Splicing conservation signals in plant long non-coding RNAs
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Abstract

Long non-coding RNAs (IncRNAs), With a length of at least 200 nt and little to no protein-coding potential, have
recently emerged as prominent regulators of gene expression in eukaryotes. LncRNAs often drive the modification
and maintenance of gene activation or gene silencing states via chromatin conformation rearrangements. In plants,
IncRNAs have been shown to participate in gene regulation, and are essential to processes such as vernalization and
photomorphogenesis. Despite their prominent functions, however, only over a dozen IncRNAs have been experimen-
tally and functionally characterized.

Little is known about the evolutionary patterns of IncRNAs plants. The rates of divergence are much higher in
IncRNAs than in protein coding mRNAs, making it difficult to identify IncRNA conservation using traditional se-
quence comparison methods. One of the few studies that has tried to address this found only 4 IncRNAs with po-
sitional conservation and 15 conserved at the sequence level in Brassicaceaee. Here, we characterised the splicing
conservation of IncRNAs in Brassicaceace. We generated a whole-genome alignment of 16 Brassica species and used
it to identify synthenic IncRNA orthologues. Using a scoring system trained on transcriptomes from A. thaliana and B.
oleracea, we identified splice sites across the whole alignment and measured their conservation. Our analysis revealed
that 17.9% (112/627) of all intergenic IncRNAs display splicing conservation in at least one exon, an estimate that
is substantially higher to previous estimates of IncRNA conservation in this group. Our findings agree with similar
studies in vertebrates, suggesting that splicing conservation can be evidence of stabilizing selection and thus used to
identify functional IncRNAs in plants.

Key words: long non-coding RNAs, IncRNA, splice sites, multiple sequence alignments, evolution, conservation,
evolutionary plasticity.

1. INTRODUCTION of protein-coding genes as well as small RNAs, recently
reviewed by |Liu et al.| (2015)); (Chekanoval (2015); |Ulit-
sky| (2016); Wang Chekanoval (2017); [Yamadal (2017):
The majority of the IncRNAs are found in the nucleus
associated with the chromatin, regulating gene expres-
sion by recruiting components of the epigenetic ma-
chinery to specific genomic locations. Some IncRNAs
also influence genome stability and nuclear domain

organization. Serving as as molecular sponges and

Long non-coding RNAs (IncRNAs), by definition, do
not code for proteins. Over the last decade, a wide
variety of mechanisms has been discovered by which
IncRNAs contribute to the regulation of the expression
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decoys they act both a the transcription level by af-
fecting RNA-directed DNA methylation, and in post-
transcriptional regulation by inhibiting the interaction
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between microRNAs (miRNAs) and their target mes-
senger RNAs (mRNAs). Sequestering splicing factors,
they are also involved in the control alternative splic-
ing (Bardou et al., 2014). Hence they differ not only
in size but also in their molecular mechanisms from
small RNAs such as miRNA and siRNAs (Banfai et al.|
2012). Instead, they are regulated and processed sim-
ilar to mRNAs (Mercer Mattick, [2013)). The expres-
sion patterns of IncRNAs are often very specific for
particular tissues or developmental stages. Recent data
suggest that there appears to be a distinction between
highly conserved, constitutively transcribed IncRNAs
and tissue-specific IncRNAs with low expression levels
(Deng et al., [2018b).

Systematic studies into the evolution of plant
IncRNAs have been rare until very recently. An anal-
ysis of IncRNAs in five monocot and five dicot species
(Deng et al.| 2018b) found that the majority of IncRNAs
well conserved at sequence level, while a minority is
highly divergent but syntenically conserved. These po-
sitionally conserved IncRNAs were previously found to
be locate near telomeres in A. thaliana (Mohammadin
et al., |2015). Plant IncRNAs also display canonical
splicing signals (Deng et al., 2018b).

Despite their often very poor sequence conservation,
the majority of IncRNAs is well-conserved across ani-
mal families, as evidenced by the conservation of many
of their splice sites (Nitsche et al.l [2015). While well-
conserved as entities, they show much more plasticity
in their gene structure and sequence than protein-coding
genes. The many lineage-specific differences have im-
plicated IncRNAs as major players in lineage-specific
adaptation (Lozada-Chavez et al., 2011): changes in
transcript structure are likely associated with the inclu-
sion or exclusion of sets of protein or miRNA binding
sites and hence may have large effects on function and
specificity of a particular IncRNA.

