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Abstract

This work is concerned with the prime factor decompositiBR D) of strong productgraphs. In practice, graphs
often occur as perturbed product structures, so-capgmoximategraph products. The practical application of the
well-known "classical” prime factorization algorithm isdrefore limited, since most graphs are prime, althougi the
can have a product-like structure.

In this contribution, a new quasi-linear time algorithm foe PFD with respect to the strong product for arbitrary
graphs is derived. This algorithm is based on a local apprtiet covers a graph by small factorizable subgraphs and
then utilizes this information to derive the global facta¥oreover, it will be discussed, how this new algorithm can
be modified to obtain a method for the recognition of appr@tamgraph products.

Keywords: approximate product, strong product graph, prime factood®osition, local covering, backbone,
color-continuation, S1-condition

1. Introduction

Graphs and in particular graph products arise in a varietjiftdrent contexts, from computer science [1, 13] to
theoretical biology [3, 8, 18, 36], computational engimegi24, 25] or just as natural structures in discrete mathe-
matics [10, 11, 14, 30]. Standard references with respegtaph products are due to Imrich et al. [19, 20].

The problem of computing so-callexpproximategraph products was posed several years ago in a theoretical
biology context [36]. The authors provided a concept camiogrthe topological theory of the relationships between
genotypes and phenotypes. In this framework a so-calledréaer” (trait orMerkma) is identified with a factor
of a generalized topological space that describes thetiaré properties of a phenotype. Hence, the factorization
of the corresponding phenotype spaces may lead to remarkadghts into evolutionary processes. However, in
practical applications one often observes perturbed mtagtecuctures, since structures derived from real-lifedate
notoriously incomplete aridr plagued by measurement errors. In fact, even a very sraglifpation, such as the
deletion or insertion of a single edge, can destroy the prostucture completely, modifying a product graph to a
prime graph [5, 37]. Thus, for a given gra@hthat has a product-like structure, the task is to find a gidphat is a
nontrivial product and a good approximation®fin the sense thatl can be reached froi® by a small number of
additions or deletions of edges and vertices.

The recognition of approximate products has been invdstigay several authors, see e.g. [6, 16, 17, 22, 37]. In
[22] and [37] the authors showed that Cartesian and stramdugt graphs can be uniquely reconstructed from each of
its one-vertex-deleted subgraphs. Moreover, in [23] ihigven thatk-vertex-deleted Cartesian product graphs can be
uniquely reconstructed if they have at lekst 1 factors and each factor has more tlkarertices. A polynomial-time
algorithm for the reconstruction of one-vertex-deletedt€aan product graphs is given in [9].
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Another systematic investigation into approximate pradyraphs showed that a further practically viable ap-
proach can be based total factorization algorithms, that cover a graph by factorieamall subgraphs and attempt
to stepwisely extend regions with product structures. Tdes has been fruitful in particular for the strong product
of graphs, where one benefits from the fact that the localymrbstructure of neighborhoods is a refinement of the
global factors [16, 17]. In [16] the class of thin-neighbool intersection coverable (NICE) graphs was introduced,
and a quasi-linear time local factorization algorithm wihe strong product was devised. In [17] this approach was
extended to a larger class of thin graphs which are whoséfictarization is not finer than the global one, so-called
locally unrefined graphs.

In this contribution the results of [16] and [17] will be ertded and generalized. The main result will be a
new quasi-linear time local prime factorization algoritwvm.t. the strong product that works fatl graph classes.
Moreover, this algorithm can be adapted for the recognitibapproximate products. This new PFD algorithm is
implemented irC++. In addition, theBoost Graph Librarywas used [33]. The source code can be downloaded from
http://www.bioinf.uni-leipzig.de/Software/GraphProducts.

This paper is organized as follows. First, we introduce theessary basic definitions and give a short overview
of the "classical” prime factor decomposition algorithnr.tv.the strong product, that will be slightly modified and
used locally in our new algorithm. The main challenge willthe combination and the utilization of the "local
factorization information” to derive the global factorso fealize this purpose, we are then concerned with several
important tools and techniques. As it turns out, the scedd@l1l-conditionthe backboneB(G) of a graphG and the
color-continuationproperty will play a central role. After this, we will derivee new general local approach for the
prime factor decomposition for arbitrary graphs, usingphevious findings. Finally, we discuss approximate graph
products and explain how the new local factorization athaonican be modified for the recognition of approximate
graph products.

2. Preliminaries

2.1. Basic Notation

We only consider finite, simple, connected and undirecteglsG = (V, E) with vertex selV and edge sefE. A
graph isnontrivial if it has at least two vertices. We define tkeneighborhoof vertexv as the setNy[v] = {x €
V(G) | d(v, X) < k}, whered(x, v) denotes the length of a shortest path connecting the gsrtiandv. Unless there
is a risk of confusion, we call a 1-neighborholg[Vv] just neighborhood, denoted iy{v]. To avoid ambiguity, we
sometimes writdN®[v] to indicate thaiN[V] is taken with respect tG.

The degree deg] of a vertexv is the number of adjacent vertices, or, equivalently, thalmer of incident edges.
The maximum degree in a given graph is denotedbyf for two graphsH andG holdsV(H) ¢ V(G) andE(H) C
E(G) thenH is a called asubgraphof G, denoted byH € G. If H € G and all pairs of adjacent vertices @ are
also adjacent it thenH is called aninducedsubgraph. The subgraph of a graptihat is induced by a vertex set
W C V(G) is denoted byW). A subsetD of V(G) is adominating sefor G, if for all vertices inV \ D there is at least
one adjacent vertex fromd. We callD connected dominating sef D is a dominating set and the subgrafiy is
connected.

2.2. Graph Products
The vertex set of thetrong product G X G, of two graphsG; andG; is defined ad/(G;) x V(G2) = {(v1,V2) |

v € V(Gy), V2 € V(Gy)}, Two vertices &1, X2), (Y1, Y2) are adjacent ilis; X G, if one of the following conditions is
satisfied:

(1) (x1,y1) € E(G1) andxz = y,,
(i) (%2.Y2) € E(Gp) andx, = ys,
(iii) (x1,y1) € E(Gy) and (., y2) € E(G).
The Cartesian product @G, has the same vertex set@gX G,, but vertices are only adjacent if they satisfy (i) or
(ii). Consequently, the edges of a strong product thatfgdijsor (ii) are calledCartesian the otherqion-Cartesian

The definition of the edge sets shows that the Cartesian priaslalosely related to the strong product and indeed it
plays a central role in the factorization of the strong pidu
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Figure 1: The edgea(b) is Cartesian in the left, and non-Cartesian in the rightrdimatization

The one-vertex complete graph serves as a unit for both products kag1H = H andK; X H = H for all graphs
H. It is well-known that both products are associative and roomative, see [19]. Hence a vert&of the Cartesian
product] ;G;, respectively the strong produsl’! | G; is properly “coordinatized” by the vectok,.. ., x,) whose
entries are the vertices of its factor graphss;. Two adjacent vertices in a Cartesian product graph, réispsc
endpoints of a Cartesian edge in a strong product, therdffiez in exactly one coordinate.

The mappingp;(x) = X; of a vertexx with coordinatesXy, ..., X,) is calledprojectionof x onto thej — th factor.
For a seW of vertices of I | G;, resp.XI | G;, we definep;(W) = {p;(w) | w € W}. Sometimes we also writg, if
we mean the projection onto factar

In both products]! ,G; andX! ;G;, a Gj-fiber or G;-layer through vertexx with coordinates X, .. ., x,) is the
vertex induced subgrapB} in G with vertex se{(xy,...Xj-1,V, Xj:1,..., X)) € V(G) | v € V(G))}. Thus,G; is
isomorphic to the factoG; for everyx € V(G). Fory € V(G}) we haveG} = G’l.’, while V(G) n V(G]?) =0if
z¢ V(GJ.X). Edges of (not necessarilyftBrent)G;-fibers are said to be edgetone and the sanfactorG;.

Note, the coordinatization of a product is equivalent to atfpl) edge coloring ofs in which edges = (x,y)
share the same colafe) = k if x andy differ only in the value of a single coordinatei.e., if x; = v;, i # kand
Xk # Yk- This colors theCartesian edgesf G (with respect to thgjivenproduct representation). It follows that for
each colok the setEy = {e € E(G) | c(e) = k} of edges with colok spangs. The connected components(&) are
isomorphic subgraphs @. Another important result concerning the connectednepsaafuct graphs is stated in the
next lemma.

Lemma 2.1([19]). Let G be a Cartesian product ,G;, respectively, a strong produit! ,G;. Then G is connected
if and only if every factor Gis connected.

We are concerned with therime Factor Decompositigrfor shortPFD, of graphs with respect to the strong
product.

Definition 2.2. A graph G isprimewith respect to the Cartesian, respectively the strong poddf it cannot be written
as a Cartesian, respectively a strong product, of two nerdtigraphs, i.e., the identity G G; x G, (» = [0, X)
implies that G ~ K; or G, ~ Kj.

As shown by Sabidussi [31] and independently by Vizing [38]finite connected graphs have a unique PFD with
respect to the Cartesian product. The same result hold$alsloe strong product, as shown by ler and Imrich
[4] and independently by McKenzie [29].

Theorem 2.3. Every connected graph has a unique representation as a §lart@roduct, resp. a strong product, of
prime graphs, up to isomorphisms and the order of the factors

2.3. Thinness

It is important to notice that although the PFD w.r.t. th@sy product is unique, the coordinatizations might not
be. Therefore, the assignment of an edge being CartesiamneCartesian is not unique, in general. Figure 1 shows
that the reason for the non-unique coordinatizations ieM&tence of automorphisms that interchange the vertices
andd, but fix all the others. This is possible becabs:dd have the same 1-neighborhoods. Thus, an important issue
in the context of strong graph products is whether or not texiees can be distinguished by their neighborhoods.

3



G G/S

Figure 2: A graphG and its quotient grapB/S. The S-classes af&;(0) = {0}, Sg(1) = {1}, andSg(2) = Sa(3) = {2, 3}.

This is captured by the relatidddefined on the vertex set &, which was first introduced by @fler and Imrich [4].
This relation is essential in the studies of the strong pcadu

Definition 2.4. Let G be a given graph and x e V(G) be arbitrary vertices. The vertices x and y are in relatiorf S i
N[X] = N[y]. A graph is Sthin, or thin for short, if no two vertices are in relation S..

