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Abstract

We present theoretical foundations, and a practical implementation, that makes

the method of Algebraic Dynamic Programming available for Multiple Context-

Free Grammars. This allows to formulate optimization problems, where the

search space can be described by such grammars, in a concise manner and solu-

tions may be obtained efficiently. This improves on the previous state of the art

which required complex code based on hand-written dynamic programming re-

cursions. We apply our method to the RNA pseudoknotted secondary structure

prediction problem from computational biology.
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1. Introduction

Dynamic programming (DP) is a general algorithmic paradigm that lever-

ages the fact that many complex problems of practical importance can be solved

by recursively solving smaller, overlapping, subproblems [15]. In practice, the

efficiency of DP algorithms is derived from “memoizing” and combining the so-5

lutions of subproblems of a restricted set of subproblems. DP algorithms are
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particularly prevalent in discrete optimization [13, Chp. 15], with many key

applications in bioinformatics.

DP algorithms are usually specified in terms of recursion relations that it-

eratively fill a multitude of memo-tables that are indexed by sometimes quite10

complex objects. This makes the implementation of DP recursions and the

maintenance of the code a tedious and error prone task [20].

The theory of Algebraic Dynamic Programming (ADP) [21] circumvents

these practical difficulties for a restricted class of DP algorithms, namely those

that take strings or trees as input. It is based on the insight that the struc-15

ture of recursion, i.e., the construction of the state space, the evaluation of

sub-solutions, and the selection of sub-solutions based on their value can be

strictly separated. In ADP, a DP algorithm is completely described by a con-

text free grammar (CFG), an evaluation algebra, and a choice function. This

separation confers two key advantages to the practice of programming: (1) The20

CFG specifies the state space and thus the structure of the recursion without

any explicit use of indices. (2) The evaluation algebra can easily be replaced

by another one. The possibility to combine evaluation algebras with each other

[59] provides extensive flexibility for algorithm design. The same grammar thus

can be used to minimize scores, compute partition functions, and enumerate a25

fixed number of sub-optimal solutions.

As it stands, the ADP framework is essentially restricted to decompositions

of the state space that can be captured by CFGs. This is not sufficient, however,

to capture several difficult problems in computational biology. We will use here

the prediction of pseudoknotted RNA structures as the paradigmatic example.30

Other important examples that highlight the complicated recursions in prac-

tical examples include the simultaneous alignment and folding of RNA (a.k.a.

Sankoff’s algorithm [53]), implemented e.g. in foldalign [24] and dynalign

[41], and the RNA-RNA interaction problem (RIP [2]). For the latter, equiv-

alent implementations using slightly different recursions have become available35

[11, 31, 32], each using dozens of 4-dimensional tables to memoize intermediate

results. The implementation and testing of such complicated multi-dimensional
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recursions is a tedious and error-prone process that hampers the systematic ex-

ploration of variations of scoring models and search space specification. The

three-dimensional structure of an RNA molecule is determined by topological40

constraints that are determined by the mutual arrangements of the base paired

helices, i.e., by its secondary structure [3]. Although most RNAs have simple

structures that do not involve crossing base pairs, pseudoknots that violate this

simplifying condition are not uncommon [60]. In several cases, pseudoknots are

functionally important features that cannot be neglected in a meaningful way,45

see e.g. [16, 42, 19]. In its most general form, the RNA folding with stacking-

based energy functions is NP-complete [1, 40]. The commonly used RNA folding

tools (mfold [65] and the Vienna RNA Package [39]), on the other hand, exclude

pseudoknots altogether.