The systematic annotation of orthologous IncRNAs
is important not only to provide reasonably complete
maps of the transcriptome, but also as means of estab-
lishing that a particular IncRNA has a biological func-
tion. After all, conservation over long evolutionary
timescales is used as the most important argument for
the biological function of an open reading frame in the
absence of direct experimental evidence for translation
and experimental data characterizing the peptide prod-
uct. While a large amount of work is available showing
that vertebrate genome contain a large number of sec-
ondary elements that are under negative selection (See-
mann et al., 2017; [Smith et al.l [2013; [Hezron1 et al.,
2015;|Nitsche Stadler,|2016) and the majority of human
IncRNAs are evolutionary old (Nitsche et al., [2015)), a

much less systematic and complete picture is available
for plants.

Nevertheless, there are some plant IncRNAs whose
regulatory functions have been studied extensively and
are understood at a level of detail comparable to most
proteins (Rai et al.l 2018): COOLAIR in Brassicaceaee
has a crucial role in the vernalization process (Hawkes
et al., [2016) and its transcription accelerates epigenetic
silencing of the flowering locus C (FLC) (Rosa et al.|
2016). The IncRNA HID1, a key component in promot-
ing photomorphogenesis in response to different levels
of red light (Wang et al.| |2014). HIDI is highly con-
served an acts binds to chromatin in trans to act upon
the PIF3 promoter. A similar trans-acting IncRNA is
ELENAI, which functions in plant immunity (Mach|
2017). Competing endogenous RNAs (ceRNAs) acts as
“sponges” for miRNAs. In plants, ceRNAs are a large
class of IncRNAs (Yuan et al.l |2017; [Paschoal et al.,
2018) and form extensive regulatory networks (Meng
et al.l 2018} Zhang et al., |2018)). The paradigmatic ex-
amples in A. thaliana is IPS1, which sequesters miR399
(Franco-Zorrilla et al.| [2007).

Although the functional characterization of IncRNAs
is confined to a small number of cases, plant IncRNAs
are being reported at a rapidly increasing pace (Nel-
son et al.l 2016). As in the case of animals, it is im-
portant therefore find evidence for the functionality of
individual transcripts. Differential expression alone, or
correlations with important regulatory proteins or path-
ways alone does provide evidence to decide whether a
transcript has a causal effect or whether its expression
pattern is a coincidental downstream effect. As a first
step towards prioritizing candidates, we advocate to use
unexpectedly deep conservation of the gene structure
as an indicator of biological function. While logically
this still does not inform about function in an specific
context, it is much less likely that changes expression
patterns of a functional molecule are without biological
consequence.

The much higher level of plasticity in plant genomes,
compared to animal genomes, potentially makes it more
difficult to trace the evolution of IncRNAs. We therefore
concentrate here on a phylogenetically relatively narrow
group, the Brassicaceaee, with genomes that are largely
alignable with each other. As a consequence we trace
the conservation of functional elements, in particular
splice junctions, through the entire data set. This pro-
vides direct evidence also in cases where transcriptome
date are not available in sufficient coverage and or suf-
ficient diversity of tissues and/or developmental stages.
As a final result, this study produced a list of homol-
ogous IncRNAs in Brassicaceaee as well as a detailed



map of the conservation of splice sites in this clade.

2. MATERIALS AND METHODS

2.1. Whole genome alignment

We selected sixteen genomes from genomes of plant
from the Brassicaceaee family available in NCBI, Phy-
tosome and Ensembl-Plants (Supplemental Table S1)
based on the quality of assembly, as measured by the
number of contigs/scaffolds. All genomes were down-
loaded in fasta format. Mitochondrial and chloroplast
sequences were excluded based on annotation.

The genomes were aligned using Cactus (Paten
et al) [2011). Like other whole genome alignments
(WGA) methods, Cactus uses small regions with very
high sequence similarity as anchors. To resolve conflicts
at this level, Cactus uses a specialized graph data struc-
ture that produces better overall alignments than other
WGA approaches (Earl et al.| 2014). The final WGA
result were stored in HAL format (Hickey et al., [2013)
for further processing.

2.2. Transcriptome data and assembly

We used four previously published base-line tran-
scriptomes for A. thaliana (Liu et al.l [2012) (GEO ac-
cession number GSE38612), as well as transcriptomes
of shade response experiments from (Kohnen et al.|
2016) (GEO accession number GSE81202). For Bras-
sica oleracea wse used transcriptomes from (Yu et al.|
2014) (GEO accession number E-GEOD-42891). All
transcriptomes were downloaded as raw reads in fastq
format.