In [7], vertices x and y with xSy are calledterchangeableNote thatxS yimplies thatx andy are adjacent since,
by definition,x € N[x] andy € N[y]. Clearly,S is an equivalence relation. The gra@iS is the usual quotient graph,
more precisely:

Definition 2.5. Thequotient graptG/S of a given graph G has vertex set
V(G/S) = {Si | Sj is an equivalence class off S
and(S;, Sj) € E(G/S) wheneve(x,y) € E(G) for some x S; and ye S;.

Note that the relatiors on G/S is trivial, that is, its equivalence classes are singleieest[19]. ThusG/S is
thin. The importance of thinness lies in the uniqueness ®efcdordinatizations, i.e., the property of an edge being
Cartesian or not does not depend on the choice of the codedinas a consequence, the Cartesian edges are uniquely
determined in an S-thin graph, see [4, 7].

Lemma 2.6. If a graph G is thin, then the set of Cartesian edges is unigdetermined and hence the coordinatization
is unique.

Another important basic property, first proved byriler and Imrich [4], concerning the thinness of graphs is
stated in the next lemma. Alternative proofs can be found 9}.[

Lemma 2.7. For any two graphs Gand G, holds(G1XG;)/S ~ G;/SKG,/S . Furthermore, for every % (X, X2) €
V(G) holds %(X) = SGl(Xj_) X SGZ(X2)-

This result directly implies the next corollaries.
Corollary 2.8. A graph is thin if and only if all of its factors with respectttoe strong product are thin.

Corollary 2.9. Let G be a strong product G G; X G,. Consider a vertex ¥ V(G) with coordinategx;, x). Then
for every ze Sg(x) holds 7 € Sg,(xi), i.e. the i-th coordinate of z is contained in the S -clas$efitth coordinate of
X.

2.4. The Classical PFD Algorithm

In this subsection, we are concerned with the PFD of graptisgpect to the strong product. We give a short
overview of the classical PFD algorithm that is used lockitgr on.

The key idea of finding the PFD of a gra@hwith respect to the strong product is to find the PFD of a sytigra
S(G) of G, the so-calledCartesian skeletgrwith respect to the Cartesian product and construct theepfactors of
G using the information of the PFD &{(G).



Figure 3: A prime graplG and its Cartesian Skeletd@{(G) induced by thick-lined edges. Thin-lined edges are marlkedigpensable in the
approach of Hammack and Imrich. On the other hand, the thigdledges are marked as Cartesian in the approach of Feigeipau@ckiffer.
However, in both cases the resulting Cartesian skel&{G) spansG. Hence, the vertex sets of ti§¢G)-fiber (w.r.t. Cartesian product) and the
G-fiber (w.r.t. strong product) induce the same partitNd(G)) = V(G) of the respective vertex sets.

Definition 2.10. A subgraph H of a graph G G; X G, with V(H) = V(G) is calledCartesian skeletoof G, if it has
a representation H= H;[JH, such that (H}') = V(G}) for all v € V(G) and i € {1,2}. The Cartesian skeleton H is
denoted b(G).

In other words, théH;-fibers of the Cartesian skelet§(G) = H;[0H, of a graphG = G; X G, induce the same
partition as thes;-fibers on the vertex set$(S(G)) = V(G). As Lemma 2.6 implies, if a grap® is thin then the set
of Cartesian edges and theref@) is uniquely determined. The remaining question is: How caea determine
S(G)?

The first who answered this question were Feigenbaum andfBclj7]. In their polynomial-time approach,
edges are marked as Cartesian if the neighborhoods of thdoets fulfill some (strictly) maximal conditions in
collections of neighborhoods or subsets of neighborhoo@s i

The latest and fastest approach for the detection of the=€lart skeleton is due to Hammack and Imrich [12]. In
distinction to the approach of Feigenbaum and&feh edges are marked as dispensable. All edges that are slispen
able will be removed fron®. The resulting grapB(G) is the desired Cartesian skeleton and will be decomposid wi
respect to the Cartesian product. For an example see Figure 3

Definition 2.11. An edge(x, y) of G isdispensabléf there exists a vertex  V(G) for which both of the following
statements hold.

1. (@) NIXIn'N[y] € N[X] " N[Z] or (b) N[X] c N[Z c N[y]
2. (@ NI n'N[y] c N[yl n'N[Z] or (b) N[y] c N[Z c N[X]

Some important results, concerning the Cartesian skefgmaummarized in the following theorem.

Theorem 2.12([12]). Let G = G; X G, be a strong product graph. If G is connected, tH®) is connected.
Moreover, if G and G are thin graphs then

S(G1 K Gy) = S(G1)TIS(Gy).
Any isomorphisnp : G —» H, as amap {G) — V(H), is also an isomorphisma : S(G) — S(H).

Remark 1. Notice that the set of all Cartesian edges in a strong prd@uet<! , G; of connected, thin prime graphs
are uniquely determined and hence its Cartesian skeletamedwer, since by Theorem 2.12 and Definition 2.10 of
the Cartesian skeletd®G) = 0! ,S(G;) of G we know thatV(S(G))) = V(G}) for all v € V(G). Thus, we can
assume without loss of generality that the sedlbCartesian edges in a strong prodGct X!, G; of connected, thin
graphs is the edge set of the Cartesian skel8{@) of G. As an example consider the gra@hn Figure 3. After the
factorization ofS(G) all edges ofs are determined as Cartesian, si&s prime.
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PFD of S(G/S) — PFD of G

Figure 4: lllustrated are the basic steps of the PFD of stmsnduct graphs.

Now, we are able to give a brief overview of the global apphotoat decomposes given graphs into their prime
factors with respect to the strong product, see also Figure 4

Given an arbitrary grapt®, one first extracts a possible complete fadtpof maximal size, resulting in a graph
G, i.e.,,G = G’ X K|, and computes the quotient grabh= G’/S. This graphH is thin and therefore the Cartesian
edges ofS(H) can be uniquely determined. Now, one computes the primieriaofS(H) with respect to the Cartesian
product and utilizes this information to determine the mrifactors ofG’ by usage of an additional operation stated
in the next lemma.

Lemma 2.13.[19] Suppose that it is known that a given graph G that doesadatit any complete graphs as a factor
is a strong product graph &X G,, and suppose that the decompositiofSG= G;/S X G,/S is known. Then Gand
G, can be determined from G ;&S and G/S.

In fact, if D(xy, X2) denotes the size of the S-equivalence class of G that is rapiogx;, X2) € G1/SX G,/S,
then the size [X;) of the equivalence class ofi@apped into x€ G;/S is gcdD(x1,Y) | y € V(G2)}. Analogously
for D(xy).

By repeated application of Lemma 2.13 one can determine ringefactors ofG’, see [19]. Notice thaG =~
G’ X K;. The prime factors oG are then the prime factors @’ together with the complete factoks,,, ..., Ky,
wherep; ... pj are the prime factors of the intedefThis approach is summarized in Algorithm 1 and 2.

Algorithm 1 PFD of graphs w.r.tX
1. INPUT: a graphG
ComputeG = G’ X K|, whereG’ has no nontrivial factor isomorphic to a complete gré&ph
Determine the prime factorization &, that is, ofl;
computeH = G’/S;
compute PFD and prime factokl, . . . , H, of H with Algorithm 2
By repeated application of Lemma 2.13 find all minimal subsetf | = {1,2,...,n} such that there are graphs
AandBwith G = AKX B, A/S = ic;H; andB = Kjey Hj. SaveA as prime factor.
7: OUTPUT: The prime factors of;




Algorithm 2 PFD ofthin graphs w.r.tX

1: INPUT: athin graphG

2: compute the Cartesian skelet§{s);

3: factorS(G) = Ui Hj and assign coordinates to each vertex;
4: J |

5. fork=1,...,|]l|do

6: for eachS c Jwith |S| = kdo

7: computeA = DiesV(H;) andA” = DiejsV(Hi);
8: computeB; = (pa(G)) andB; = (pa(G));

9: if By X B, ~ Gthen

10: saveB; as prime factor;

11; J« \S;

12: end if

13:  end for

14: end for

15: OUTPUT: The prime factors of;

However, Algorithm 1 and 2 just give an overview of the topellegontrol structure to determine the PFD of a
given graph. Applying some smart ideas together with sligbtlifications on those Algorithms one can bound the
time complexity as stated in the next Lemma 2.14, see [12].

Lemma 2.14([12]). The PFD of a given graph G= (V, E) with bounded maximum degréecan be computed in
O(|[E|A?) time.

3. The Local Way to Go - Tools

As mentioned, we will utilize the classical PFD algorithndatierive a new approach for the PFD w.r.t. the
strong product that makes only usage of small subgraphsalged subproductf particular size, and that exploits
the local information in order to derive the global factdvkoreover, motivated by the fact that most graphs are prime,
although they can have a product-like structure, we wanatyg this approach such that also disturbed products can
be recognized. The key idea is the following: We try to coveian disturbed produds by subproducts that are
itself "undisturbed”. If the grapl@ is not too much perturbed, we would expect to be able to cowst of it by
factorizable 1-neighborhoods or other small subproduntista use these information for the construction of a strong
productH that approximate6.

However, for the realization of this idea several importiais are needed. First, we give an overview of the
subproducts that will be used. We then introduce the s@@8l1-conditionthat is a property of an edge that allows
us to determine Cartesian edges, even if the given grapht ihimo We continue to examine a subset of the vertex
set of a given graple, the so-calledbackboneB(G). Both concepts, th&1-conditionand the backbone, have first
been investigated in [17]. We will see that the backbonedsadly related to th&1-condition Finally, in order to
identify locally determined fiber as belonging to one andgshme or to dferent global factors, the so-calledlor-
continuationproperty will be introduced. As it turns out, this particufoperty is not always met. Therefore, we
continue to show how one can solve this problem for thin atet lan for non-thin (sub)graphs.

3.1. Subproducts
In this subsection, we are concerned with so-calgiobroductsalso known akoxeq34], that will be used in the
algorithm.

Definition 3.1. A subproducof a product GX H, resp. G1H, is defined as the strong product, resp. the Cartesian
product, of subgraphs of G and H, respectively.



Figure 5: The 1-neighborhoddN[(x,y)]) = (N[X]) X (N[y]) is highlighted by thick lined edges

As shown in [16], it holds that 1-neighborhoods in strongduret graphs are subproducts:
Lemma 3.2([16]). For any two graphs G and H hold$NC2H[(x, y)]) = (NC[X]) K (N"[y]).

For applications to approximate products it would be désiréo use small subproducts. Unfortunately, it turns
out that 1-neighborhoods, which would be small enough forparpose, are not flicient to cover a given graph
in general while providing enough information to recognilze global factors. However, we want to avoid to use
2-neighborhoods, although they are subproducts as welt,itave diameter 4 and are thus quite large. Therefore, we
will define further small subgraphs, that are smaller tharethborhoods, and show that they are also subproducts.