Polynomial-time dynamic programming (DP) algorithms can be devised for50

a wide variety of restricted classes of pseudoknots. However, most approaches

are computationally very demanding, and the design of pseudoknot folding al-

gorithms has been guided decisively by the desire to limit computational cost

and to achieve a manageable complexity of the recursions [50]. Consequently,

a plethora of different classes of pseudoknotted structures have been consid-55

ered, see e.g. [12, 52, 10, 49], the references therein, and the book [48]. Since

the corresponding folding algorithms have been implemented at different times

using different parametrizations of the energy functions it is hard to directly

compare them and their performance. On the other hand, a more systematic

investigation of alternative structure definitions would require implementations60

of the corresponding folding algorithms. Due to the complicated structure of

the standard energy model this would entail major programming efforts, thus

severely limiting such efforts. Already for non-pseudoknotted RNAs that can

be modeled by simple context-free grammars, the effort to unify a number of

approaches into a common framework required a major effort [51].65

Multiple context-free grammars (MCFG) [55] have turned out to be a very

natural framework for the RNA folding problem with pseudoknots. In fact,

most of the pseudoknot classes can readily be translated to multiple context-free
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(1)

I AIBIAIBS

A

B

S
I

I

I

(2)

das mer d’chind em Hans es huus lönd hälfe aastriiche︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸
that we the children Hans the house let help paint

Figure 1: (1) Example of a pseudoknot and the MCFG production formulation for type H

pseudoknots from the gfold grammar [49] as also used in our GenussFold example code. Here

I represents an arbitrary structure, S a pseudoknot-free secondary structure, while A and B

represent the two “one-gap objects” (two-dimensional non-terminals) forming the pseudoknot.

The two components of A and B are linked by a bracket to highlight the interleaved structure.

(2) Crossing dependencies in a Swiss-German sentence [56, 58] show that the language has

non-context-free structure. Braces designate semantic dependencies.

grammars (MCFG), see Fig.1(1) for a simple example. In contrast to CFGs, the

non-terminal symbols of MCFGs may consist of multiple components that must70

be expanded in parallel. In this way, it becomes possible to couple separated

parts of a derivation and thus to model the crossings inherent in pseudoknotted

structures. Reidys et al. [49], for instance, makes explicit use of MCFGs to

derive the DP recursions. Stochastic MCFGs were used for RNA already in [35],

and a unified view of many pseudoknot classes recently has been established in75

terms of MCFGs [43], introducing a direct connection between MCFGs and

generating functions. Although other grammar models have been proposed,

e.g. tree-adjoining grammars [61], and multi-tape S-attribute grammars [37,

38, 64], MCFGs appear to be the most natural choice. A generalization of

the framework of the ADP framework [21] from CFG to MCFG thus could80

overcome the technical difficulties that so far have hampered a more systematic

exploration of pseudoknotted structure classes.
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In computational linguistics, several distinct classes of “mildly context-sensi-

tive grammar formalisms” have been introduced to capture the syntactic struc-

ture of natural language. Among them are, in the order of increasing gener-85

ality, tree-adjoining grammars [33], coupled context free grammars [30], and

MCFGs as well as the equivalent linear context free rewriting systems [62].

Dutch and Swiss-German, for example, have non-context-free structures [56, 58],

see Fig. 1(2). MCFGs have been used to model grammars for natural languages

explicitly e.g. in [58]. Given the constraints of natural languages, the complexity90

of their non-context free structure is quite limited in practice.

2. Multiple Context-Free Grammars

Multiple Context-Free Grammars (MCFGs) [55, 54] are a particular type

of weakly context-sensitive grammar formalism that still allows for parsing in

polynomial time. In contrast to the general case of context-sensitive grammars,95

MCFGs employ in their rewrite rules only total functions that concatenate con-

stant strings and components of their arguments. The original formulation of

MCFGs was modeled after context sensitive grammars and hence emphasizes

the rewrite rules. Practical applications, in particular in bioinformatics, em-

phasize the productions. We therefore start here from a formal definition of a100

MCFG that is slightly different from its original version.

MCFGs operate on non-terminals that have an interpretation as tuples of

strings over an alphabet A — rather than strings as in the case of CFGs.

An important feature of MCFGs are rewriting functions that recombine the

components of different tuples. A particular rewrite function can be defined by105

specifying which input components from which of its arguments are concate-

nated in each of its output components. We first deal with a fixed single com-

ponent of the output. Suppose f has k arguments of dimensions a1, a2, . . . , ak

and define the corresponding set of pairs I = {(i, j) | 1 ≤ i ≤ k, 1 ≤ j ≤ ak}.