To generate our own IncRNA annotation, the
57 single end stranded sequencing libraries from
(Kohnen et all 2016) were quality-filtered using
Trimmomatic (Bolger et al., 2014), and mapped to
the TAIR10 genome (Berardini et al) [2015) using
tophat v2.1.1 (Trapnell et al, [2009) with pa-
rameters: -I 20 -I 1000 -read-edit-dist 3
-read-realign-edit-dist O -library-type
fr-firstsrand -g 1. Transcripts were asembled
by Cufflinks v2.2.1 (Trapnell et al., 2010) with
parameters: --overlap-radius 1 -p 8 -I 1000
-min-intron-length 20 -g TAIR10_GFF3.gff
-library-type fr-firststrand and subsequently
merged into a single reference transcriptome using
Cuffmerge.

2.3. IncRNA Annotation

LncRNAs in the (Kohnen et al.| 2016) dataset were
annotated using two independent methods. First, cod-
ing and non-coding transcripts were identified with CPC
(Coding Potential Calculator) (Kong et all [2007), a
support vector machine classifier. Additionally, we
used Cabili’s strict stepwise annotation workflow (Ca-
bili et al., 2011) on all transcripts. Specifically, we re-
moved transcripts less than 200 nt in length, and iden-
tified ORFs 75 aminoacids (AA) or longer. Identified
ORFs were compared against the NCBI non redundant
(nr) database using blastx and blastp (Altschul et al.|
1990) with E-value and cutoff of E < 10 for hits to
be considered significant. In addition, we used HMMER
(Finn et al.| [2011)) to search for Pfam protein domains,
signalP (Nielsen Kroghl|[1998) to identify signal pep-
tides, and tmhmm (Krogh et al. 2001) for transmem-
brane helices. Only sequences that had no similarity
with proteins in nr and no identifiable protein domains,
signal peptides or transmembrane domains were anno-
tated as bona fide IncRNAs.

To characterize the genomic context of identified
IncRNAs, we used bedtools (Quinlan Hall, 2010)
and compared the IncRNA annotation with the pro-
tein coding gene annotation in Araportl1 (Cheng et al.
2017). All IncRNA candidates that overlapped a cod-
ing sequence or some other ncRNA (miRNA, snoRNA,
snRNA) by at least 1 nt were discarded. We classified
IncRNAs as adjacent if they were located within 500 nt
upstream of downstream of a coding gene, and as in-
tergenic, i.e., lincRNAs, otherwise. IncRNAs that were
fully contained within intronic regions were annotated
as intronic.

2.4. Splicing map

The construction of splicing maps requires a seed set
of experimentally determined splice sites in at least one
species as well as a statistical model to assess the con-
servation of splice donors and splice acceptors when-
ever no direct experimental evidence is available.

To obtain these data for Brassicaceaee, we mapped
the reference transcriptomes to the corresponding ref-
erence genome using STAR (Dobin et al.l |2013) using
default parameters. The table of splice junctions pro-
duced by STAR for each data set were concatenated.
Only splice junctions that (a) had at least 10 uniquely
mapped reads crossing the junction, and (b) showed the
canonical GT/AG dinucleotides delimiting the intron (c)
within an intron of size between 59 bp and 999 bp were
retained for subsequent analyses. Since some of the



transcriptome datasets were not strand-specific we in-
cluded CT/AC delimiters, interpreting these as reverse-
complements.

For each identified splice site in A. thaliana, we
used the HalTools liftover tool (Hickey et al., [2013)
to determine the corresponding orthologous positions
in all other genome sequences in the Cactus gener-
ated WGA. For each of the retained splice-site we ex-
tracted the genomic sequences surrounding the donor
and acceptor sites. If more than one homolog per
species is contained in the WGA, we retained the candi-
date with the highest sequence similarity to A. thaliana.
For each known splice site and their orthologous po-
sition, the MaxEntScan splice-site score (MES) (Yeo
Burge, |2004) was computed with either the donor or
acceptor model provided the corresponding region con-
tained neither gaps nor ambiguous nucleotides. Oth-
erwise, the regions was treated as non-conserved. A
MaxEntScan splice-site score cutoff of 0 was used. All
positively predicted splice-site, i.e., those with MES >
0, were added to the splicing map. The pipeline im-
plementing this analysis strategy is available at: bit-
bucket.org/Jose AntonioCorona/splicing_map-_plants.