Definition 3.3. Given a graph G and an arbitrary edde, w) € E(G). Theedge-neighborhoodf (v, w) is defined as
(N[V] U N[w])

and the N,,-neighborhoods defined as
Now=<¢ () NIXD.

xeN[V]NN[w]

If there is no risk of confusion we will denote] , -neighborhoods just bM*-neighborhoods. We will show in the
following that in addition to 1-neighborhoods also edgéhborhoods of Cartesian edges afidneighborhoods are
subproducts and hence, natural candidates to cover a giggh gs well. We show first, given a subprodticof G,
that the subgraph that is induced by vertices containedemtiion of 1-neighborhoods[v] with v € V(H), is itself
a subproduct of.

0—O0 . 0—oO0 .

Figure 6: Shown is a strong product graph of two paths. Natiaéthe 2-neighborhoody[(by)]) of vertex py) is isomorphic taG.
Ihs.: The edge-neighborhogd[(a, y)] U N[(b,y)]) = ((N[a] U N[b])) X (N[y]).

rhs.: The N*—neighborhood\l(*ay)’(by) = (UzengalnNib] N[Z]) B (Uzenpyi N[Z]).

Lemma 3.4. Let G = G; X G, be a strong product graph and H H; X H, be a subproduct of G. Then
H* = <UVEV(H)NG[V]>

is a subproduct of G with H= H} X H, where H is the induced subgraph of factor, Gn the vertex set {H) =
Uveviny N®vil, i = 1,2,



Proof. It suffices to show tha¥/(H*) = V(H]) x V(H3). For the sake of convenience, we dend(@i;) by V;, for
i =1,2. We have:
V(H") = U NC[V] = U NC[V].
veV(H) veVixVao

Since the induced neighborhood of each vektex (v1, ;) in G is the product of the corresponding neighborhoods
NC:[v;] ® N®2[v,] we can conclude:

VIH) = () (NS xN®[v)) = ) NSl x ] N®[va] = V(H]) x V(H3)

{v1€V1}X(V2eV2} Vv1€EVL VoeV,

O

Lemma 3.5. Let G be a nontrivial strong product graph aitd w) be an arbitrary edge of G. ThetN®[v] N N®[w])
is a subproduct.

Proof. Let v andw have coordinatesv(,v,) and (v, w.), respectively. Sinc&®[v] = N [v1] x N®2[v,] we can
conclude that

NC[v] N NC[w] = (N®*[v1] x N®[w2]) N (N®[v1] x N®2[v,])
= (N®[vy] N NC wa]) x (N®2[vo] N N®2[we]).

Lemmas 3.2, 3.4 and 3.5 directly imply the next corollary.

Corollary 3.6. Let G be a given graph. Then for allevV(G) and all edgegv, w) € E(G) holds:
(N2[V]) and N},
is a subproduct of G. Moreover, if the edfew) is Cartesian than the edge-neighborhood
(N[V] U N[w])
is a subproduct of G.

Notice that(N[v] U N[w]) could be a product, i.e., not prime, even Vf\{) is non-Cartesian iic. However,
the edge-neighborhood of a single non-Cartesian edge ia sobproduct, in general. The obstacle we have is that
a non-Cartesian edge &f might be Cartesian in its edge-neighborhood. Thereforecammot use the information
provided by the PFD ofN[X] U N[y]) to figure out if (x, y) is Cartesian irG and hence, ifN[x] U N[y]) is a proper
subproduct. On the other hand, an edge that is CartesianuippgaductH of G must be Cartesian iB. To check if
an edgeX, y) is Cartesian ifN[X] U N[y]) that is Cartesian i as well we use thdispensableroperty provided by
Hammack and Imrich, see [12].

We show that an edge(y) that is dispensable i is also dispensable itN[x] U N[y]). Conversely, we can
conclude that every edge that is indispensabléNifx] U N[y]) must be indispensable and therefore Cartesida. in
This implies that every edge-neighborho@d[x] U N[y]) is a proper subproduct @ if (Xx,y) is indispensable in
(N[X] U N[yD.

Remark 2. As mentioned in [12], we have:

e N[X] c N[Z] c N[y] implies N[x] N N[y] € N[y] n N[Z].
e N[y] € N[Z] c N[x] implies N[X] N N[y] € N[X] N N[Z].
e If (x,y) is indispensable theN[x] N N[y] € N[X] N N[Z] andN[x] N N[y] € N[y] N N[Z] cannot both be true.



Lemma 3.7. Let(x, y) be an arbitrary edge of a given graph G and4¥N[x] U N[y]) Then it holds:
N[X] N N[y] € N[x] n N[Z]

if and only if
N[X] " N[yl nH c N[X] n N[Z] n H.

Proof. First notice thatN[X] N N[y] " H = N[X] n N[y]. Furthermore, sinc&[X] N N[Z < N[X] € V(H) we can
conclude thatN[X] N N[Z]) N H = N[X] n N[Z], from what the assertion follows. O

Lemma 3.8. Let (X, y) be an arbitrary edge of a given graph G and+{N[x] U N[y]). If
N[X] € N[Z c N]y]

then
N[X]"nHcN[ZZnHcN[y]nH

Proof. First notice thatN[x] N H = N[x], N[y] n H = N[y], andN[Z n H = (N[Z n N[X]) U (N[Z n N[y]). Since
N[X] € N[Z c N[y] we can conclude thaitN[Z] N N[x]) U (N[Z] n N[y]) = (N[X]) U (N[Z]) = N[Z. Therefore
N[X] "H = N[X] € N[Z = N[Z] nH andN[Z] n H = N[Z] c N[y] = N[y] n H. O

Notice that the converse does not hold in general, s N H c N[y] n H = N[y] does not imply that
N[Z < N[y]. However, by symmetry, Remark 2, Corollary 3.6, Lemma 3d 8.8 we can conclude the next
corollary.

Corollary 3.9. If an edge(x,y) of a thin strong product graph G imdispensablén (N[X] U N[y]) and therefore
Cartesian in G then the edge-neighborhadx] U N[y]) is a subproduct of G.

3.2. The S1-condition and the Backbone

The concepts of th81-conditiorand thebackbonewere first introduced in [17]. The main idea of our approach is
to construct the Cartesian skeleton®by considering PFDs of the introduced subproducts only. fia obstacle
is that even thougl is thin, this is not necessarily true for subgraphs, Fig. &nt¢, although the Cartesian edges
are uniquely determined i@, they need not to be unique in those subgraphs. In order éstiigate this issue in some
more detail, we also defirfe-classes w.r.t. subgraphsof a given graplG.

Definition 3.10. Let H € G be an arbitrary subgraph of a given graph G. Theq($) is defined as the set
Su(¥) = {ve V(H) I N[V N V(H) = N°[x] n V(H)}.
If H = (N®[y]) for some ye V(G) we set $(X) := Sinepyyy (X)

In other words,Sy(X) is the S-class that containg in the subgrapti. Notice thatN[x] < N[v] holds for all
v € Sy(X). If Gis additionally thin, theN[x] C N[V].

Figure 7: A thin graph wheré\[v]) is not thin. The S-classes {IN[v]) areSy(v) = {v}, Sv(2) = {z} andSy(X) = Sy(y) = {X, Y}

Since the Cartesian edges are globally uniquely definediimataph, the challenge is to find a way to determine
enough Cartesian edges from local information, eveij#]) is not thin. This will be captured by th@l-condition
and thebackboneof graphs.

10



G G/S Cartesian edges of G that
satisfy the S1l-condition

Figure 8: Determining Cartesian edges that satisfy8heondition Given a graplG, one computes its quotient graghiS. SinceG/S is thin the
Cartesian edges @/S are uniquely determined. Now one factoriZgsS and computes the prime factors@fwith Algorithm 1. Apply Lemma
3.13 to identify all Cartesian edges with respective co(thick and dashed lined) i6 that satisfy theS1-condition The backbon@(G) is the
singleton{5}.

Definition 3.11. Given a graph G. An eddg, y) € E(G) satisfies th&1-conditionin an induced subgraph & G if
(i) x,ye V(H)and
(i) ISu(¥)I=1or[Suy)l=1

Note that|Sy(X)| = 1 for all x € V(H), if H is thin. From Lemma 2.7 we can directly infer that the cartiipa
of an S-class in a product grapB is the product of the cardinalities of the correspondsiglasses in the factors.
Applying this fact to subproducts & immediately implies Corollary 3.12.

Corollary 3.12. Consider a strong product G X, G; and a subproduct H= &I" | H; € G. Let xe V(H) be a given
vertex with coordinateéx, . . ., ,). Then $(x) = x[_; Sy, (x;) and therefore|Sy (X)| = TTiL; ISk, (%)!.

The most important property of Cartesian edges that satisf$1-conditionin some quotient grap@/S is that
they can be identified as Cartesian edgeS,ieven ifG is not thin.

Lemma 3.13([17]). Let G= X G; be a strong product graph containing two S-classg$4p Sc(y) that satisfy
() (Se(X), S(y)) is a Cartesian edge in & and
(i) 1Sc(¥)| = Lor|Se(y) = 1.

Then all edges in G induced by vertices ef($) and S(y) are Cartesian and copies of one and the same factor.

Remark 3. Whenever we find a Cartesian edgey in a subproducH of G such that one endpoint ok(y) is
contained in &-class of cardinality 1 iH/S, i.e., such thaBy(X) = {x} or Si(y) = {y}, we can therefore conclude

that all edges irH induced by vertices 08 (X) and Sy (y) are also Cartesian and are copies of one and the same

factor, see Figure 8.
Note, even ifH/S has more factors thad Algorithm 1 indicates which factors have to be merged to @weok.

Again we can conclude that all edgesHnthat satisfy theS1-conditionare Cartesian and are copies of one and the

same factor, see Figure 9.
Moreover, sinceH is a subproduct o, it follows that any Cartesian edge Hfthat satisfy theS1-conditionis a
Cartesian edge i6.

We consider now a subset ¥{G), the so-calledackbonewhich is essential for the algorithm.
Definition 3.14. Thebackboneof a thin graph G is the vertex set
B(G) = {ve V(G) | ISV = 1}.
Elements oB(G) are calledbackbone vertices
11



G G/S Cartesian edges of G that
satisfy the S1l-condition

Figure 9: Determining Cartesian edges that satisfyShecondition We factorizeG/S and compute the prime factors 6fwith Algorithm 1.
Notice that it turns out that the factors induced by thick dashed lined edges have to be merged to one factor. Apply nowrlae3.13 to identify

all Cartesian edges 8 that satisfy thes1-condition In this case, it is clear that the edge3Phas to be Cartesian as well and belongs to the single
prime factorG. The backbon®(G) is the singletor{5}.