The characteristic [[fl]], 1 ≤ l ≤ b of a component-wise rewrite function fl is110

an ordered list of pairs [[fl]] = p1 . . . pm ∈ Im. A pair (i, j) designates the j’th
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component from the i’th argument, the component fl then concatenates these

input components into the l’th output in the order given by [[fl]]. A rewrite

function is then simply a b-tuple of component-wise rewrite functions. The

function fl is therefore uniquely determined by its characteristic [[fl]]. In more115

precise language, we have

Definition 1. A function f : ((A∗)∗)k → (A∗)b is a rewrite function of arity

(a1, . . . , ak; b) ∈ N∗ ×N if for each l ∈ {1, . . . , b} there is a list [[fl]] ∈ I∗ so that

the l’th component fl : ((A∗)∗)k → A∗ is of the form x 7→ σ(p1, x) . . . σ(pml
, x),

where σ(ph, x) = (xi)j with ph = (i, j) ∈ I for 1 ≤ h ≤ ml.120

Definition 2 (Linear Rewriting Function). A rewriting function f is called

linear if each pair (i, j) ∈ I occurs at most once in the characteristic [[(f1, . . . , fb)]]

of f .

Linear rewriting functions thus are those in which each component of each ar-

gument appears at most once in the output.125

We could strengthen the linearity condition and require that components of

rewriting function arguments are used exactly once, instead of at most once. It

was shown in [55, Lemma 2.2] that this does not affect the generative power.

Example 1. The function

f



x1,1

x1,2

x1,3

 ,
(
x2,1

) =

x2,1 · x1,2

x1,3


is a linear rewriting function with arity (3, 1; 2) and characteristic

[[f ]] =

(2, 1)(1, 2)

(1, 3)

 .

An example evaluation is as follows:

f



ab

c

abc

 ,
(
ba
) =

ba · c
abc


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Definition 3 (Multiple Context-Free Grammar). [cf. 54] An MCFG is a

tuple G = (V,A, Z,R, P ) where V is a finite set of nonterminal symbols, A a130

finite set of terminal symbols disjoint from V , Z ∈ V the start symbol, R a

finite set of linear rewriting functions, and P a finite set of productions. Each

v ∈ V has a dimension dim(v) ≥ 1, where dim(Z) = 1. Productions have the

form v0 → f [v1, . . . , vk] with vi ∈ V ∪ (A∗)∗, 0 ≤ i ≤ k, and f is a linear rewrite

function of arity (dim(v1), . . . ,dim(vk); dim(v0)).135

Productions of the form v → f [] with f [] =

(
f1...
fd

)
are written as v →

(
f1...
fd

)
and are called terminating productions. An MCFG with maximal nonterminal

dimension k is called a k-MCFG.

Deviating from [54], Definition 3 allows terminals as function arguments in

productions and instead prohibits the introduction of terminals in rewriting140

functions. This change makes reasoning easier and fits better to our extension

of ADP. We will see that this modification does not affect the generative power.

Example 2. As an example consider the language L = {aibjaibj | i, j ≥ 0}

of overlapping palindromes of the form aibjai and bjaibj , with bj and ai

missing, respectively. It cannot be expressed by a CFG. The MCFG G =

({Z,A,B}, {a, b}, Z,R, P ) with L(G) = L serves as a running example:

dim(Z) = 1 dim(A) = dim(B) = 2

Z → fZ [A,B]

A → fP [A,
(
a
a

)
] | ( εε )

B → fP [B,
(
b
b

)
] | ( εε )

fZ [
(
A1

A2

)
,
(
B1

B2

)
] = A1B1A2B2

fP [
(
A1

A2

)
, ( cd )] =

(
A1c
A2d

)

The grammar in the original framework corresponding to Example 2 is given

in the Appendix for comparison.

