

that additionally satisfy theS1-conditionin G.

Note, in a thin graphG a product coloring and a partial product coloring coincide,since all edges satisfy the
S1-conditionin G.

Definition 3.25. Let H1,H2 ⊆ G and PH1, resp. PH2, be partial product colorings of H1, resp. H2. Then PH2 is a
color-continuationof PH1 if for every color c in the image of PH2 there is an edge in H2 with color c that is also in the
domain of PH1.

Thecombined coloringon H1 ∪ H2 uses the colors of PH1 on H1 and those of PH2 on H2 \ H1.

In other words, for all newly colored edges with colorc in H2, which are Cartesian edges inH2 that satisfy the
S1-conditionin H2, we have to find a representative edge that satisfy theS1-conditionin H1 and was already colored
in H1. If H1 andH2 are thin we can ignore theS1-condition, since all edges satisfy this condition inH1 andH2, see
Figure 11.
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Figure 11: Shown is a thin graphG with B(G) = {x, y}. G is the strong product of two paths. If one computes the PFD of the neighborhood〈N[x]〉
one obtains a (partial) product coloring with colorsc1 andc3. The (partial) product coloring of〈N[y]〉 has colorsc2 andc4. Since on edge (x, y),
resp. (x,1), both colorsc1 andc2, resp.c3 andc4 are represented we can identify those colors and merge them toone color, resulting in a proper
combined coloring. Hence, the product coloringP〈N[x]〉 is a color-continuation ofP〈N[y]〉 and vice versa.

However, there are cases where the color-continuation fails, see Figure 12. The remaining part of this subsection
is organized as follows. We first show how one can solve the color-continuation problem if the corresponding sub-
products are thin. As it turns out, it is sufficient to use the information of 1-neighborhoods only in order to get a proper
combined coloring. We then proceed to solve this problem fornon-thin subgraphs.

Before we continue, two important lemmas are given. The firstone is just a restatement of a lemma, which was
formulated for equivalence classes w.r.t. to a product relation in [21]. The second lemma shows how one can adapt
this lemma to non-thin graphs.

Lemma 3.26([21], Lemma 1). Let G be a thin strong product graph and let PG be a product coloring of G. Then
every vertex of V(G) is incident to at least one edge with color c for all colors c inthe image of PG.

Lemma 3.27. Let G be a thin strong product graph, H⊆ G be a non-thin subproduct of G and x∈ V(H) be a vertex
with |SH(x)| = 1. Moreover, let PH be a partial product coloring of H. Then vertex x is containedin at least one edge
with color c for all colors c in the image of PG.
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Proof. Notice thatH does not contain complete factors, otherwise Corollary 3.12 implies that|SH(x)| > 1. Now, the
statement follows directly from Lemma 3.13 and Lemma 3.26

3.3.1. Solving the Color-Continuation Problem for Thin Subgraphs
To solve the color-continuation problem for thin subgraphsand in particular for thin 1-neighborhoods we introduce

so-calledS-primegraphs.

Definition 3.28. A graph S isS-prime(S stands for “subgraph”) if for all graphs G and H with S⊆ G ⋆ H holds:
S ⊆ H or S ⊆ G, where⋆ denotes an arbitrary graph product.

The class of S-prime graphs was introduced and characterized for the direct product by Sabidussi in 1975 [32].
Analogous notions of S-prime graphs with respect to other products are due to Lamprey and Barnes [27, 28]. Klavžar
et al. [26] and Brěsar [2] proved several characterizations of (basic) S-prime graphs. In [15] it is shown that so-called
diagonalized Cartesian productsof S-prime graphs are S-prime w.r.t. the Cartesian product.We shortly summarize
the results of [15].

Definition 3.29([15]). A graph G is called adiagonalizedCartesian product, whenever there is an edge(u, v) ∈ E(G)
such that H= G \ (u, v) is a nontrivial Cartesian product and u and v have maximal distance in H.

Theorem 3.30([15]). The diagonalized Cartesian Product of S-prime graphs is S-prime w.r.t. the Cartesian product.

Corollary 3.31 ([15]). Diagonalized Hamming graphs, and thus diagonalized Hypercubes, are S-prime w.r.t. the
Cartesian product.

0 1 2

3 4 5

6 7 8

≃

01 2

3 4 5

67 8

9 1 0

10 3 4

11 7 6

01 2

3 4 5

67 8

9

10

11

0 1 2

3 4 5

6 7 8

01 2

3 4 5

67 8

9 1 0

10 3 4

11 7 6

01 2

3 4 5

67 8

9

10

11

Figure 12:Color-continuation problem in thin subproducts.Consider the induced neighborhoods〈N[3]〉 and〈N[4]〉, depicted in the upper part. The
colorings of the edges w.r.t. the PFD of each neighborhood are shown as thick dashed edges, thick-lined edges and double-lined edges, respectively.
If we cover the graphG in the lower part fromN[3] to N[4] the color-continuation fails, e.g. on edge (1,4), since (1,4) is determined as non-
Cartesian in〈N[3]〉. This holds for all edges in〈N[3]〉 that obtained the color ”thick dash” in〈N[3]〉. The same holds for the color ”double-lined”
if we cover the graph fromN[4] to N[3]. If we force the edge (1,4) to be Cartesian in〈N[3]〉 Lemma 3.33 implies that the colors ”thick-lined” and
”double-lined” have to be merged to one color, since the subgraph with edge set{(0,1), (0,4), (1,3), (3,4)} ∪ {(1,4)} is a diagonalized hypercube
Q2. Note,G can be covered by thin 1-neighborhoods only, but the color-continuation fails. HenceG is not NICE in the terminology of [16].
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We shortly explain how S-prime graphs can be used in order to obtain a proper color-continuation in thin sub-
products even if the color-continuation fails. Consider a strong product graphG and two given thin subproducts
H1,H2 ⊆ G. Let the Cartesian edges of each subgraph be colored with respect to a product coloring ofH1, respec-
tively H2 that is at least as fine as the product coloring ofG w.r.t. to its PFD. As stated in Definition 3.25, we have a
proper color-continuation fromH1 to H2 if for all colored edges with colorc in H2 there is a representative edge that
is colored inH1. Assume the color-continuation fails, i.e., there is a color c in H2 such that for all edgesec ∈ E(H2)
with color c holds thatec is not colored inH1, for an example see Figure 12. This implies that all such edges ec are
determined as non-Cartesian inH1. As claimed, the product colorings ofH1 andH2 are at least as fine as the one
of G andH1, H2 are subproducts ofG, which implies that colored Cartesian edges in eachHi are Cartesian edges
in G. Sinceec is determined as non-Cartesian inH1, but as Cartesian inH2, we can infer thatec must be Cartesian
in G. Thus we can force the edgeec to be Cartesian inH1. The now arising questions is: ”What happens with the
factorization ofH1?” We will show in the sequel that there is a hypercube inH1 consisting of Cartesian edges only,
where all edges are copies of edges of different factors. Furthermore, we show that this hypercube is diagonalized
by a particular edgeec and therefore S-prime w.r.t the Cartesian product. Moreover, we will prove that all colors that
appear on this hypercube and the colorc onec have to be merged to exactly one color, even with respect to the product
coloring, provided by the coloring w.r.t. the strong product. This approach solves the color-continuation problem for
thin subproducts and hence in particular for thin 1-neighborhoods as well.