Clearly, the backbonB(G) and theS1-conditiorare closely related, since all edgesy() that contain a backbone
vertex, sayx, satisfy theS1-conditiorin (N[x]). If the backboné(G) of a given grapt is nonempty then Corollary
3.12 implies that no factor o& is isomorphic to a complete graph, otherwise we would H8yé/)| > 1 for all
v € V(G). The last observations lead directly to the next corollary

Corollary 3.15. Given a graph G with nonempty backboBé&G) then for all v e B(G) holds: all edgeqv, xX) €
E((N[V])) satisfy theS1-conditionin N[v].

The set of backbone vertices of thin graphs can be charaetkais follows.

Lemma 3.16([17]). Let G be a thin graph and v an arbitrary vertex of G. Thea B(G) if and only if NV] is a
strictly maximal neighborhood in G.

As shown in [17] the backbone B(G) of thin graphs G is a coretedbminating set. This allows us to cover the
entire graph by 1-neighborhoods of the backbone vertichs bloreover, it was shown that it flices to exclusively
use information about the 1-neighborhood of backboneaestito find all Cartesian edges that satisfyShecondition
in arbitrary 1-neighborhoods, even those edgeg)(with x,y ¢ B(G). These results are summarized in the next
theorem.

Theorem 3.17([17]). Let G be a thin graph. Then the backbdi&) is a connected dominating set for G.
All Cartesian edges that satisfy td.-conditionin an arbitrary induced 1-neighborhood also satisfy 8ie-condition
in the induced 1-neighborhood of a vertex of the backii®{t.

Consider now a subprodukt of a thin graphG that entirely contains at least one 1-neighborhood of a @
vertexx € B(G). We will show in the following that the set of Cartesian eslgéH that satisfy theS1-conditiorin H,
induce a connected subgraphtbf This holds even iH is not thin. For this we need the next two lemmas.

Lemma 3.18. Let G be a given thin graph, x B(G) and H € G be an arbitrary induced subgraph such that
N[X] € V(H). Then|SL(X)| = 1 and xe B(H).

Proof. First notice that Lemma 3.16 amxde B(G) implies thatN[X]) is strictly maximal inG. Since(N[x]) cH c G
we can conclude thaN[x]) is strictly maximal inH. Hence, it hold$SH(X)| = 1 and in particulak € B(H), applying
Lemma 3.16 again. O

Lemma 3.19. Let G be a given thin graph and H G be a subproduct of G such that there is a vertex%(G) with
N[X] € V(H). Then the set of all Cartesian edges of H that satisf{@heonditiorin H induce a connected subgraph
of H.

Proof. LetX!" H; be any factorization ofi and @, b) be an arbitrary Cartesian edgetdfiw.r.t. to this factorization)
that satisfies th&1-conditionin H. W.l.o.g we assume thd$,(a)] = 1. We denote the coordinates afwith

12



Figure 10: The Cartesian skeleton of the thin product gfaplitwo prime factors induced by one connected component df #rid dashed lined
edges. The backbori®G) consists of the verticex, z andzz. In none of anyedge-neighborhooH holds|SH(x)| = 1,i = 1,2,3. Hence the
fiber induced by verticeg;, X, andxs does not satisfy th81-conditionin any edge-neighborhood. To identify this particular fihés necessary
to useN*-neighborhoods. By Lemma 3.2 -neighborhoods are alsoffgient.

(a,...,a,) and the ones ok with (X, ..., xn). Clearly, the coordinatization need not to be unique, esidds not
supposed to be thin. However, we will construct a patfrom a to x that consists of Cartesian edgesw) such
that|Sy(v)] = 1 and|Sx(w)| = 1. Those Cartesian edges are uniquely determindd, imdependently from the
coordinatization.

Notice that Lemma 3.18 implies thi&8(X)| = 1, sinceN[x] € V(H). Moreover, from Corollary 3.12 we can
conclude thaiSy, (%) = 1 for alli. Analogously,|Sy (&)l = 1 for alli. The index set denotes the set of position
wherea andx differ. W.l.o.g we assume that= {1,2,...,k}. The path? has edge sd{x, v!), V2, V3), ..., (V1 a)}
with verticesv! that have respective coordinates, @y, . . S8, Xj+1,. .5 %), ] = 1,...,k=1. Corollary 3.12 implies
that for all those vertices holdSy(v9)| = 1 and hence in particular for all edges\) € {(x, V1), (V’,\°), ..., (V"1 a)}
holds|Sy(u)] = 1 and|Sy(w)| = 1, i.e., those Cartesian edges are uniquely determined Finally, since all edges
have endpoints fliering in exactly one coordinate all edges are Cartesian enddnall those Cartesian edgady) are
connected to vertex by a path of Cartesian edges that satisfy$fieconditionfrom what the statement follows.CJ

Corollary 3.20. Let G be a given thin graph, « B(G) and let HC G denote one of the subprodug¥[x]), Ny, or
(N[X] U N[yD). In the latter case we assume that the eflgg) is Cartesian in H. Then the set of all Cartesian edges
of H that satisfy th&S1-conditionin H induce a connected subgraph of H.

Last, we state two lemmas for later usage. Note, the seconchderefines the already known results of [17],
where analogous results were stated for 2-neighborhoods.

Lemma 3.21([17]). Let(x,y) € E(G) be an arbitrary edge in a thin graph G such th&(x)| > 1. Then there exists
a vertex z B(G) s.t. ze N[X] N N[y].

Lemma 3.22. Let G be a thin graph an@l, w) be any edge of G. Let'Nienote the [§l,-neighborhood. Then it holds
that|Sn+ (V)| = 1 and|Sy-(W)| = 1, i.e., the edgév, w) satisfies th&s1-conditionin N*.

Proof. Assume thafSy-(v)| > 1. Thus there is a vertex € Sy:(v) different fromv with N[X] n N* = N[v] n N*,
which implies thatv € N[X] and hencex € N[v] N N[w]. Thus, it holdsN[X] € N*. Moreover, sincéN[v] € N* we
can conclude thatl[v] = N[v] n N* = N[x] n N* = N[X], contradicting thaG is thin. Analogously, one shows that
the statement holds for vertex O
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3.3. The Color-Continuation

The concept of covering a graph by suitable subproducts eredrdining the global factors needs some additional
improvements. Since we want to determine the global facteesneed to find their fibers. This implies that we
have to identify diferent locally determined fibers as belonging tffedent or to one and the same global fiber.
For this purpose, we formalize the teproduct coloring color-continuationand combined coloring Remind, the
coordinatization of a product is equivalent to a (parti@ye coloring ofG in which edges = (x,y) share the same
colorc(e) = kif x andy differ only in the value of a single coordindtgi.e., if X; = yi, i # kandxx # yk. This colors
the Cartesian edgesf G (with respect to thgivenproduct representation).

Definition 3.23. A product coloringof a strong product graph G X" | G; of n> 1 (not necessarily prime) factors is
a mapping R from a subset EC E(G), that is a set of Cartesian edges of G, into aset {1, ..., n} of colors, such
that all such edges in ibers obtain the same color i.

Definition 3.24. A partial product coloringf a graph G= X" | G; is a product coloring that is only defined on edges
that additionally satisfy th&1-conditionin G.

Note, in a thin graplG a product coloring and a partial product coloring coincigiece all edges satisfy the
S1-conditionn G.

Definition 3.25. Let Hy, H, € G and Ry, resp. Ry,, be partial product colorings of I resp. B. Then Ry, is a
color-continuatiorof Py, if for every color ¢ in the image of R there is an edge in fHwith color c that is also in the
domain of Ry,.

Thecombined coloringgn H; U H; uses the colors of i on H; and those of B, on Hy \ Hj.

In other words, for all newly colored edges with cotin H,, which are Cartesian edgesliy that satisfy the
S1-conditionn H,, we have to find a representative edge that satisfstheonditiorin H; and was already colored
in Hy. If H; andH,; are thin we can ignore th@l-conditionsince all edges satisfy this conditionthy andH;, see
Figure 11.

C| = eemeem

C) = ==——

C3 =  e—

Cy = www

Figure 11: Shown is a thin graghwith B(G) = {x,y}. G is the strong product of two paths. If one computes the PFDeoh#tighborhoodN[x])
one obtains a (partial) product coloring with colagsandcs. The (partial) product coloring aiN[y]) has colors; andc,. Since on edgex(y),
resp. & 1), both colorsc; andcy, resp.cz andcy are represented we can identify those colors and merge thenetoolor, resulting in a proper
combined coloring. Hence, the product colorigy, is a color-continuation o[y}, and vice versa.

However, there are cases where the color-continuatios, fsle Figure 12. The remaining part of this subsection
is organized as follows. We first show how one can solve theramntinuation problem if the corresponding sub-
products are thin. As it turns out, it isfSicient to use the information of 1-neighborhoods only in otdeyet a proper
combined coloring. We then proceed to solve this problemnméor-thin subgraphs.

Before we continue, two important lemmas are given. Thedingtis just a restatement of a lemma, which was
formulated for equivalence classes w.r.t. to a productioelan [21]. The second lemma shows how one can adapt
this lemma to non-thin graphs.

Lemma 3.26([21], Lemma 1) Let G be a thin strong product graph and leg Be a product coloring of G. Then
every vertex of YG) is incident to at least one edge with color ¢ for all colors dlire image of B.

Lemma 3.27. Let G be a thin strong product graph, € G be a non-thin subproduct of G andexXV(H) be a vertex
with |Sy(X)| = 1. Moreover, let B, be a partial product coloring of H. Then vertex X is containeat least one edge
with color c for all colors c in the image of®
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Proof. Notice thatH does not contain complete factors, otherwise Corollarg 8riplies thaiSy(x)] > 1. Now, the
statement follows directly from Lemma 3.13 and Lemma 3.26 O

3.3.1. Solving the Color-Continuation Problem for Thin §#phs
To solve the color-continuation problem for thin subgraghd in particular for thin 1-neighborhoods we introduce
so-calledS-primegraphs.

Definition 3.28. A graph S isS-prime(S stands for “subgraph”) if for all graphs G and H with & G % H holds:
S C Hor S ¢ G, wherex denotes an arbitrary graph product.