Definition 4. [cf. 54] The derivation relation
∗⇒ of the MCFG G is the reflexive,145

transitive closure of its direct derivation relation. It is defined recursively:

(i) If v → a ∈ P with a ∈ (A∗)dim(v) then one writes v
∗⇒ a.
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(ii) If v0 → f [v1, . . . , vk] ∈ P and (a) vi
∗⇒ ai for vi ∈ V , or (b) vi = ai for

vi ∈ (A∗)∗ (1 ≤ i ≤ k), then one writes v0
∗⇒ f [a1, . . . , ak].

Definition 5. The language of G is the set L(G) = {w ∈ A∗ | Z ∗⇒ w}. A150

language L is a multiple context-free language if there is a MCFG G such that

L = L(G).

Two grammars G1 and G2 are said to be weakly equivalent if L(G1) = L(G2).

Strong equivalence would, in addition, require semantic equivalence of parse

trees [47] and is not relevant for our discussion. An MCFG is called monotone155

if for all rewriting functions the components of a function argument appear in

the same order on the right-hand side. It is binarized if at most two nonterminals

appear in any right-hand side of a production. In analogy to the various normal

forms of CFGs one can construct weakly equivalent MCFGs satisfying certain

constraints, in particular ε-free, monotone, and binarized [34, 7.2].160

Theorem 1. The class of languages produced by the original definition of MCFG

is equal to the class of languages produced by the grammar framework of Defi-

nition 3.

Proof. The simple transformation between the notations is given in the Ap-

pendix.165

Derivation trees are defined in terms of the derivation relation
∗⇒ in the

following way:

Definition 6. (i) Let v → a ∈ P with a ∈ (A∗)dim(v). Then the tree t with

the root labelled v and a single child labelled a is a derivation tree of a.

(ii) Let v0 → f [v1, . . . , vk] ∈ P . Then the tree t with a single node labelled vi170

is a derivation tree of vi for each vi ∈ (A∗)∗ and 1 ≤ i ≤ k.

(iii) Let v0 → f [v1, . . . , vk] ∈ P and (a) vi
∗⇒ ai for vi ∈ V , or (b) vi = ai

for vi ∈ (A∗)∗ (1 ≤ i ≤ k), and suppose t1, . . . , tk are derivation trees of

a1, . . . , ak. Then a tree t with the root labelled v0 : f and t1, . . . , tk as

immediate subtrees (from left to right) is a derivation tree of f [a1, . . . , ak].175
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By construction, w ∈ L(G) if and only if there is (at least one) derivation tree

for w.

It is customary in particular in computational linguistics to rearrange deriva-

tion trees in such a way that words (leaf nodes) are shown in the same order in

which they appear in the sentences, as in the NeGra treebank [57]. As noted in180

[34], these trees with crossing branches have an interpretation as LCFRS deriva-

tion trees. In applications to RNA folding, it also enhances interpretability to

draw derivation trees (which, given the appropriate semantics, correspond to

RNA structures) on top of the input sequence. A derivation tree t is trans-

formed into an input-ordered derivation trees (ioDT) as follows:185

1. replace each node labelled with multiple terminal or ε symbols with new

nodes of single symbols,

2. reorder terminal nodes horizontally according to the rewriting functions

such that the input word is displayed from left to right, and

3. remove the function symbols from the node labels.190

Conversely, an ioDT can be translated to its corresponding derivation tree by

collapsing sibling terminals or ε, resp., to a single node. Furthermore, derivation

trees are traditionally laid out in a crossing-free manner.

Example 3. In contrast to the derivation tree (left), the ioDT (right) of abab

makes the crossings immediately visible:

Z : fZ

B : fP

(
b
b

)
B

( εε )

A : fP

(
a
a

)
A

( εε )

Z

A

A

ε εa a

B

B

ε εb b

(1)

3. Multiple Context-Free ADP Grammars

In this section we show how to combine MCFGs with the ADP framework195

in order to solve combinatorial optimization problems for which CFGs do not
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provide enough expressive power to describe the search space. To differentiate

between the existing and our ADP formalism, we refer to the former as “context-

free ADP” (CF-ADP) and ours as “multiple context-free ADP” (MCF-ADP).