2.5. Data Availability

TrackHubs for all datasets and IncRNAs used
in this study as well as WGA are available here:
de.cyverse.org/dl/d/F42267D1-B51F-4E9F-80F4-

1536834B8SEC2/hub.txt

Additional information as well ma-
chine readable intermediate results
are provided at http://www.bioinf.uni-

leipzig.de/Publications/SUPPLEMENTS/19-001

3. RESULTS

3.1. Identification of splice sites and IncRNAs

We predicted about 125,000 introns using the tran-
scriptomes of Liu et al. 2012 (Liu et al.l 2012) com-
pared with 175,000 introns annotated in TAIR10 (Re-
lease 38) (Berardini et al., [2015). The smaller num-
ber was expected as only introns with convincing cov-
erage by uniquely mapping reads were considered (see
Methods). Additionally, not all A. thaliana genes are
expressed in the four transcriptomes used for building
the splice map. Consistent with previous reports (Hebs-
gaard,|1996; Brown et al.,|1996), the vast majority of the
detected splice junctions have the canonical GT/AG mo-
tif required for inclusion into our splice site map. In to-
tal, we identified 222,772 individual sites in A. thaliana
(117,644 donor and 121,002 acceptor sites).

To characterize splicing conservation in IncRNAs,
we focused solely on intergenic non-coding RNAs
(lincRNAs), as conservation in splice sites of IncRNAs
overlapping with coding genes may be confounded by
the coding gene conservation signal, resulting in false
positives. The IncRNAs described by |Liu et al.|(2012)
comprise only 595 lincRNAs with annotated introns
(Liu et all 2012), while in Araportll (Cheng et al.,
2017) only 288 annotated lincRNAs out of 2,444 have
introns. We therefore used an alternate set of IncRNAs
expressed in A. thaliana cotyledons and hypocotyls
in Col-0 plants in normal light or shade conditions
(Kohnen et al.l 2016). These libraries were stranded,
and had three replicates as well as sufficient depth to
produce a high confidence IncRNA annotation. We
identified 2,375 IncRNAs transcripts, 1,465 of which
overlapped with protein coding RNAs, while 808 were
found in intergenic regions and were thus considered
bona fide lincRNAs. In our analysis, we found 159
lincRNAs that were included in neither Araportll nor
TAIR10 (Cheng et al., [2017; Berardini et al. 2015).
Given that the datasets come from only two experi-
mental conditions (shadow and light) (Kohnen et al.
2016)), they encompass only a fraction of the IncRNAs
expressed throughout the A. thaliana life cycle. All 808
lincRNAs transcripts aggregated in 627 lincRNA genes,
of which 58 have multiple isoforms. In constrast to
the situation in animals, lincRNAs are therefore mostly
mono-exonic in A. thaliana. Of the 627 lincRNA genes,
only 173 had at least one intron and thus were used to
test splice site conservation in IncRNAs.

3.2. Conservation of IncRNAs

In the WGS, the other Brassicaceaee species cover
between 69.6% to 44.2% of the A. thaliana genome.
For the protein-coding genes annotated in Araportl1
(Cheng et al.l [2017) the coverage ranges from 95.3%
(26,153/27,445) (A. lyrata) to 86.9% (23,856/27,445)
(Aethionema arabicum). As expected, the values are
substantially lower for the Araportl1 lincRNAs, where
we recover between 77.1% (1,885/2,444) in A. lyrata
and 50.8% (1243/2444) in (A. arabicum). Using our
annotation, we find between 62.0% (389/627) in A.
lyrata and 38.1% (239/627) in (A. arabicum), i.e., val-
ues comparable to the overall coverage of the genome.
This reflects the fact that IncRNA sequences experience
very little constraint on their sequence. Conservation
(as measured by alignability) is summarized in Fig. [I]
for different types of RNA elements. These values are
comparable to a previous estimate of about 22% of the
lincRNA loci are at least partially conserved at the se-
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quence level in the last common ancestor of Brassi-
caceaee (Nelson et al.,[2016).

Conservation of splice sites is a strong indication for
the functionality of the transcript. In order to evaluate
splice site conservation quantitatively, we constructed
a splicing map that identifies for every experimentally
determined splice site the homologous position in the
other genomes and evaluates them using the MES (see
Methods for details). Fig. ] shows the splicing map for
the lincRNA TCONS00053212-00053217 as an illus-
trative example. Despite the unusually complex tran-
script structure and the conservation throughout the
Brassicaceae, so far nothing is know of the function of
this lincRNA. While not all splice sites are represented
in all species in the WGA, almost all MES values are
well above the threshold of MES > 0. Most of the iso-
forms therefore can be expected to present throughout
the Brassicaceae, even though the locus is not annotated
in Ensembl Plants (release 42) for B. oleracea, B. rapa,
and A. lyrata. Only the the short first exon and the 5’
most acceptor of the last exon are poorly conserved even
in close relatives of A. thaliana.