The class of S-prime graphs was introduced and charaddefiazehe direct product by Sabidussi in 1975 [32].
Analogous notions of S-prime graphs with respect to othedypcts are due to Lamprey and Barnes [27, 28]. Kdav
et al.[26] and Bré&ar [2] proved several characterizations of (basic) Se@nmaphs. In [15] it is shown that so-called
diagonalized Cartesian products S-prime graphs are S-prime w.r.t. the Cartesian prodiet.shortly summarize
the results of [15].

Definition 3.29([15]). A graph G is called aliagonalizedCartesian product, whenever there is an edge) € E(G)
such that H= G\ (u, V) is a nontrivial Cartesian product and u and v have maximalatise in H.

Theorem 3.30([15]). The diagonalized Cartesian Product of S-prime graphs isi®ew.r.t. the Cartesian product.

Corollary 3.31 ([15]). Diagonalized Hamming graphs, and thus diagonalized Hyees, are S-prime w.r.t. the
Cartesian product.

Figure 12:Color-continuation problem in thin subproductSonsider the induced neighborhogdi§3]) and(N[4]), depicted in the upper part. The
colorings of the edges w.r.t. the PFD of each neighborhoedlaown as thick dashed edges, thick-lined edges and dbuéteedges, respectively.
If we cover the graplG in the lower part fromN[3] to N[4] the color-continuation fails, e.g. on edge 4}, since (14) is determined as non-
Cartesian iN[3]). This holds for all edges itN[3]) that obtained the color "thick dash” iiN[3]). The same holds for the color "double-lined”
if we cover the graph frorlN[4] to N[3]. If we force the edge (#4) to be Cartesian itN[3]) Lemma 3.33 implies that the colors "thick-lined” and
"double-lined” have to be merged to one color, since the saffgvith edge sef(0, 1), (0, 4), (1, 3), (3,4)} U {(1,4)} is a diagonalized hypercube
Q2. Note,G can be covered by thin 1-neighborhoods only, but the cadatinuation fails. Henc& is not NICE in the terminology of [16].
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We shortly explain how S-prime graphs can be used in ordebtaim a proper color-continuation in thin sub-
products even if the color-continuation fails. Considetrarsgy product grapl& and two given thin subproducts
Hi, H2 € G. Let the Cartesian edges of each subgraph be colored witeeet a product coloring dfl;, respec-
tively H, that is at least as fine as the product coloringofi.r.t. to its PFD. As stated in Definition 3.25, we have a
proper color-continuation frorhl; to H if for all colored edges with colot in H; there is a representative edge that
is colored inH;. Assume the color-continuation fails, i.e., there is a colm H; such that for all edges. € E(Hy)
with color ¢ holds thate; is not colored inH;, for an example see Figure 12. This implies that all such dgare
determined as non-Cartesianhh. As claimed, the product colorings éf; andH, are at least as fine as the one
of G andH;, H, are subproducts db, which implies that colored Cartesian edges in elgclare Cartesian edges
in G. Sinceeg; is determined as non-CartesianHi, but as Cartesian ikl,, we can infer thag. must be Cartesian
in G. Thus we can force the edge to be Cartesian iftd;. The now arising questions is: "What happens with the
factorization ofH,?” We will show in the sequel that there is a hypercubélinconsisting of Cartesian edges only,
where all edges are copies of edges dfedent factors. Furthermore, we show that this hypercubéaigotalized
by a particular edge; and therefore S-prime w.r.t the Cartesian product. Moreawve will prove that all colors that
appear on this hypercube and the caon e; have to be merged to exactly one color, even with respecetpribduct
coloring, provided by the coloring w.r.t. the strong produkhis approach solves the color-continuation problem for
thin subproducts and hence in particular for thin 1-neighbods as well.

Lemma 3.32. Let G= X' ;G be a thin strong product graph ar(@, w) € E(G) a non-Cartesian edge. Let J denote
the set of indices where v and wfdr and U C V(G) be the set of vertices u with coordinatgs=uv;, if i ¢ J and

u € {vi,w}, ifi € J. Then the induced subgraghl) € S(G) on U consisting of Cartesian edges of G only is a
hypercube of dimensidd|.

Proof. Notice that the coordinatization & is unique, sinc& is thin. Moreover, since the strong product is commu-
tative and associative we can assume w.l.0.g. irafl,...,k}. Note, thatk > 1, otherwise the edge,(w) would be
Cartesian.

Assume thak = 2. We denote the coordinates\gfresp. ofw, by (v, vz, X), resp. by {1, wp, X). By definition
of the strong product we can conclude that\;) € E(G;) fori = 1,2. Thus the set of vertices with coordinates
(V1, V2, X) (V1, Wa, X), (W1, V2, X), and (v1, W,, X) induce a complete gragy, in G. Clearly, the subgraph consisting of
Cartesian edges only is@y.

Assume now the assumption is true koe m. We have to show that the statement holds als&ferm + 1. Let
J={1,...,m+1} and letU; andU, be a partition ofJ withU; = {u€ U | Uny1 = V1) @andUz = {U € U | Uiz = Wine)-
Thus eachU; consists of vertices that fiker only in the firstm coordinates. Notice, by definition of the strong
product and by construction of both sétg andU, there are verticeg, b in eachU; that difer in all m coordinates
that are adjacent ie and hence non-Cartesian @& Thus, by induction hypothesis the subgragbs) induced
by eachU; consisting of Cartesian edges only iQa. Let (U) be the subgraph with vertex set and edge set
E(U1) UE(U2) U{(a,b) € E(G) | a = (X, Vm:1, Y) andb = (X, wn:1, Y)}. By definition of the strong product the
edges &, b) with a = (X, Vm1, Y) andb = (X, Wm,1, Y) induce an isomorphism betweéd;) and{U,) which implies
that(U) ~ QK3 = Q1. O

Lemma 3.33. Let G = X! , G| be a thin strong product graph, where each G=1,...,nis prime. Let H= X" H, C

G be a thin subproduct of G such that there is a non-Cartesileés, w) € E(H) that is Cartesian in G. Let J denote
the set of indices where v and wjdr w.r.t. to the coordinatization of H. Then the factdi.;H; of H is a subgraph
of a prime factor Gof G.

Proof. In this proof, factors w.r.t. the Cartesian product and tineng) product, respectively, are called Cartesian
factors and strong factors, respectively. First noticé @atesian edges i@ as well as irH are uniquely determined,
since both graphs are thin. Moreover, the existence of €iart edge o6 = X, Gy, that is a non-Cartesian edge
in a subproducH = X" H, of G, implies thatm > n, i.e., the factorization oH is a refinement of the factorization
induced by the global PFD. Sind¢ is a thin subproduct o with a refined factorization, it follows that Cartesian
edges ofH are Cartesian edges & Therefore, we can conclude that strong factorsicdre entirely contained in
strong factors 06G.

We denote the subgraph bif that consists of all Cartesian edgestbbnly, i.e., its Cartesian skeleton, ByH),
henceS(H) = OO, H,. LetU c V(H) be the set of vertices with coordinatesy = v;, if i ¢ J andu; € {vi,w}, if
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i € J. Notice that Lemma 3.32 implies that for the induced sublgnay.t. the Cartesian skelet@bd) C S(H) holds
(U) = Q. Moreover, the distancey,(v, w) betweenv andw in (U) is |J|, that is the maximal distance that two
vertices can have itlJ). If we claim that ¢, w) has to be an edge iU) we obtain a diagonalized hypercu{iﬂz)“'ag
Corollary 3.31 implies thatU ydiad js S-prime and henc@J )49 must be contained entirely in a Cartesian fadtor
of a graphH* = HOH’ with S(H) U (v,w) c H*. This implies thaU)d29 ¢ HY for all u € V(H*), i.e., (U)%9 js
entirely contained in alH!-layer inH*. Note that alH-layer H" contain at least one edge of evetylayerH! of the
previously determined factokd;, i € J of H.

Furthermore, all Cartesian factors®(H) = O, H, coincide with the strong factors éf = X", H,; and hence, in
particular the factorsl;, i € J. Moreover, sincéd is a subproduct o6 and the factorization dfl is a refinement o6
it holds that Cartesian factoks, i € J of S(H) must be entirely contained in strong prime factor§ofThis implies
that for alli € J the Hj-layer H;' must be entirely contained in the layer of strong factor&of\Ve denote the set of
all already determined strong factdtlg i € J of H with .

Assume the graphi* = DJ.S:lKJ- with S(H) U (v,w) € H* andV(H*) = V(S(H)) has a factorization such that
OiegHi U (v, W) ¢ K; for all Cartesian factor&;. SinceS(H) U (v,w) € H*, we can conclude thaty)dag ¢ H*,
Since(U)d39 js S-prime it must be contained in a Cartesian faétpof H*. This implies thagU)%29 c KY for all
u e V(H*), i.e., for allK;-layer of this particular Cartesian factsf. Sincelic;H; U (v,w) ¢ K, we can conclude
that there is an already determined strong fattosuch thatH!' ¢ K for all u € V(H*). Furthermore, alK;-layer
K} contain at least one edge of eadftlayer H' of the previously determined strong factdtg i € J of H. We
denote withe the edge of théd;-layerH!" that is contained in thi,-layerK}'. This edgee cannot be contained in any
Kj-layer, j # r. This implies thaH! ¢ Kj for anyKj-layer,j=1,....s

Thus, there is an already determined strong fattoe H with H' ¢ KJP‘, u € V(H") for all Kj-layer in H*,

j =1,...,s Therefore, none of the layer of this particulgrare subgraphs of layer of any Cartesian fastpof H*.
This means thalti* is not a subproduct d& or a refinement oH, both cases contradict thielf € H.

Therefore, we can conclude thét)4@9 ¢ [i.;H; U (v,w) € H for a Cartesian factoH of H*. As argued,
Cartesian factors are subgraphs of its strong factors anceheve can infer thaflic;H; and henceXc;H; must be
entirely contained in a strong factor Bfand hence in a strong factor Gf sinceH is a subproduct. O

3.3.2. Solving the Color-Continuation Problem for Non+TBubgraphs

The disadvantage of non-thin subgraphs is that, in corttsdlin subgraphs, not all edges satisfy $fecondition
The main obstacle is that the color-continuation can falfarticular color is represented on edges that don't gatisf
the S1-conditionin any used subgraphs. Hence, those edges cannot be idkasfi€artesian in the correspond-
ing subgraphs, see Figure 13. Moreover, we cannot apply gheoach that is developed for thin subgraphs by
usage of diagonalized hypercubes in general. ThereforayiWextend 1-neighborhoods and use also edge- and
N*-neighborhoods.