We start with some common terminology, following [21] as far as possible.200

Signatures and algebras. A (many-sorted) signature Σ is a tuple (S, F ) where S

is a finite set of sorts, and F a finite set of function symbols f : s1×. . .×sn → s0

with si ∈ S. A Σ-algebra contains interpretations for each function symbol in

F and defines a domain for each sort in S.

Terms and trees. Terms will be viewed as rooted, ordered, node-labeled trees205

in the obvious way. A tree containing a designated occurrence of a subtree t is

denoted C〈. . . t . . . 〉.

Term algebra. A term algebra TΣ arises by interpreting the function symbols

in Σ as constructors, building bigger terms from smaller ones. When variables

from a set V can take the place of arguments to constructors, we speak of a210

term algebra with variables, TΣ(V ).

Definition 7 (Tree grammar over Σ [cf. 22, sect. 3.4]). A (regular) tree

grammar G over a signature Σ is defined as a tuple (V,Σ, Z, P ), where V is a

finite set of nonterminal symbols disjoint from function symbols in Σ, Z ∈ V

is the start symbol, and P a finite set of productions v → t where v ∈ V and215

t ∈ TΣ(V ). All terms t in productions v → t of the same nonterminal v ∈ V

must have the same sort. The derivation relation for tree grammars is⇒∗, with

C〈. . . v . . . 〉 ⇒ C〈. . . t . . . 〉 if v → t ∈ P . The language of a term t ∈ TΣ(V ) is the

set L(G, t) = {t′ ∈ TΣ | t⇒∗ t′}. The language of G is the set L(G) = L(G, Z).

In the following, signatures with sorts of the form (A∗)d with d ≥ 1 are220

used. These refer to tuples of terminal sequences and imply that the relevant

sorts, function symbols, domains, and interpretations for sequence and tuple

construction are part of the signatures and algebras without explicitly including

them.

We are now in the position to introduce MCF-ADP formally.225
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Definition 8 (MCF-ADP Signature). An MCF-ADP signature Σ is a tuple

(A,S, F ) which defines a signature ({A} ∪ S, F ∪ FA) where S is a finite set

of result sorts Sj with j ≥ 1 and A a finite set of terminal symbols that is

formally used as a sort but also implicitly defining a finite set FA of constant

function symbols a : ∅ → A for each a ∈ A. Each symbol f ∈ F has the form230

f : s1 × . . .× sn → s0 with si ∈ {(A∗)di} ∪ S, di ≥ 1, 1 ≤ i ≤ n, and s0 ∈ S.

Definition 9 (Rewriting algebra). Let Σ = (A,S, F ) be an MCF-ADP sig-

nature. A rewriting algebra ER over Σ describes a Σ-algebra and consists of

linear rewriting functions for each function symbol in F . Sorts Sd ∈ S, d ≥ 1

are assigned to the domains (A∗)d. The explicit interpretation of a term t ∈ TΣ235

in ER is denoted with ER(t).

Definition 10 (MCF-ADP grammar over Σ). An MCF-ADP grammar G

over an MCF-ADP signature Σ = (A,S, F ) is defined as a tuple (V,A, Z, ER, P )

and describes a tree grammar (V,Σ, Z, P ), where ER is a rewriting algebra, and

the productions in P have the form v → t with v ∈ V and t ∈ TΣ(V ), where240

the sort of t is in S. Each evaluated term ER(t) ∈ TΣ(v) for a given nonterminal

v ∈ V has the same domain (A∗)d with d ≥ 1 where d is the dimension of v.

With our definition of MCF-ADP grammars we can use existing MCFGs

nearly verbatim and prepare them for solving optimization problems.