Lemma 3.32. Let G= ⊠
n
l=1Gl be a thin strong product graph and(v,w) ∈ E(G) a non-Cartesian edge. Let J denote

the set of indices where v and w differ and U ⊆ V(G) be the set of vertices u with coordinates ui = vi , if i < J and
ui ∈ {vi ,wi}, if i ∈ J. Then the induced subgraph〈U〉 ⊆ S(G) on U consisting of Cartesian edges of G only is a
hypercube of dimension|J|.

Proof. Notice that the coordinatization ofG is unique, sinceG is thin. Moreover, since the strong product is commu-
tative and associative we can assume w.l.o.g. thatJ = {1, . . . , k}. Note, thatk > 1, otherwise the edge (v,w) would be
Cartesian.

Assume thatk = 2. We denote the coordinates ofv, resp. ofw, by (v1, v2,X), resp. by (w1,w2,X). By definition
of the strong product we can conclude that (vi ,wi) ∈ E(Gi) for i = 1,2. Thus the set of vertices with coordinates
(v1, v2,X) (v1,w2,X),(w1, v2,X), and (w1,w2,X) induce a complete graphK4 in G. Clearly, the subgraph consisting of
Cartesian edges only is aQ2.

Assume now the assumption is true fork = m. We have to show that the statement holds also fork = m+ 1. Let
J={1,. . . ,m+1} and letU1 andU2 be a partition ofU with U1 = {u ∈ U | um+1 = vm+1} andU2 = {u ∈ U | um+1 = wm+1}.
Thus eachUi consists of vertices that differ only in the firstm coordinates. Notice, by definition of the strong
product and by construction of both setsU1 andU2 there are verticesa,b in eachUi that differ in all m coordinates
that are adjacent inG and hence non-Cartesian inG. Thus, by induction hypothesis the subgraphs〈Ui〉 induced
by eachUi consisting of Cartesian edges only is aQm. Let 〈U〉 be the subgraph with vertex setU and edge set
E(〈U1〉) ∪ E(〈U2〉) ∪ {(a,b) ∈ E(G) | a = (X, vm+1,Y) andb = (X,wm+1,Y)}. By definition of the strong product the
edges (a,b) with a = (X, vm+1,Y) andb = (X,wm+1,Y) induce an isomorphism between〈U1〉 and〈U2〉 which implies
that〈U〉 ≃ Qm�K2 ≃ Qm+1.

Lemma 3.33. Let G= ⊠
n
l=1Gl be a thin strong product graph, where each Gl , l = 1, . . . ,n is prime. Let H= ⊠

m
l=1Hl ⊆

G be a thin subproduct of G such that there is a non-Cartesian edge(v,w) ∈ E(H) that is Cartesian in G. Let J denote
the set of indices where v and w differ w.r.t. to the coordinatization of H. Then the factor⊠i∈JHi of H is a subgraph
of a prime factor Gl of G.

Proof. In this proof, factors w.r.t. the Cartesian product and the strong product, respectively, are called Cartesian
factors and strong factors, respectively. First notice that Cartesian edges inG as well as inH are uniquely determined,
since both graphs are thin. Moreover, the existence of a Cartesian edge ofG = ⊠

n
l=1Gl , that is a non-Cartesian edge

in a subproductH = ⊠
m
l=1Hl of G, implies thatm > n, i.e., the factorization ofH is a refinement of the factorization

induced by the global PFD. SinceH is a thin subproduct ofG with a refined factorization, it follows that Cartesian
edges ofH are Cartesian edges ofG. Therefore, we can conclude that strong factors ofH are entirely contained in
strong factors ofG.

We denote the subgraph ofH that consists of all Cartesian edges ofH only, i.e., its Cartesian skeleton, byS(H),
henceS(H) = �

m
l=1Hl . Let U ⊆ V(H) be the set of verticesu with coordinatesui = vi , if i < J andui ∈ {vi ,wi}, if
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i ∈ J. Notice that Lemma 3.32 implies that for the induced subgraph w.r.t. the Cartesian skeleton〈U〉 ⊆ S(H) holds
〈U〉 ≃ Q|J|. Moreover, the distanced〈U〉(v,w) betweenv andw in 〈U〉 is |J|, that is the maximal distance that two
vertices can have in〈U〉. If we claim that (v,w) has to be an edge in〈U〉 we obtain a diagonalized hypercube〈U〉diag.
Corollary 3.31 implies that〈U〉diag is S-prime and hence〈U〉diag must be contained entirely in a Cartesian factorH̃
of a graphH∗ = H̃�H′ with S(H) ∪ (v,w) ⊂ H∗. This implies that〈U〉diag ⊆ H̃u for all u ∈ V(H∗), i.e., 〈U〉diag is
entirely contained in all̃Hu-layer inH∗. Note that allH̃-layerH̃u contain at least one edge of everyHi-layerHu

i of the
previously determined factorsHi , i ∈ J of H.

Furthermore, all Cartesian factors ofS(H) = �
m
l=1Hl coincide with the strong factors ofH = ⊠

m
l=1Hl and hence, in

particular the factorsHi , i ∈ J. Moreover, sinceH is a subproduct ofG and the factorization ofH is a refinement ofG
it holds that Cartesian factorsHi , i ∈ J of S(H) must be entirely contained in strong prime factors ofG. This implies
that for all i ∈ J theHi-layerHu

i must be entirely contained in the layer of strong factors ofG. We denote the set of
all already determined strong factorsHi , i ∈ J of H withH .