In the following, we will provide several properties of (fal) product colorings and show that in a given thin
strong product grapl® a partial product coloring®y of a subproducH < G is always a color-continuation of a
partial product colorind®pxy of any 1-neighborhoo®[x] with N[x] € V(H) andx € B(G) and vice versa. This in
turn implies that we always get a proper color-continuatrom any 1-neighborhoob[X] to edge-neighborhoods of
edges %, y) and toN;  -neighborhoods witly € N[X] and vice versa.

Lemma 3.34. Let G be a thin graph and x B(G). Moreover let B and P’ be arbitrary partial product colorings of
the induced neighborhoo@N[x]).
Then F is a color-continuation of Pand vice versa.

Proof. Let C! andC? denote the images ¢#* and P?, respectively. Note, the PFD ¢N[X]) is the finest possible
factorization, i.e., the number of used colors becomes malxi Moreover, every fiber with respect to the PFD of
(N[X]) that satisfies th&1-conditionis contained in any decomposition ¢f[x]). In other words any prime fiber
that satisfies th&1-conditioris a subset of a fiber that satisfies 8&-conditiorwith respect to any decomposition of
(N[X]).

Moreover since € B(G) it holds thaiSy(x)| = 1 and thus every edge containing verkesatisfies th&1-condition
in (N[x]). Lemma 3.13 implies that all Cartesian edges) can be determined as Cartesiarfijx]). Together with
Lemma 3.27 we can infer that each coloi@, resp.C? is represented at least on edges/| contained in the prime
fibers, which completes the proof. O

17



Figure 13:Color-continuation problem in non-thin subproduc&hown is a thin grapls that is a strong product of a path and a path containing
a triangle. The backbon&(G) consists of the verticesandy. Both neighborhoodé\[x]) and({N[y]) are not thin. After computing the PFD of
(N[X]), resp. o N[y]) one obtains a partial product coloring with coleisandcs, resp. with colors; andc,. In this example the partial product
coloring of Py, is not a color-continuation d®n(y since no edge with colar is colored in{N[x]).

Lemma 3.35. Let G = X, G; be a thin strong product graph. Furthermore let H be a subpiicf G with partial
product coloring By and({N[x]) € H with x € B(G).
Then Ry is a color-continuation of the partial product coloringyPf (N[X]) and vice versa.

Proof. First notice that Lemma 3.18 implies that B(H) and in particulaiSy(X)| = 1. Thus every edge containing
vertex x satisfies thes1-conditionin H as well as iKN[x]). Moreover, Lemma 3.27 implies that every color of the
partial product colorind?y, resp.Py, is represented at least on edges/).

Since(N[X]) is a subproduct of the subprodudtof G we can conclude that the PFD Hfinduces a local (not
necessarily prime) decomposition{[x]) and hence a partial product coloring(®[x]). Lemma 3.34 implies that
any partial product coloring aiN[X]) and hence in particular the one inducedRyyis a color-continuation oPy.

Conversely, any product coloririgy of (N[X]) is a color-continuation of the product coloring induced by PFD
of (N[X]). Since(N[X]) is a subproduct ofi it follows that every prime fiber ofN[x]) that satisfies th&1-condition
is a subset of a prime fiber ¢f that satisfies th&1-condition This holds in particular for the fibers through vertex
X, since|Sx(X)| = 1 and|Sy(X)| = 1. By the same arguments as in the proof of Lemma 3.34 one &antlirat every
product coloring oH is a color-continuation of the product coloring induced bg PFD ofH, which completes the
proof. O

We can infer now the following Corollaries.

Corollary 3.36. Let G = X' | G; be a thin strong product graphy,w) € E(G) be a Cartesian edge of G and H
denote the edge-neighborhod@d[v] U N[w]). Then any partial product coloring fPof H is a color-continuation of
any partial product coloring Ry of (N[V]), resp. of any partial product coloringp,; of (N[w]) and vice versa.

Corollary 3.37. Let G= X ,G; be a thin strong product graph ar@, w) € E(G) be an arbitrary edge of G. Then
any partial product coloring Pof the N,,,-neighborhood is a color-continuation of any partial pradeoloring Ry
of (N[V]), resp. of any partial product coloringaps of (N[w]) and vice versa.
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4. A Local PFD Algorithm for Strong Product Graphs

In this section, we use the previous results and provide argetocal approach for the PFD of thin grapBs
Notice that even if the given gragh is not thin, the provided Algorithm works d&/S. The prime factors o6 can
then be constructed by using the information of the priméofacofG/S by repeated application of Lemma 2.13.

In this new PFD approach we use in addition an algorithmgedddreadth-first search (BFS}hat traverses all
vertices of a grapl = (V,E) in a particular order. We introduce the ordering of the iceg of V by means of
breadth-first search as follows: Select an arbitrary verteX/ and create a sorted li&F S(v) of vertices beginning
with v; append all neighbong, . . ., Vgegg) Of v; then append all neighbors wf that are not already in this list; continue
recursively withv,, v, ... until all vertices ofV are processed. In this way, we build levels where eaicheveli is
adjacent to some vertex in leveli — 1 and verticesl in leveli + 1. We then call the vertew the parentof v and
vertexv achild of w.

We give now an overview of the new approach. Its top level mistructure is summarized in Algorithm 3.
Given an arbitrary thin grap8, first the backbone vertices are ordered vialireadth-first search (BFSAfter
this, the neighborhood of the first vertexfrom the ordered BFS-lisBgrs is decomposed. Then the next vertex

y € N[X] N Bgfs is taken and the edges @fl[y]) are colored with respect to the neighborhoods PFD. If thereol
continuation from{N[X]) to (N[y]) does not fail, then the Algorithm proceeds with the nextaseyt € N[X] N Bgrs.

If the color-continuation fails and both neighborhoods thia, one uses Algorithm 4 in order to compute a proper
combined coloring. If one of the neighborhoods is non-tiie Algorithm proceeds with the edge-neighborhood
(N[X] U N[y]). If it turns out that &, V) is indispensable iiN[X] U N[y]) and hence, thaiN[x] U N[y]) is a proper
subproduct (Corollary 3.9) the algorithm proceeds to dgmmsa and to colofN[x] U N[y]). If it turns out that
(%) is dispensable ifN[X] U N[y]) the N*-neighborhoods\;, is factorized and colored. In all previous steps
edges are marked as "checked” if they satisfy $ieconditionindependent from being Cartesian or not. After this,
the N*-neighborhoods of all edges that do not satisfy #ieconditionin any of the previously used subproducts,
i.e, 1-neighborhoods, edge-neighborhood:Ntineighborhoods, are decomposed and again the edges aredcolo
Examples of this approach are depicted in Figure 14 and I@llii the Algorithm checks which of the recognized
factors have to be merged into the prime facteys. . ., G, of G.

Before we proceed to prove the correctness of this local PBBrithm, we show that we always get a proper
combined coloring by usage of Algorithm 4.
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Figure 14: Depicted is the colored Cartesian skeleton ofttmestrong product grap& after running Algorithm 3 with dferent BFS-orderings
Bges of the backbone vertices. The backb@{(&) consists of the vertices 0,2 and 3.

lhs.: Bgrs = 2,1,3,0. In this case the color-continuation froN{2] to N[1] fails. hence we compute the PFD of the edge-neighborhood
(N[2] U N[1]). Notice that the Cartesian edgesy() and {/, 2) satisfy theS1-conditiorin (N[2] U N[1]) and will be determined as Cartesian. In all
other steps the color-continuation works.

rhs.: Bges = 3,0,2,1. In all casesN[3] to N[O], N[3] to N[2], N[0] to N[1]) the color-continuation works. However, after runnihe first while-
loop there are missing Cartesian edgey)and {/, z) that do not satisfy th&1-conditionn any of the previously used subprodudtgs], N[O],

N[2] and N[1]. Moreover, the edge-neighborhoodé[x] U N[y]) as well agN[Z] U N[y]) are the product of a path andka and theS1-condition

is violated for the Cartesian edges in its edge-neighbathdiese edges will be determined in the second while-looplg@éithm 3 using the
respectiveN*-neighborhoods.
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Algorithm 3 General Approach

1: INPUT: a thin graphG

B oW W W WWWWWWWNNNDNDNRNNDNDNNERERRERRRRR P
©Q © ® N O Rk WNRE O OO®NODUOR®WNREOOO®NODTHAEWNRO

N
[

: compute backbone-vertices @f order them in BFS and store themBRgs;
: X « first vertex ofBggs;

W « {x};

- FactorSubgrapkiN[x]));
: while Bggs # 0 do

H « (UpewN[W]);
for all y € N[X] N Bggs do
FactorSubgrapkN[y]));
compute the combined coloring bf and(N[y]);
if color-continuation fails fronH to N[y] then
if (N[X]) and({N[y]) are thinthen
C « {colorc | color-continuation fok fails};
Solve-Color-Continuation-Problem(KIN[y]), X, C); {Algorithm 4}
mark all vertices and all edges ¢fl[y]) as "checked”;
else if (x,y) is indispensable igN[X] U N[y]) then
FactorSubgrapkiN[x] U N[y]));
else
FactorSubgrapi\y,);
end if
compute the combined coloring bf and(N[y]);
end if
end for
deletex from Bgfs;
X « first vertex ofBges;
W« WU {x};

: end while
: while there exists a vertex € V(H) that is not marked as "checkedbd

if there exists edges,(y) that are not marked as "checkettiien
FactorSubgrapNg, );

else
take an arbitrary edge(y) € E(H);
FactorSubgrapiNy,);

end if

compute the combined coloring bf andN ;

: end while
: for each edge € E(H) do

assign color ot to edgee € E(G);

: end for
: CheckFactors(G)check and merge factors with Algorithn 6

: OUTPUT: G with coloredG;-fiber, and Factors d&;
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Algorithm 4 Solve-Color-Continuation-Problem

1: INPUT: a partial product colored gragh, a product colored grapfiN[vi]), a vertexv, setC of colors
compute coordinates @N[v]) with respect to the combined product coloring-tf
{color "j" if di ffer in coordinate "j}
for all colorsc € C {color-continuation failsdo
take one representatieg = (v,w) € E((N[v{]));
D « {k| vandw differ in coordinatek};
merge all colork € D in H to one color;
end for
compute the combined coloring Bff and(N[Vvi]);

: OUTPUT: colored graph H, colored grag[vi]);

© © N o g R N

=
o

Algorithm 5 FactorSubgraph

1: INPUT: a graphH

compute the PFD dfl and color the Cartesian edgesHrthat satisfy thes1-conditiorn
mark all verticesx with |Sy(X)| = 1 as "checked”;

mark all edges that satisfy tlgl-conditioras "checked”;

Return partially coloredH;

Algorithm 6 CheckFactors
1: INPUT: a thin product colored grap@

2: take one connected compon@tt...,G; of each color 1...,1in G;
3« {1,...,1};
4: J—|;

5. for k=1tol do
6: for eachS c Jwith |S| = kdo
7 compute two connected componeits A’ of G induced by the colored edges @fwith colori € S, and
i € I\S, resp;
computeH; = (pa(G)) andH; = (pa (G));
: if Hi X Hy, = Gthen
10: saveH; as prime factor;

11: J <« A\S;
12: end if

13:  end for

14: end for
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Lemma 4.1. Let G be a thin graph an®grs = {vi,...,Vq} be its BFS-ordered sequence of backbone vertices.