On a genome-wide scale, the conservation of splice
sites in lincRNAs provides a lower bound on the fraction
of lincRNAs that are under selective constraint as a tran-
script. We find that 112 of the 173 spliced A. thaliana
lincRNAs have at least one conserved splice site in an-
other species (Fig.[2).

As expected, we find that splice sites in lincRNAs
are much less well conserved than splice sites in pro-
tein coding genes (Fig. [). In total, we identified 39
lincRNAs conserved between the most distant species
and A. thaliana and 26 lincRNAs with conservation in
at least one splice site in the 16 species included in the
WGA. These numbers are much lower than for coding
genes. Albeit this is expected, given the high conserva-
tion of protein coding genes, one has to keep in mind
that coding genes on average have at least 6 introns
(Deng et al., 2018b), hence it is much more likely to
observe conservation of at least one splice site and in
lincRNAs with only one or two introns, see Fig. [2]

In comparison to vertebrates, we observe a much
lower level of conservation as measured by gene struc-
ture. For instance, 35.2% of the transcripts are con-
served between human and mouse (Nitsche et al.,[2015)),
while we find only 6.2% (39/627) of total of own
lincRNAs conserved between A. thaliana and A. ara-
bicum and Araportl1 lincRNAs 1.3% (32/2444). This
difference is even more striking given the fact that the
evolutionary distance between human and mouse (~75
Mya)(Waterston et al.l |2002) is larger than between A.
thaliana and A. arabicum (~54 Mya)(Beilstein et al.|

2010).

Transposable elements (TEs) are important factors in
IncRNA origin (Kapusta et al.l 2013). In order to see
if conserved lincRNAs have a relation with TEs, we
compared our 627 lincRNAs with the genomic posi-
tions of TEs described in Araportl1 database. We find
only 149 of 627 lincRNAs overlap with TEs and these
lincRNAs display significantly lower positional conser-
vation than other lincRNAs in the WGA. Indeed, only
11 were found to be positionally conserved between A.
thaliana and B. rapa. The number of TEs coincident
lincRNAs with splicing sites is even smaller; of the 173
lincRNAs with introns only 11 overlapped with TEs.
From the total of TEs in Araportll database (3,897)
only 450 are conserved for position in the WGA be-
tween A. thaliana and A. arabicum. This represents only
11.5% of the TEs, i.e., less than the conservation level
of the lincRNAs by genomic position (Fig. [I).

4. Discussion

In this work we explore the conservation of IncRNAs
in the Brassicaceae plant family and we find conserva-
tion at different levels: from 627 lincRNAs identified
we have 38.1% (239/627) conserved by genomic po-
sition as determined by the presence of alignable se-
quence. Only a small fraction (27.6) of the lincRNAs
contains introns. Of these, only 19.1 % are conserved
between A. thaliana and B. oleracea, the species with
the lowest level of conservation in our data set. While
sequence conservation may be a consequence of se-
lective constraints on DNA elements, conservation of
splice sites directly indicates selective constraints at the
transcript level, and thus can be interpreted as evidence
for an (unknown) functional role of the lincRNA. The
112 lincRNAs with conserved splice sites are therefore
attractive candidates for studies into lincRNA function.

Comparing the 38.1% (239/627) of conservation of
lincRNAs in Brassicaceae with others family of plants,
for example Poaceae, we find that in maize and rice
have around 20% of lincRNAs conserved by position in
WGA (Wang et al., |2015)). These numbers are roughly
comparable given that the divergence times of the two
families are similar: Brassicaceae 52.6 Mya (Kagale
et al., [2014), Poaceae 60 Mya (Charles et al., [2009).
This difference my be explained by the much large
genome size, and thus higher content in repetetive el-
ements and unconstrained sequence, leaving conserved
sequence regions more “concentrated” — and thus easier
to align — in the small genomes of Brassicaceae. Con-
sistent with previous findings we find that only a small
fraction of our lincRNAs associated with TEs compared



to a much strong association in e.g. in Poacea (Wang
et al.,[2017). We interpret this to be consequence of the
strong reduction of genome size in Brassicas. More de-
tailed comparisons of lincRNA conservation among dif-
ferent families will have to await better assembled and
annotated genomes as basis for WGAs.