Assume the graphH∗ = �
s
j=1K j with S(H) ∪ (v,w) ⊆ H∗ andV(H∗) = V(S(H)) has a factorization such that

�i∈JHi ∪ (v,w) * K j for all Cartesian factorsK j . SinceS(H) ∪ (v,w) ⊆ H∗, we can conclude that〈U〉diag ⊆ H∗.
Since〈U〉diag is S-prime it must be contained in a Cartesian factorKr of H∗. This implies that〈U〉diag ⊆ Ku

r for all
u ∈ V(H∗), i.e., for all Kr -layer of this particular Cartesian factorKr . Since�i∈JHi ∪ (v,w) * Kr , we can conclude
that there is an already determined strong factorHi such thatHu

i * Ku
r for all u ∈ V(H∗). Furthermore, allKr -layer

Ku
r contain at least one edge of eachHi-layer Hu

i of the previously determined strong factorsHi , i ∈ J of H. We
denote withe the edge of theHi-layerHu

i that is contained in theKr -layerKu
r . This edgeecannot be contained in any

K j-layer, j , r. This implies thatHu
i * Ku

j for anyK j-layer, j = 1, . . . , s.
Thus, there is an already determined strong factorHi ∈ H with Hu

i * Ku
j , u ∈ V(H∗) for all K j-layer in H∗,

j = 1, . . . , s. Therefore, none of the layer of this particularHi are subgraphs of layer of any Cartesian factorK j of H∗.
This means thatH∗ is not a subproduct ofG or a refinement ofH, both cases contradict thatHi ∈ H .

Therefore, we can conclude that〈U〉diag ⊆ �i∈JHi ∪ (v,w) ⊆ H̃ for a Cartesian factor̃H of H∗. As argued,
Cartesian factors are subgraphs of its strong factors and hence, we can infer that�i∈JHi and hence⊠i∈JHi must be
entirely contained in a strong factor ofH and hence in a strong factor ofG, sinceH is a subproduct.

3.3.2. Solving the Color-Continuation Problem for Non-Thin Subgraphs
The disadvantage of non-thin subgraphs is that, in contrastto thin subgraphs, not all edges satisfy theS1-condition.

The main obstacle is that the color-continuation can fail ifa particular color is represented on edges that don’t satisfy
the S1-conditionin any used subgraphs. Hence, those edges cannot be identified as Cartesian in the correspond-
ing subgraphs, see Figure 13. Moreover, we cannot apply the approach that is developed for thin subgraphs by
usage of diagonalized hypercubes in general. Therefore, wewill extend 1-neighborhoods and use also edge- and
N∗-neighborhoods.

In the following, we will provide several properties of (partial) product colorings and show that in a given thin
strong product graphG a partial product coloringPH of a subproductH ⊆ G is always a color-continuation of a
partial product coloringP〈N[x]〉 of any 1-neighborhoodN[x] with N[x] ⊆ V(H) andx ∈ B(G) and vice versa. This in
turn implies that we always get a proper color-continuationfrom any 1-neighborhoodN[x] to edge-neighborhoods of
edges (x, y) and toN∗x,y-neighborhoods withy ∈ N[x] and vice versa.

Lemma 3.34. Let G be a thin graph and x∈ B(G). Moreover let P1 and P2 be arbitrary partial product colorings of
the induced neighborhood〈N[x]〉.

Then P2 is a color-continuation of P1 and vice versa.

Proof. Let C1 andC2 denote the images ofP1 andP2, respectively. Note, the PFD of〈N[x]〉 is the finest possible
factorization, i.e., the number of used colors becomes maximal. Moreover, every fiber with respect to the PFD of
〈N[x]〉 that satisfies theS1-condition, is contained in any decomposition of〈N[x]〉. In other words any prime fiber
that satisfies theS1-conditionis a subset of a fiber that satisfies theS1-conditionwith respect to any decomposition of
〈N[x]〉.

Moreover sincex ∈ B(G) it holds that|Sx(x)| = 1 and thus every edge containing vertexx satisfies theS1-condition
in 〈N[x]〉. Lemma 3.13 implies that all Cartesian edges (x, v) can be determined as Cartesian in〈N[x]〉. Together with
Lemma 3.27 we can infer that each color ofC1, resp.C2 is represented at least on edges (x, v) contained in the prime
fibers, which completes the proof.
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Figure 13:Color-continuation problem in non-thin subproducts.Shown is a thin graphG that is a strong product of a path and a path containing
a triangle. The backboneB(G) consists of the verticesx andy. Both neighborhoods〈N[x]〉 and〈N[y]〉 are not thin. After computing the PFD of
〈N[x]〉, resp. of〈N[y]〉 one obtains a partial product coloring with colorsc1 andc3, resp. with colorsc2 andc4. In this example the partial product
coloring ofP〈N[y]〉 is not a color-continuation ofP〈N[x]〉 since no edge with colorc4 is colored in〈N[x]〉.

Lemma 3.35. Let G= ⊠
n
i=1Gi be a thin strong product graph. Furthermore let H be a subproduct of G with partial

product coloring PH and〈N[x]〉 ⊆ H with x ∈ B(G).
Then PH is a color-continuation of the partial product coloring PN of 〈N[x]〉 and vice versa.

Proof. First notice that Lemma 3.18 implies thatx ∈ B(H) and in particular|SH(x)| = 1. Thus every edge containing
vertexx satisfies theS1-conditionin H as well as in〈N[x]〉. Moreover, Lemma 3.27 implies that every color of the
partial product coloringPH, resp.PN, is represented at least on edges (x, v).

Since〈N[x]〉 is a subproduct of the subproductH of G we can conclude that the PFD ofH induces a local (not
necessarily prime) decomposition of〈N[x]〉 and hence a partial product coloring of〈N[x]〉. Lemma 3.34 implies that
any partial product coloring of〈N[x]〉 and hence in particular the one induced byPH is a color-continuation ofPN.

Conversely, any product coloringPN of 〈N[x]〉 is a color-continuation of the product coloring induced by the PFD
of 〈N[x]〉. Since〈N[x]〉 is a subproduct ofH it follows that every prime fiber of〈N[x]〉 that satisfies theS1-condition
is a subset of a prime fiber ofH that satisfies theS1-condition. This holds in particular for the fibers through vertex
x, since|Sx(x)| = 1 and|SH(x)| = 1. By the same arguments as in the proof of Lemma 3.34 one can infer that every
product coloring ofH is a color-continuation of the product coloring induced by the PFD ofH, which completes the
proof.