Furthermore, let H= <u‘j‘:1lN[vj]> be a partial product colored subgraph of G that obtained dfocing from a proper

combined product coloring induced by the PFD w.r.t. thersgrproduct of eackiN[v;]), j = 1,...,i — 1. Let(N[v])

be a thin neighborhood that is product colored w.r.t. to i8R Let vertex x denote the parent f AssumeN[x]) is

thin. Moreover, assume the color-continuation from HNXjv;]) fails and let C denote the set of colors where it fails.
Then Algorithm 4 computes a proper combined coloring of tierings of H and(N[vi]) with H, (N[v]), x and

C as input.

Proof. First notice that it hold§N[x]) € H = <Uij_=JiN[Vj]>. Letc € C. Hencec denotes a color iiN[v;]) such that
for all edgese € E({N[vi])) with color c holds thate was not colored ifH. Since the combined coloring H implies

a product coloring of N[X]) we can compute the coordinates of the vertice@Nfx]) with respect to this coloring.
Notice that the coordinatization KN[X]) is unique sinc&N[X]) is thin. Now Lemma 3.26 implies that there is at
least one edge € (N[vi]) with color c that contains vertex, sincex € N[v;]. Let us denote this edge l&¢ = (x, w).
Clearly, it holds &, w) € E({N[X])). Hence, this edge is not determined as Cartesiath, iand thus in particular not
in (N[X]) otherwisee; would have been colored N[X]). But sincee; is determined as Cartesian {N[vi]) and
moreover, sincéN[vi]) is a subproduct o, we can infer thaé, must be Cartesian 8. Therefore, we claim that the
non-Cartesian edge,(w) in (N[X]) has to be Cartesian {N[x]). Notice that the product coloring ¢N[x]) induced
by the combined colorings of alN[v;]), j = 1,...,i —1is as least as fine as the product coloringofl hus, we can
apply Lemma 3.33 and together with the unique coordinatimadf (N[x]) directly conclude that all colork € D,
whereD denotes the set of coordinates wha&randw differ, have to be merged to one color. This implies that we
always get a proper combined coloring and hence a proper-cottdinuation for each such colorthat is based on
those additional edges = (x, w) as defined above. O

Theorem 4.2. Given a thin graph G then Algorithm 3 determines the primedi@cof G with respect to the strong
product.

Proof. We have to show that every prime fac®rof G is returned by our algorithm.

First, the algorithm scans all backbone vertices in theig&irder stored ifBgrs, which can be done, sincgis
thin and henceB(G)) is connected (Theorem 3.17).

In the first while-loopone starts with the first neighborho®x] with x as first vertex inBggs, we proceed to
cover the graph with neighborhoobli§y] with y € Bgrs andy € N[X]. The following cases can occur:

1. If the color-continuation does not fail there is nothimgdo. Furthermore, we can apply Lemma 3.19 and
Lemma 3.27 and conclude that the determined Cartesian éugbix]), resp. in(N[y]), i.e., the Cartesian
edges that satisfy th&1-conditiorin (N[X]), resp. irKN[y]), induce a connected subgraphibif x] U N[y]).

2. If the color-continuation fails, we check{N[x]) and(N[y]) are thin. If both neighborhoods are thin we can
use Algorithm 4 to get a proper color-continuation froN]x]) to (N[y]) (Lemma 4.1).

Furthermore, since both neighborhoods are thin, for alicesv in N[x], resp. N[y], holds|Sx(v)| = 1, resp.
ISy(v)] = 1. Hence all edges itN[X]), resp.(N[y]), satisfy theS1-condition Therefore, by Corollary 3.20 the
Cartesian edges spaN[x]) and(N[y]) and thus, by the color-continuation propeki{[x] U N[y]) as well.

3. If one of the neighborhoods is not thin then we check whratieeedge X, y) is dispensable or not w.r{N[x] U
N[y]). If this edge is indispensable then Corollary 3.9 implieat #tiN[x] U N[y]) is a proper subproduct.
Corollary 3.36 implies that then get a proper color-cordiimn from({N[x] U N[y]) to (N[y]).

Furthermore, Lemma 3.18 implies th&nxunpy (¥ = 1. and|Snpxungypy(Y) = 1. From Corollary 3.20 we

can conclude that the determined Cartesian edg@$[af UN[Y]) induce a connected subgraph/bif x]UN[Y]).
4. Finally, if (x,y) is dispensable iiN[X] U N[y]) we can not be assured th&t[x] U N[y]) is a proper subproduct.

In this case we factorizy . Corollary 3.37 implies that we get a proper color-conttmrafrom Ny, to (N[y]).

Furthermore, Lemma 3.18 implies thak; (X)| = 1 and|Sn;, ()| = 1. Moreover, from Corollary 3.20 follows
that all Cartesian edges that satisfy 8te-conditioron Ny, induce a connected subgraphhdf, .

22



Clearly, the previous four steps are valid for all conse®utiackbone vertices y € Bgrs. Therefore, we always
get a proper combined coloring &f = (UywN[W]) in Line 21, sinceN[x] € H and hence, we always get a proper
color-continuation fronmH to N[y]. Furthermore, by this and the latter arguments in itepft.lconcerning induced
connected subgraphs we can furthermore conclude thattelirdimed Cartesian edges induce a connected subgraph
of H = (Uuere)N[W]). The first while-loop will terminate sincBgrs is finite.

In all previous steps verticesare marked as "checked” if there is a used subpro#ustich thaiSk(x)| = 1.
Edges are marked as "checked” if they satisfy 8#iecondition Note, after the first while-loop has terminated either
edges have been identified as Cartesian or if they have notdetermined as Cartesian but satisfy 8fecondition
they are at least connected to Cartesian edges that sdtes81tcondition which follows from Lemma 3.27. This
implies that all edges that are marked as "checked” are adadeo Cartesian edges that satisfy 8fecondition
Moreover, notice thatl = (Uwepc)N[W]) = G, sinceB(G) is a dominating set.

In the second while-loogll vertices that are not marked as "checked”, i8x(X)| > 1 for all used subproducts
K, are treated. For all those vertices e neighborhooddy, are decomposed and colored. Lemma 3.22 implies
that|Sy;, (X)| = 1 and|Sy;, (y)l = 1. Hence all Cartesian edges containing vestex y satisfy theS1-conditionin
Nx,- Lemma 3.27 implies that each color of every factoMNyf, is represented on edges containing vexgresp.,

y. Lemma 3.19 implies that all Cartesian edges that satighpticonditionin N, induce a connected subgraph of
LemmaN;,.

It remains to show that we get always a proper color-contiona Since|S (x)| > 1 for all used subproducts,
we can conclude in particular th&(x)| > 1. Therefore, we can apply Lemma 3.21 and conclude that thésts a
vertexz € B(G) s.t.ze N[x] N N[y] and henc&N([Z]) € N;,. This neighborhoodN[Z]) was already colored in one of
the previous steps sinee= B(G). Lemma 3.18 implies thaBy; (2| = 1 and thus each color of each factorf, is
represented on edges containing ve#exd all those edges can be determined as Cartesian V&l thendition We
get a proper color-continuation from the already colordaysaphH to Ny, sinceN[Z] € H andN[Z] < N;,, which
follows from Lemma 3.35 and Corollary 3.37.

The second while-loop will terminate sinb&H) is finite andSy;, (X)| = 1 for all x € V(H).

As argued before, all edges that satisfy 8tecondition which areall edges ofG after the second while-loop
has terminated, are connected to Cartesian edges thdy shsS1-condition Moreover, all vertices have been
marked as "checked”. Hence, for all vertices hgBig(x)| = 1 for some used subprodukt Since we always got
a proper combined coloring and hence, a proper color-coation, we can apply Lemma 3.27, and conclude that
the set of determined Cartesian edges induce a connggéethingsubgraphG. Moreover, by the color-continuation
property we can infer that the final number of colors@®is at most the number of colors that were used in the first
neighborhood. This number is at most lbgsince every product & non-trivial factors must have at leadt\&rtices.
Let's say we havé colors. As shown before, all vertices are "checked” and the<an conclude from Lemma 3.27
and the color-continuation property that each verexV(G) is incident to an edge with colarfor allc € {1, ..., 1}.
Thus, we end with a combined coloriftgs on G where the domain dfg consists of all edges that were determined
as Cartesian in the previously used subproducts.

It remains to verify which of the possible factors are priraetbrs ofG. This task is done by using Algorithm
6. Clearly, for some subs& c J, S will contain all colors that occur in a particul&@;-fiber G* which contains
vertexa. Together with the latter arguments we can conclude thas¢hefS-colored edges iG? spansG?. Since
the global PFD induces a local decomposition, even if thel ssdproducts are not thin, every layer that satisfies the
S1-conditionn a used subproduct with respect to a local prime factor isbset of a layer with respect to a global
prime factor. Thus, we never identify colors that occur ipies of diferent global prime factors. In other words, the
coloring Fg is a refinement of the product coloring of the global PFD, itenight happen that there are more colors
than prime factors o. This guarantees that a connected component of the grapbdddy all edges with a color
in S induces a graph that is isomorphic@. The same arguments show that the colors that are ri®iéad to the
appropriate cofactor. ThuS; will be recognized. O

Remark 4. Algorithm 3 is a generalization of the results provided i6,[17]. Hence, it computes the PFD of NICE
[16] and locally unrefined [17] thin graphs. Moreover, eviewe do not claim that the given gragghis thin one can
compute the PFD of arbitrary grapfsas follows: We apply Algorithm 3 o/S. The prime factors ofs can be
constructed by using the information of the prime factor&g% and application of Lemma 2.13.
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In the last part of this section, we show that Algorithm 3 comes the PFD with respect to the strong product of
any connected thin grapgh in O(|V| - A®) time. Clearly, this approach is not as fast as the approbelammack and
Imrich, see Lemma 2.14, but it can easily be applied for tkegaition of approximate products.