There is clear evidence that the conservation of splic-
ing sites is an important factor in vertebrates, where
about 70% of the IncRNAs are conserved in placental
mamnals (Nitsche et al.| [2015). In Brassicaceae we
find a much lower level of conservation. At least in
part this difference is the consequence of prevalence of
single-exon lincRNAs in this clade and the small num-
ber of splice sites in those lincRNAs that contains in-
trons. This reduced the power of the method and hints a
reduced importance of introns in the small genomes of
Brassicaceae. However, this may also be a result of us-
ing A. thaliana as a reference which, in addition to dras-
tic genome reduction, may have been subjected to clade-
specific intron-loss. Transcriptomes of other Brassicas
and other plant families that have not undergone drastic
genome reduction will clarify the actual prevalence on
monoexonic and intron-gain -loss in plant IncRNAs.

A limitation of our work is the restriction to inter-
genic IncRNAs, caused by the need to avoid potential
overlaps of the splice sites with other constrained ele-
ments. High quality transcriptomes for most the species
could alleviate this shortcoming since it would allow us
to construct the splicing map based on experimental evi-
dence only. Spurious sequence conservation would then
no longer influence the results. This is of particular rel-
evance in Brassicaceae, since about 70% of transcript
have antisense IncRNAs (Wang et al.,[2014). These had
to be excluded from our the analysis even though at least
some of them, e.g. COOLAIR (Hawkes et al.,|2016)), are
known to have important biological functions. Com-
plementarily to the analysis of splice site conservation,
conserved RNA secondary structure can serve as evi-
dence of section constraints on the RNA level, see e.g.
(Washietl et al.l 2005). This would also be applicable
to unspliced transcripts. So far, no genome-wide as-
sessment of RNA secondary structure conservation has
been reported for plants, however. recent structurome
sequence data indicates RNA structure is under selec-
tion at genome-wide levels also in plants (Deng et al.,
2018a).
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Figure 1: Conservation of genes by position in WGA. Own: lincRNAs genes expressed in shade experiments (Kohnen et al.|

2016). Araportll database annotations [2017): 1incRNAs (long intergenic non-coding RNAs), NAT (Natural anti-
sense transcripts), mRNAs (messenger RNAs of coding genes), miRNA (microRNAs), Pseudocoding (Pseudocoding genes), TE
(Transposable elements), snoRNA (Small nucleolar RNAs)

]



0 10 20 30
Splicing sites

lincRNA
3

Isoforms

<60
Z 40

20
0

lincR

— 10 15
Species in WGA
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Figure 4: Splicing conservation map of lincRNA locus TCONS00053212-TCONS00053217. A) UCSC Genome browser
screenshot of the TCONS00053212-TCONS00053217 locus, blocks denote exons and line with arrows introns. The arrow di-
rection indicates direction of transcription. Splicing sites are shown in purple. Light blue blocks represent aligned regions as
identified by Cactus. B) Heatmap of TCONS00053212-TCONS00053217 MES each splice sites (columns) in each species (rows),
linked to its position in panel A with a purple line. MES are shown from more negative (light yellow) to more positive (dark blue).
MES values > 0 were used to identify conserved splice sites.
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SUPPLEMENTAL MATERIAL

Table S1 - Genome versions used in this study.

Species Ensembl ID Source
Aethionema arabicum GCA_000411095.1 NCBI
Arabidopsis halleri GCA_900078215.1 Phytosome v12
Arabidopsis lyrata GCA_000004255.1 Ensembl-Plants

Arabidopsis thaliana
Arabis alpina
Boechera stricta
Brassica napus
Brassica rapa
Camelina sativa
Capsella rubella
Leavenworthia alabamica
Raphanus sativus
Schrenkiella parvula
Sisymbrium irio
Brassica oleracea
Eutrema salsugineum

GCA_000001735.1 TAIR10

GCA_000733195.1
GCA_002079875.1
GCA_000686985.1
GCA_000309985.1
GCA_000633955.1
GCA_000375325.1
GCA_000411055.1
GCA_000801105.2
GCA_000218505.1
GCA_000411075.1
GCA_000695525.1
GCA_000478725.1
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Ensembl-Plants
NCBI
NCBI
Ensembl-Plants
Ensembl-Plants
NCBI
Phytosome v12
NCBI
NCBI
NCBI
NCBI
Ensembl-Plants
NCBI
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