We can infer now the following Corollaries.

Corollary 3.36. Let G = ⊠
n
i=1Gi be a thin strong product graph,(v,w) ∈ E(G) be a Cartesian edge of G and H

denote the edge-neighborhood〈N[v] ∪ N[w]〉. Then any partial product coloring PH of H is a color-continuation of
any partial product coloring PN[v] of 〈N[v]〉, resp. of any partial product coloring PN[w] of 〈N[w]〉 and vice versa.

Corollary 3.37. Let G = ⊠
n
i=1Gi be a thin strong product graph and(v,w) ∈ E(G) be an arbitrary edge of G. Then

any partial product coloring P∗ of the N∗v,w-neighborhood is a color-continuation of any partial product coloring PN[v]

of 〈N[v]〉, resp. of any partial product coloring PN[w] of 〈N[w]〉 and vice versa.
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4. A Local PFD Algorithm for Strong Product Graphs

In this section, we use the previous results and provide a general local approach for the PFD of thin graphsG.
Notice that even if the given graphG is not thin, the provided Algorithm works onG/S. The prime factors ofG can
then be constructed by using the information of the prime factors ofG/S by repeated application of Lemma 2.13.

In this new PFD approach we use in addition an algorithm, called breadth-first search (BFS), that traverses all
vertices of a graphG = (V,E) in a particular order. We introduce the ordering of the vertices ofV by means of
breadth-first search as follows: Select an arbitrary vertexv ∈ V and create a sorted listBFS(v) of vertices beginning
with v; append all neighborsv1, . . . , vdeg(v) of v; then append all neighbors ofv1 that are not already in this list; continue
recursively withv2, v3, . . . until all vertices ofV are processed. In this way, we build levels where eachv in level i is
adjacent to some vertexw in level i − 1 and verticesu in level i + 1. We then call the vertexw theparentof v and
vertexv achild of w.

We give now an overview of the new approach. Its top level control structure is summarized in Algorithm 3.
Given an arbitrary thin graphG, first the backbone vertices are ordered via thebreadth-first search (BFS). After

this, the neighborhood of the first vertexx from the ordered BFS-listBBFS is decomposed. Then the next vertex
y ∈ N[x] ∩ BBFS is taken and the edges of〈N[y]〉 are colored with respect to the neighborhoods PFD. If the color-
continuation from〈N[x]〉 to 〈N[y]〉 does not fail, then the Algorithm proceeds with the next vertex y′ ∈ N[x] ∩ BBFS.
If the color-continuation fails and both neighborhoods arethin, one uses Algorithm 4 in order to compute a proper
combined coloring. If one of the neighborhoods is non-thin the Algorithm proceeds with the edge-neighborhood
〈N[x] ∪ N[y]〉. If it turns out that (x, y) is indispensable in〈N[x] ∪ N[y]〉 and hence, that〈N[x] ∪ N[y]〉 is a proper
subproduct (Corollary 3.9) the algorithm proceeds to decompose and to color〈N[x] ∪ N[y]〉. If it turns out that
(x, y) is dispensable in〈N[x] ∪ N[y]〉 the N∗-neighborhoodsN∗x,y is factorized and colored. In all previous steps
edges are marked as ”checked” if they satisfy theS1-condition, independent from being Cartesian or not. After this,
the N∗-neighborhoods of all edges that do not satisfy theS1-conditionin any of the previously used subproducts,
i.e, 1-neighborhoods, edge-neighborhoods orN∗-neighborhoods, are decomposed and again the edges are colored.
Examples of this approach are depicted in Figure 14 and 10. Finally, the Algorithm checks which of the recognized
factors have to be merged into the prime factorsG1, . . . ,Gn of G.

Before we proceed to prove the correctness of this local PFD algorithm, we show that we always get a proper
combined coloring by usage of Algorithm 4.

⊠

0 1 2 3

x

y

z

0 1 2 3

x

y

z

Figure 14: Depicted is the colored Cartesian skeleton of thethin strong product graphG after running Algorithm 3 with different BFS-orderings
BBFS of the backbone vertices. The backboneB(G) consists of the vertices 0,1,2 and 3.
lhs.: BBFS = 2,1,3,0. In this case the color-continuation fromN[2] to N[1] fails. hence we compute the PFD of the edge-neighborhood
〈N[2] ∪ N[1]〉. Notice that the Cartesian edges (x, y) and (y, z) satisfy theS1-conditionin 〈N[2] ∪ N[1]〉 and will be determined as Cartesian. In all
other steps the color-continuation works.
rhs.: BBFS = 3,0,2,1. In all cases (N[3] to N[0], N[3] to N[2], N[0] to N[1]) the color-continuation works. However, after runningthe first while-
loop there are missing Cartesian edges (x, y) and (y, z) that do not satisfy theS1-conditionin any of the previously used subproductsN[3], N[0],
N[2] andN[1]. Moreover, the edge-neighborhoods〈N[x] ∪ N[y]〉 as well as〈N[z] ∪ N[y]〉 are the product of a path and aK3 and theS1-condition
is violated for the Cartesian edges in its edge-neighborhood. These edges will be determined in the second while-loop of Algorithm 3 using the
respectiveN∗-neighborhoods.
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Algorithm 3 General Approach

1: INPUT: a thin graphG
2: compute backbone-vertices ofG, order them in BFS and store them inBBFS;
3: x← first vertex ofBBFS;
4: W← {x};
5: FactorSubgraph(〈N[x]〉);
6: while BBFS , ∅ do
7: H ← 〈∪w∈WN[w]〉;
8: for all y ∈ N[x] ∩ BBFS do
9: FactorSubgraph(〈N[y]〉);