Theorem 4.3. Given a thin graph G= (V, E) with bounded maximum degree then Algorithm 3 determines the
prime factors of G with respect to the strong product i A8) time.

Proof. For determining the backbo#G) we have to check for a particular vertex V(G) whether there is a vertex
w € N[v] with N[w] N N[v] = N[V]. This can be done i®(A?) time for a particular vertew in N[v]. Since this must
be done for all vertices iN[v] we end in time-complexityD(A%). This step must be repeated for d| vertices ofG.
Hence, the time complexity for determinifi&(G) is O(|V| - A%). ComputingBgrs Via the breadth-first search takes
O(|V| + |E]) time. Since the number of edges is boundeiMyA we can conclude that this task ne€a{$V| - A) time.

We consider now the Line 6 — 27 of the algorithm. The whilegoons at mosfV| times. ComputindH in Line
7, i.e., adding a neighborhood t$, can be done in linear time in the number of edges of this ieidiood, that
is in O(A?) time. The for-loop runs at most times. Each neighborhood has at mast 1 vertices and hence at
most (A + 1) - A edges. The PFD diN[y]) can be computed i®((A + 1) - A - A%) = O(A*) time, see Lemma 2.14.
The computation of the combined coloringldfand(N[y]) can be done in constant time. For checking if the color-
continuation is valid one has to check at most for all edgeg¥;]) if a respective colored edge was also colored in
H, which can be done i®(A?) time.
Algorithm 4 computes the combined coloringléfand(N[v;]) in O(A?) time. To see this, notice that

1. the computation of the coordinates of the product colaeighborhoodN[Vv]) can be done via a breadth-first
search iN[v]) in O(IN[V]| + [E(N[V]))]) = O(A + A?) = O(A?) time.

2. by the color-continuation property can have at most as many colors as there are colors for thadigdtbor-
hood(N[v1]). This number is at most log{, because every product kfnon-trivial factors must have at least
2¢ vertices. Thus the for-loop is repeated at mostAddimes. All tasks in between the for-loop can be done in
O(A) time and hence the for-loop tak€glog(A) - A) time.

3. the computation the combined color can be done linearémtimber of edges aN[vi]) and thus inO(A?)
time.

It follows that all "if” and "else” conditions are bounded ltlye complexity of the PFD of the largest subgraph that is
used and therefore by the complexity of the PFINGS.

EachN*-neighborhood has at mostA-(A—1) vertices. Therefore, the number of edges in édicheighborhood
is bounded by (3 A- (A -1))-A. By Lemma 2.14 the computation of the PFD of e&fhand hence, the assignment
to an edge of being Cartesian is boundedd§f(1 + A - (A — 1)) - A) - A% = O(A®). Again, this will be repeated for
all vertices and thus the time complexityQ|V| - A%). Considering all steps of Line 6 — 27 we end in an overall time
complexityO(|V| - A - AS) = O(|V] - A9).

Using the same arguments, one shows that the time compleixibe second while-loop i©(V| - A®). The last
for-loop (Line 37—39) needd(|E|) = O(V - A) time.

Finally, we have to consider Line 40 and therefore, the cewipl of Algorithm 6. We observe that the size lof
is the number of used colors. As in the proof of Theorem 4.2¢aveconclude that this number is bounded by A9g(
Hence, we also have at mastsetsS, i.e., color combinations, to consider. In Line 7 of Algbrit 6 we have to find
connected components of graphs and in Line 9 of Algorithm éheae to perform an isomorphism test for a fixed
bijection. Both tasks take linear time in the number of edgfeéke graph and hend@(|V| - A) time.

Considering all steps of Algorithm 3 we end in an overall ticoenplexityO(|V| - AS). O

5. Approximate Products

Finally, we show in this section, how Algorithm 3 can be maatifand be used to recognize approximate products.
For a formal definition of approximate graph products we begith the definition of the distance between two
graphs. We say theistance ¢G, H) between two graph& andH is the smallest integéds such thatG andH have
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representation§’, H’ for which the sum of the symmetricftiérences between the vertex sets of the two graphs and
between their edge sets is at mksThat is, if

V(G)aV(H) +|E(G)2aEH") <k
A graphG is ak-approximate graph produdtthere is a producH such that
d(G,H) <k
As shown in [16]k-approximate graph products can be recognized in polyrdima.

Lemma 5.1([16]). For fixed k all strong and Cartesian k-approximate graph prod can be recognized in polyno-
mial time.

Without the restriction ok the problem of finding a product of closest distance to a giraphG is NP-complete
for the Cartesian product. This has been shown by FeigenlaahiHaddad [6]. We conjecture that this also holds
for the strong product. Moreover, we do not claim that the akyerithm for the recognition of approximate products
finds an optimal solution in general. However, the given athm can be used to derive a suggestion of the product
structure of given graphs and hence, of the structure ofltitgagfactors.

X N~

[ R R Y
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Figure 15: An approximate produétof the product of a path and a path containing a triangle. €halting colored graph after application of the
modified Algorithm 3 is highlighted with thick and dashed eslgé/e seP = 1, i.e., we do not use prime subproducts and hence only thieegrt
0,1,..., 5 are used. Taking out one maximal component of each color wealttitb appropriate approximate factorssof

Let us start to explain this approach by an illustrating epl@mConsider the grap® of Figure 15. It approximates
Ps X PT, whereP; denotes a path that contains a triangle. Suppose we are maivthis fact. Clearly, ifG is
non-prime, then every subproduct is also non-prime. Weofaxt every suitable subproduct of backbone vertices
(1-neighborhood, edge-neighborhoddf-neighborhood) that is non-prime and try to use the infoiomato find a
product that is either identical t6 or approximates it. The backbo#¢G) is a connected dominating set and consists
of the vertices 01,...,5 and all vertices marked with "x”. The induced neighborhaddall "x” marked vertices
is prime. We do not use those neighborhoods, but the one®ofettiices 01, ..., 5, factorize their neighborhoods
and consider the Cartesian edges that satisfyStheonditionin the factorizations. There are two factors for every
such neighborhood and thus, two colors for the Cartesiaasitigevery neighborhood. If two neighborhoods have a
Cartesian edge that satisfy tBd-conditionin common, we identify their colors. Notice that the colentinuation
fails if we go from(N[2]) to (N[3]). Since the edge (3) is indispensable itN[2]UN[3]) and moreoverN[2]UN][3])
is not prime, one factorizes this edge-neighborhood and gedper color-continuation. In this way, we end up with
two colors altogether, one for the horizontal Cartesiaresdmd one for the vertical ones.Gfis a product, then the
edges of the same color span a subgraph with isomorphic coenpsy that are either isomorphic to one and the same
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Figure 16: Shown is a prime gra@) also known as twisted product, wi(G) = {0, 1, 2, 3}. Each PFD of 1-neighborhoods leads to two factors.
Notice thatG can be considered as an approximate product of aRa#nd a cycleC4. After application of the modified Algorithm 3 witR = 1

we end with the given coloring (thick and dashed lines). figkbne minimal component of each color would lead to appropapproximate
factors ofG.

factor or that span isomorphic layers of one and the samerfaCtearly, the components are not isomorphic in our
example. But, under the assumption t@ais an approximate graph product, we take one component &br &aor.
In this example, it would be useful to take a component of maxsize, say the one consisting of the horizontal thick-
lined edges through vertex 2, and the vertical dashed-kadges through vertex 3. These components are isomorphic
to the original factor$s andP]. It is now easily seen th& can be obtained frorRs X P] by the deletion of edges.
Other examples of recognized approximate products arershofkigure 16 and 17.

As mentioned, Algorithm 3 has to be modified for the recognitof approximate products. We summarize the
modifications we apply:

M1. G/S is not computed. Hence, we do not claim that the given (dist)y product is thin.

M2. Item M1 and Theorem 3.17 imply that we cannot assume ti@btackbone is connected. Hence we only
compute a BFS-ordering on connected components induceddiypbne vertices.

M3. We only use those subproducts (1-neighborhoods, edigtinorhoodN*-neighborhood) that have more than
P > 1 prime factors, wher® is a fixed integer.

M4. We do not apply the isomorphism test (line 40).

M5. After coloring the graph, we take one minimal, maximaladbitrary connected component of each color. The
choice of this component depends on the problem one wantsgolized.

First, the quotient grapf®/S will not be computed, since the computation®fS of an approximate product
graphG may result in a thin graph where a lot of structural inforrmathas been lost.

Moreover, deleting or adding edges in a product gridphesulting in a disturbed product gra@h usually makes
the graph prime and also the neighborho@d$[v]) that are diferent fromkN"[v]) and hence, the subproducts (edge-
neighborhoodN*-neighborhood) that contaiN®[v]). In Algorithm 3, we therefore only use those subproducts of
backbone vertices that are at least not prime, i.e., ongatsshe set of allowed backbone vertices to those where the
respective subproducts have more tlfan 1 prime factors and thereby limiting the number of allowelmoducts.
Hence, no prime regions or subproducts that have less ot #gueP prime factors are used. Therefore, one does not
merge colors of dferent locally determined fibers to orB/colors, after the computation of a combined coloring.

The isomorphism test (line 40) in Algorithm 3 will not be ajgl. Thus, in prime graphS one does not merge
colors if the product of the corresponding approximate priactors is not isomorphic 8.

After coloring the graph, one takes out one component of ealdr to determine the (approximate) factors. For
many kinds of approximate products the connected compsr#rgraphs induced by the edges in one component
of each color will not be isomorphic. In the example in Figlite where the approximate product was obtained by
deleting edges, it is easy to see that one should take themabzonnected component of each color.
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Figure 17: An approximate produ@ of the prime factors shown in Figure 15. In this exam@lés not thin. Obviously, this graph seems to be
less disturbed than the one in Figure 15. The thick verticdEate the backbone vertices with more tties 1 prime factors. Application of the
modified Algorithm 3 orG (without computingG/S), choosingP = 1 and using only the thick backbone vertices leads to a ecajowith the four
colorscy, ¢y, c3 andcy. This is due to the fact that the color-continuation fail§jieh would not be the case if we would allow to use also prime
regions.

Clearly, this approach needs non-prime subproducts. It wiothe subgraphs in an approximate prodGcare
prime, one would not expect to obtain a product colorin@pthat can be used to recognize the original factors, but
that can be used e.g. for determining maximal factorizabbggaphs or maximal subgraphs of fibers. Hence, this
approach may provide a basis for the development of furtleristics for the recognition of approximate products.
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