10: compute the combined coloring ofH and〈N[y]〉;
11: if color-continuation fails fromH to N[y] then
12: if 〈N[x]〉 and〈N[y]〉 are thinthen
13: C← {color c | color-continuation forc fails};
14: Solve-Color-Continuation-Problem(H,〈N[y]〉, x, C); {Algorithm 4}
15: mark all vertices and all edges of〈N[y]〉 as ”checked”;
16: else if (x,y) is indispensable in〈N[x] ∪ N[y]〉 then
17: FactorSubgraph(〈N[x] ∪ N[y]〉);
18: else
19: FactorSubgraph(N∗x,y);
20: end if
21: compute the combined coloring ofH and〈N[y]〉;
22: end if
23: end for
24: deletex fromBBFS;
25: x← first vertex ofBBFS;
26: W←W∪ {x};
27: end while
28: while there exists a vertexx ∈ V(H) that is not marked as ”checked”do
29: if there exists edges (x, y) that are not marked as ”checked”then
30: FactorSubgraph(N∗x,y);
31: else
32: take an arbitrary edge (x, y) ∈ E(H);
33: FactorSubgraph(N∗x,y);
34: end if
35: compute the combined coloring ofH andN∗x,y;
36: end while
37: for each edgee ∈ E(H) do
38: assign color ofe to edgee ∈ E(G);
39: end for
40: CheckFactors(G);{check and merge factors with Algorithm 6}

41: OUTPUT: G with coloredG j-fiber, and Factors ofG;
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Algorithm 4 Solve-Color-Continuation-Problem

1: INPUT: a partial product colored graphH, a product colored graph〈N[vi ]〉, a vertexv, setC of colors
2: compute coordinates of〈N[v]〉 with respect to the combined product coloring ofH;
3: {color ”j” if di ffer in coordinate ”j”}
4: for all colorsc ∈ C {color-continuation fails} do
5: take one representativeec = (v,w) ∈ E(〈N[vi ]〉);
6: D← {k | v andw differ in coordinatek};
7: merge all colorsk ∈ D in H to one color;
8: end for
9: compute the combined coloring ofH and〈N[vi ]〉;

10: OUTPUT: colored graph H, colored graph〈N[vi ]〉;

Algorithm 5 FactorSubgraph

1: INPUT: a graphH
2: compute the PFD ofH and color the Cartesian edges inH that satisfy theS1-condition;
3: mark all verticesx with |SH(x)| = 1 as ”checked”;
4: mark all edges that satisfy theS1-conditionas ”checked”;

5: Return partially coloredH;

Algorithm 6 CheckFactors

1: INPUT: a thin product colored graphG
2: take one connected componentG∗1, . . . ,G

∗
l of each color 1, . . . , l in G;

3: I ← {1, . . . , l};
4: J← I ;
5: for k = 1 to l do
6: for eachS ⊂ J with |S| = k do
7: compute two connected componentsA, A′ of G induced by the colored edges ofG with color i ∈ S, and

i ∈ I\S, resp;
8: computeH1 = 〈pA(G)〉 andH2 = 〈pA′ (G)〉;
9: if H1 ⊠ H2 ⋍ G then

10: saveH1 as prime factor;
11: J← J\S;
12: end if
13: end for

14: end for
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Lemma 4.1. Let G be a thin graph andBBFS = {v1, . . . , vn} be its BFS-ordered sequence of backbone vertices.
Furthermore, let H= 〈∪i−1

j=1N[v j ]〉 be a partial product colored subgraph of G that obtained its coloring from a proper
combined product coloring induced by the PFD w.r.t. the strong product of each〈N[v j ]〉, j = 1, . . . , i − 1. Let 〈N[vi ]〉
be a thin neighborhood that is product colored w.r.t. to its PFD. Let vertex x denote the parent of vi . Assume〈N[x]〉 is
thin. Moreover, assume the color-continuation from H to〈N[vi ]〉 fails and let C denote the set of colors where it fails.

Then Algorithm 4 computes a proper combined coloring of the colorings of H and〈N[vi ]〉 with H, 〈N[vi ]〉, x and
C as input.

Proof. First notice that it holds〈N[x]〉 ⊆ H = 〈∪i−1
j=1N[v j ]〉. Let c ∈ C. Hence,c denotes a color in〈N[vi ]〉 such that

for all edgese ∈ E(〈N[vi ]〉) with color c holds thate was not colored inH. Since the combined coloring inH implies
a product coloring of〈N[x]〉 we can compute the coordinates of the vertices in〈N[x]〉 with respect to this coloring.
Notice that the coordinatization in〈N[x]〉 is unique since〈N[x]〉 is thin. Now Lemma 3.26 implies that there is at
least one edgee ∈ 〈N[vi ]〉 with color c that contains vertexx, sincex ∈ N[vi ]. Let us denote this edge byec = (x,w).
Clearly, it holds (x,w) ∈ E(〈N[x]〉). Hence, this edge is not determined as Cartesian inH, and thus in particular not
in 〈N[x]〉 otherwiseec would have been colored in〈N[x]〉. But sinceec is determined as Cartesian in〈N[vi ]〉 and
moreover, since〈N[vi ]〉 is a subproduct ofG, we can infer thatec must be Cartesian inG. Therefore, we claim that the
non-Cartesian edge (x,w) in 〈N[x]〉 has to be Cartesian in〈N[x]〉. Notice that the product coloring of〈N[x]〉 induced
by the combined colorings of all〈N[v j ]〉, j = 1, . . . , i − 1 is as least as fine as the product coloring ofG. Thus, we can
apply Lemma 3.33 and together with the unique coordinatization of 〈N[x]〉 directly conclude that all colorsk ∈ D,
whereD denotes the set of coordinates wherex andw differ, have to be merged to one color. This implies that we
always get a proper combined coloring and hence a proper color-continuation for each such colorc that is based on
those additional edgesec = (x,w) as defined above.

Theorem 4.2. Given a thin graph G then Algorithm 3 determines the prime factors of G with respect to the strong
product.

Proof. We have to show that every prime factorGi of G is returned by our algorithm.
First, the algorithm scans all backbone vertices in their BFS-order stored inBBFS, which can be done, sinceG is

thin and hence,〈B(G)〉 is connected (Theorem 3.17).
In the first while-loopone starts with the first neighborhoodN[x] with x as first vertex inBBFS, we proceed to

cover the graph with neighborhoodsN[y] with y ∈ BBFS andy ∈ N[x]. The following cases can occur:

1. If the color-continuation does not fail there is nothing to do. Furthermore, we can apply Lemma 3.19 and
Lemma 3.27 and conclude that the determined Cartesian edgesin 〈N[x]〉, resp. in〈N[y]〉, i.e., the Cartesian
edges that satisfy theS1-conditionin 〈N[x]〉, resp. in〈N[y]〉, induce a connected subgraph of〈N[x] ∪ N[y]〉.

2. If the color-continuation fails, we check if〈N[x]〉 and〈N[y]〉 are thin. If both neighborhoods are thin we can
use Algorithm 4 to get a proper color-continuation from〈N[x]〉 to 〈N[y]〉 (Lemma 4.1).

Furthermore, since both neighborhoods are thin, for all verticesv in N[x], resp. N[y], holds |Sx(v)| = 1, resp.
|Sy(v)| = 1. Hence all edges in〈N[x]〉, resp.〈N[y]〉, satisfy theS1-condition. Therefore, by Corollary 3.20 the
Cartesian edges span〈N[x]〉 and〈N[y]〉 and thus, by the color-continuation property,〈N[x] ∪ N[y]〉 as well.

3. If one of the neighborhoods is not thin then we check whether the edge (x, y) is dispensable or not w.r.t.〈N[x] ∪
N[y]〉. If this edge is indispensable then Corollary 3.9 implies that 〈N[x] ∪ N[y]〉 is a proper subproduct.
Corollary 3.36 implies that then get a proper color-continuation from〈N[x] ∪ N[y]〉 to 〈N[y]〉.

Furthermore, Lemma 3.18 implies that|S〈N[x]∪N[y]〉(x)| = 1. and|S〈N[x]∪N[y]〉(y)| = 1. From Corollary 3.20 we
can conclude that the determined Cartesian edges of〈N[x]∪N[y]〉 induce a connected subgraph of〈N[x]∪N[y]〉.

4. Finally, if (x, y) is dispensable in〈N[x] ∪N[y]〉 we can not be assured that〈N[x] ∪N[y]〉 is a proper subproduct.
In this case we factorizeN∗x,y. Corollary 3.37 implies that we get a proper color-continuation fromN∗x,y to 〈N[y]〉.

Furthermore, Lemma 3.18 implies that|SN∗x,y(x)| = 1 and|SN∗x,y(y)| = 1. Moreover, from Corollary 3.20 follows
that all Cartesian edges that satisfy theS1-conditionon N∗x,y induce a connected subgraph ofN∗x,y.
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Clearly, the previous four steps are valid for all consecutive backbone verticesx, y ∈ BBFS. Therefore, we always
get a proper combined coloring ofH = 〈∪w∈WN[w]〉 in Line 21, sinceN[x] ⊆ H and hence, we always get a proper
color-continuation fromH to N[y]. Furthermore, by this and the latter arguments in item 1.–4. concerning induced
connected subgraphs we can furthermore conclude that all determined Cartesian edges induce a connected subgraph
of H = 〈∪w∈B(G)N[w]〉. The first while-loop will terminate sinceBBFS is finite.

In all previous steps verticesx are marked as ”checked” if there is a used subproductK such that|SK(x)| = 1.
Edges are marked as ”checked” if they satisfy theS1-condition. Note, after the first while-loop has terminated either
edges have been identified as Cartesian or if they have not been determined as Cartesian but satisfy theS1-condition
they are at least connected to Cartesian edges that satisfy the S1-condition, which follows from Lemma 3.27. This
implies that all edges that are marked as ”checked” are connected to Cartesian edges that satisfy theS1-condition.
Moreover, notice thatH = 〈∪w∈B(G)N[w]〉 = G, sinceB(G) is a dominating set.

In thesecond while-loopall vertices that are not marked as ”checked”, i.e.,|SK(x)| > 1 for all used subproducts
K, are treated. For all those vertices theN∗-neighborhoodsN∗x,y are decomposed and colored. Lemma 3.22 implies
that |SN∗x,y(x)| = 1 and|SN∗x,y(y)| = 1. Hence all Cartesian edges containing vertexx or y satisfy theS1-conditionin
N∗x,y. Lemma 3.27 implies that each color of every factor ofN∗x,y is represented on edges containing vertexx, resp.,
y. Lemma 3.19 implies that all Cartesian edges that satisfy the S1-conditionin N∗x,y induce a connected subgraph of
LemmaN∗x,y.

It remains to show that we get always a proper color-continuation. Since|SK(x)| > 1 for all used subproductsK,
we can conclude in particular that|Sx(x)| > 1. Therefore, we can apply Lemma 3.21 and conclude that thereexists a
vertexz ∈ B(G) s.t.z ∈ N[x] ∩N[y] and hence〈N[z]〉 ⊆ N∗x,y. This neighborhood〈N[z]〉 was already colored in one of
the previous steps sincez ∈ B(G). Lemma 3.18 implies that|SN∗x,y(z)| = 1 and thus each color of each factor ofN∗x,y is
represented on edges containing vertexzand all those edges can be determined as Cartesian via theS1-condition. We
get a proper color-continuation from the already colored subgraphH to N∗x,y sinceN[z] ⊆ H andN[z] ⊆ N∗x,y, which
follows from Lemma 3.35 and Corollary 3.37.

The second while-loop will terminate sinceV(H) is finite and|SN∗x,y(x)| = 1 for all x ∈ V(H).
As argued before, all edges that satisfy theS1-condition, which areall edges ofG after the second while-loop

has terminated, are connected to Cartesian edges that satisfy the S1-condition. Moreover, all vertices have been
marked as ”checked”. Hence, for all vertices holds|SK(x)| = 1 for some used subproductK. Since we always got
a proper combined coloring and hence, a proper color-continuation, we can apply Lemma 3.27, and conclude that
the set of determined Cartesian edges induce a connectedspanningsubgraphG. Moreover, by the color-continuation
property we can infer that the final number of colors onG is at most the number of colors that were used in the first
neighborhood. This number is at most log∆, since every product ofk non-trivial factors must have at least 2k vertices.
Let’s say we havel colors. As shown before, all vertices are ”checked” and thuswe can conclude from Lemma 3.27
and the color-continuation property that each vertexx ∈ V(G) is incident to an edge with colorc for all c ∈ {1, . . . , l}.
Thus, we end with a combined coloringFG onG where the domain ofFG consists of all edges that were determined
as Cartesian in the previously used subproducts.

It remains to verify which of the possible factors are prime factors ofG. This task is done by using Algorithm
6. Clearly, for some subsetS ⊂ J, S will contain all colors that occur in a particularGi-fiber Ga

i which contains
vertexa. Together with the latter arguments we can conclude that theset ofS-colored edges inGa

i spansGa
i . Since

the global PFD induces a local decomposition, even if the used subproducts are not thin, every layer that satisfies the
S1-conditionin a used subproduct with respect to a local prime factor is a subset of a layer with respect to a global
prime factor. Thus, we never identify colors that occur in copies of different global prime factors. In other words, the
coloringFG is a refinement of the product coloring of the global PFD, i.e., it might happen that there are more colors
than prime factors ofG. This guarantees that a connected component of the graph induced by all edges with a color
in S induces a graph that is isomorphic toGi . The same arguments show that the colors that are not inS lead to the
appropriate cofactor. ThusGi will be recognized.

Remark 4. Algorithm 3 is a generalization of the results provided in [16, 17]. Hence, it computes the PFD of NICE
[16] and locally unrefined [17] thin graphs. Moreover, even if we do not claim that the given graphG is thin one can
compute the PFD of arbitrary graphsG as follows: We apply Algorithm 3 onG/S. The prime factors ofG can be
constructed by using the information of the prime factors ofG/S and application of Lemma 2.13.

23



In the last part of this section, we show that Algorithm 3 computes the PFD with respect to the strong product of
any connected thin graphG in O(|V| · ∆6) time. Clearly, this approach is not as fast as the approach of Hammack and
Imrich, see Lemma 2.14, but it can easily be applied for the recognition of approximate products.

Theorem 4.3. Given a thin graph G= (V,E) with bounded maximum degree∆, then Algorithm 3 determines the
prime factors of G with respect to the strong product in O(|V| · ∆6) time.

Proof. For determining the backboneB(G) we have to check for a particular vertexv ∈ V(G) whether there is a vertex
w ∈ N[v] with N[w] ∩ N[v] = N[v]. This can be done inO(∆2) time for a particular vertexw in N[v]. Since this must
be done for all vertices inN[v] we end in time-complexityO(∆3). This step must be repeated for all|V| vertices ofG.
Hence, the time complexity for determiningB(G) is O(|V| · ∆3). ComputingBBFS via the breadth-first search takes
O(|V|+ |E|) time. Since the number of edges is bounded by|V| ·∆ we can conclude that this task needsO(|V| ·∆) time.

We consider now the Line 6 – 27 of the algorithm. The while-loop runs at most|V| times. ComputingH in Line
7, i.e., adding a neighborhood toH, can be done in linear time in the number of edges of this neighborhood, that
is in O(∆2) time. The for-loop runs at most∆ times. Each neighborhood has at most∆ + 1 vertices and hence at
most (∆ + 1) · ∆ edges. The PFD of〈N[y]〉 can be computed inO((∆ + 1) · ∆ · ∆2) = O(∆4) time, see Lemma 2.14.
The computation of the combined coloring ofH and〈N[y]〉 can be done in constant time. For checking if the color-
continuation is valid one has to check at most for all edges of〈N[vi ]〉 if a respective colored edge was also colored in
H, which can be done inO(∆2) time.
Algorithm 4 computes the combined coloring ofH and〈N[vi ]〉 in O(∆2) time. To see this, notice that

1. the computation of the coordinates of the product coloredneighborhood〈N[v]〉 can be done via a breadth-first
search in〈N[v]〉 in O(|N[v]| + |E(〈N[v]〉)|) = O(∆ + ∆2) = O(∆2) time.

2. by the color-continuation propertyH can have at most as many colors as there are colors for the firstneighbor-
hood〈N[v1]〉. This number is at most log(∆), because every product ofk non-trivial factors must have at least
2k vertices. Thus the for-loop is repeated at most log(∆) times. All tasks in between the for-loop can be done in
O(∆) time and hence the for-loop takesO(log(∆) · ∆) time.

3. the computation the combined color can be done linear in the number of edges of〈N[vi ]〉 and thus inO(∆2)
time.

It follows that all ”if” and ”else” conditions are bounded bythe complexity of the PFD of the largest subgraph that is
used and therefore by the complexity of the PFD ofN∗x,y.

EachN∗-neighborhood has at most 1+∆·(∆−1) vertices. Therefore, the number of edges in eachN∗-neighborhood
is bounded by (1+∆ · (∆− 1)) ·∆. By Lemma 2.14 the computation of the PFD of eachN∗ and hence, the assignment
to an edge of being Cartesian is bounded byO(((1+ ∆ · (∆ − 1)) · ∆) · ∆2) = O(∆5). Again, this will be repeated for
all vertices and thus the time complexity isO(|V| · ∆5). Considering all steps of Line 6 – 27 we end in an overall time
complexityO(|V| · ∆ · ∆5) = O(|V| · ∆6).

Using the same arguments, one shows that the time complexityof the second while-loop isO(|V| · ∆5). The last
for-loop (Line 37–39) needsO(|E|) = O(V · ∆) time.

Finally, we have to consider Line 40 and therefore, the complexity of Algorithm 6. We observe that the size ofI
is the number of used colors. As in the proof of Theorem 4.2, wecan conclude that this number is bounded by log(∆).
Hence, we also have at most∆ setsS, i.e., color combinations, to consider. In Line 7 of Algorithm 6 we have to find
connected components of graphs and in Line 9 of Algorithm 6 wehave to perform an isomorphism test for a fixed
bijection. Both tasks take linear time in the number of edgesof the graph and henceO(|V| · ∆) time.

Considering all steps of Algorithm 3 we end in an overall timecomplexityO(|V| · ∆6).

5. Approximate Products

Finally, we show in this section, how Algorithm 3 can be modified and be used to recognize approximate products.
For a formal definition of approximate graph products we begin with the definition of the distance between two
graphs. We say thedistance d(G,H) between two graphsG andH is the smallest integerk such thatG andH have
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representationsG′, H′ for which the sum of the symmetric differences between the vertex sets of the two graphs and
between their edge sets is at mostk. That is, if

|V(G′)△V(H′)| + |E(G′)△E(H′)| ≤ k.

A graphG is ak-approximate graph productif there is a productH such that

d(G,H) ≤ k.

As shown in [16]k-approximate graph products can be recognized in polynomial time.

Lemma 5.1([16]). For fixed k all strong and Cartesian k-approximate graph products can be recognized in polyno-
mial time.

Without the restriction onk the problem of finding a product of closest distance to a givengraphG is NP-complete
for the Cartesian product. This has been shown by Feigenbaumand Haddad [6]. We conjecture that this also holds
for the strong product. Moreover, we do not claim that the newalgorithm for the recognition of approximate products
finds an optimal solution in general. However, the given algorithm can be used to derive a suggestion of the product
structure of given graphs and hence, of the structure of the global factors.

⊠

0 1

2 3

4

5

x x

x x x

x x x x

x x

Figure 15: An approximate productG of the product of a path and a path containing a triangle. The resulting colored graph after application of the
modified Algorithm 3 is highlighted with thick and dashed edges. We setP = 1, i.e., we do not use prime subproducts and hence only the vertices
0,1, . . . ,5 are used. Taking out one maximal component of each color would lead to appropriate approximate factors ofG.

Let us start to explain this approach by an illustrating example. Consider the graphG of Figure 15. It approximates
P5 ⊠ PT

7 , wherePT
7 denotes a path that contains a triangle. Suppose we are unaware of this fact. Clearly, ifG is

non-prime, then every subproduct is also non-prime. We factorize every suitable subproduct of backbone vertices
(1-neighborhood, edge-neighborhood,N∗-neighborhood) that is non-prime and try to use the information to find a
product that is either identical toG or approximates it. The backboneB(G) is a connected dominating set and consists
of the vertices 0,1, . . . ,5 and all vertices marked with ”x”. The induced neighborhoodof all ”x” marked vertices
is prime. We do not use those neighborhoods, but the ones of the vertices 0,1, . . . ,5, factorize their neighborhoods
and consider the Cartesian edges that satisfy theS1-conditionin the factorizations. There are two factors for every
such neighborhood and thus, two colors for the Cartesian edges in every neighborhood. If two neighborhoods have a
Cartesian edge that satisfy theS1-conditionin common, we identify their colors. Notice that the color-continuation
fails if we go from〈N[2]〉 to 〈N[3]〉. Since the edge (2,3) is indispensable in〈N[2]∪N[3]〉 and moreover,〈N[2]∪N[3]〉
is not prime, one factorizes this edge-neighborhood and geta proper color-continuation. In this way, we end up with
two colors altogether, one for the horizontal Cartesian edges and one for the vertical ones. IfG is a product, then the
edges of the same color span a subgraph with isomorphic components, that are either isomorphic to one and the same
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0 1 2 3

Figure 16: Shown is a prime graphG, also known as twisted product, withB(G) = {0,1,2,3}. Each PFD of 1-neighborhoods leads to two factors.
Notice thatG can be considered as an approximate product of a pathP3 and a cycleC4. After application of the modified Algorithm 3 withP = 1
we end with the given coloring (thick and dashed lines). Taking one minimal component of each color would lead to appropriateapproximate
factors ofG.

factor or that span isomorphic layers of one and the same factor. Clearly, the components are not isomorphic in our
example. But, under the assumption thatG is an approximate graph product, we take one component for each color.
In this example, it would be useful to take a component of maximal size, say the one consisting of the horizontal thick-
lined edges through vertex 2, and the vertical dashed-linededges through vertex 3. These components are isomorphic
to the original factorsP5 andPT

7 . It is now easily seen thatG can be obtained fromP5 ⊠ PT
7 by the deletion of edges.

Other examples of recognized approximate products are shown in Figure 16 and 17.
As mentioned, Algorithm 3 has to be modified for the recognition of approximate productsG. We summarize the

modifications we apply:

M1. G/S is not computed. Hence, we do not claim that the given (disturbed) product is thin.

M2. Item M1 and Theorem 3.17 imply that we cannot assume that the backbone is connected. Hence we only
compute a BFS-ordering on connected components induced by backbone vertices.

M3. We only use those subproducts (1-neighborhoods, edge-neighborhood,N∗-neighborhood) that have more than
P ≥ 1 prime factors, whereP is a fixed integer.

M4. We do not apply the isomorphism test (line 40).

M5. After coloring the graph, we take one minimal, maximal, or arbitrary connected component of each color. The
choice of this component depends on the problem one wants to be solved.

First, the quotient graphG/S will not be computed, since the computation ofG/S of an approximate product
graphG may result in a thin graph where a lot of structural information has been lost.

Moreover, deleting or adding edges in a product graphH, resulting in a disturbed product graphG, usually makes
the graph prime and also the neighborhoods〈NG[v]〉 that are different from〈NH[v]〉 and hence, the subproducts (edge-
neighborhood,N∗-neighborhood) that contain〈NG[v]〉. In Algorithm 3, we therefore only use those subproducts of
backbone vertices that are at least not prime, i.e., one restricts the set of allowed backbone vertices to those where the
respective subproducts have more thanP ≥ 1 prime factors and thereby limiting the number of allowed subproducts.
Hence, no prime regions or subproducts that have less or equal thanP prime factors are used. Therefore, one does not
merge colors of different locally determined fibers to onlyP colors, after the computation of a combined coloring.

The isomorphism test (line 40) in Algorithm 3 will not be applied. Thus, in prime graphsG one does not merge
colors if the product of the corresponding approximate prime factors is not isomorphic toG.

After coloring the graph, one takes out one component of eachcolor to determine the (approximate) factors. For
many kinds of approximate products the connected components of graphs induced by the edges in one component
of each color will not be isomorphic. In the example in Figure15, where the approximate product was obtained by
deleting edges, it is easy to see that one should take the maximal connected component of each color.
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c1 =

c2 =

c3 =

c4 =

Figure 17: An approximate productG of the prime factors shown in Figure 15. In this exampleG is not thin. Obviously, this graph seems to be
less disturbed than the one in Figure 15. The thick vertices indicate the backbone vertices with more thenP = 1 prime factors. Application of the
modified Algorithm 3 onG (without computingG/S), choosingP = 1 and using only the thick backbone vertices leads to a coloring with the four
colorsc1, c2, c3 andc4. This is due to the fact that the color-continuation fails, which would not be the case if we would allow to use also prime
regions.

Clearly, this approach needs non-prime subproducts. If most of the subgraphs in an approximate productG are
prime, one would not expect to obtain a product coloring ofG, that can be used to recognize the original factors, but
that can be used e.g. for determining maximal factorizable subgraphs or maximal subgraphs of fibers. Hence, this
approach may provide a basis for the development of further heuristics for the recognition of approximate products.
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