Example 4. The grammar from Example 2 is now given as MCF-ADP gram-

mar G = ({Z,A,B}, {a, b}, Z, ER, P ) in the following form:

dim(Z) = 1 dim(A) = dim(B) = 2

P :

Z → fZ(A,B)

A → fP (A,
(
a
a

)
) | fε

B → fP (B,
(
b
b

)
) | fε

ER :

fZ [
(
A1

A2

)
,
(
B1

B2

)
] = A1B1A2B2

fP [
(
A1

A2

)
, ( cd )] =

(
A1c
A2d

)
fε = ( εε )

12



with the signature Σ:

fZ : S2 × S2 → S1

fP : S2 × (A∗)2 → S2

fε : ∅ → S2

The only change necessary to rephrase example 2, which uses Defn. 3, into245

example 4, which makes use of Defn. 10, is to transform the terminating pro-

ductions of the MCFG into constant rewriting functions. These are then used

in the productions. The fε function is an example of such a transformation.

4. Yield Parsing for MCF-ADP Grammars

Given an MCF-ADP grammar G = (V,A, Z, ER, P ) over Σ, then its yield250

function yG : TΣ → (A∗)∗ is defined as yG(t) = ER(t). The yield language

Ly(G, t) of a term t ∈ TΣ(V ) is {yG(t′) | t′ ∈ L(G, t)}. The yield language of G

is Ly(G) = Ly(G, Z).

It is straightforward to translate MCF-ADP grammars and MCFGs into

each other.255

Theorem 2. The class of yield languages of MCF-ADP grammars is equal to

the class of languages generated by MCFGs.

Proof. See Appendix D.

The inverse of generating a yield language is called yield parsing. The yield

parser QG of an MCF-ADP grammar G computes the search space of all possible

yield parses for a given input x:

QG(x) = {t ∈ L(G) | yG(t) = x} (2)

As an example, the input abab spawns a search space of one element:

QG(abab) = {fZ(fP (fε,
(
a
a

)
), fP (fε,

(
b
b

)
))}

13



5. Scoring in MCF-ADP

Having defined the search space we need some means of scoring its elements260

so that we can solve the given dynamic programming problem. In general, this

problem need not be an optimization problem.

Instead of rewriting terms with a rewriting algebra, we now evaluate them

with the help of an evaluation or scoring algebra. As we need multisets [7] now,

we introduce them intuitively and refer to the appendix for a formal definition.265

A multiset can be understood as a list without an order, or a set in which ele-

ments can appear more than once. We use square brackets to differentiate them

from sets. The number of times an element is repeated is called its multiplicity.

If x is an element of a multiset X with multiplicity m, one writes x ∈m X. If

m > 0, one writes x ∈ X. Similar to sets, a multiset-builder notation of the270

form [x | P (x)] exists which works like the list comprehension syntax known

from programming languages like Haskell or Python, that is, multiplicities are

carried over to the resulting multiset. The multiset sum ], also called additive

union, sums the multiplicities of two multisets together, equal to list concate-

nation without an order. The set of multisets over a set S is denoted M(S).275

Definition 11 (Evaluation Algebra [cf. 21, Def. 2]). Let Σ = (A,S, F )

be an MCF-ADP signature and Σ′ = ({A} ∪ S, F ∪ FA) its underlying sig-

nature. An evaluation algebra EE over Σ is defined as a tuple (SE , FE ,hE)

where the domain SE is assigned to all sorts in S, FE are functions for each

function symbol in F , and hE : M(SE) → M(SE) is an objective function on280

multisets. The explicit interpretation of a term t ∈ TΣ in EE is denoted EE(t).

In dynamic programming, the objective function is typically minimizing or

maximizing over all possible candidates. In ADP, a more general view is adopted

where the objective function can also be used to calculate the size of the search

space, determine the k-best results, enumerate the whole search space, and so285

on. This is the reason why multisets are used as domain and codomain of the

objective function. If minimization was the goal, then the result would be a

multiset holding the minimum value as its single element.
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Example. Returning to our example, we now define evaluation algebras to solve

three problems for the input x = abab: (a) counting how many elements the

search space contains, (b) constructing compact representations of the elements,

and (c) solving the word problem.

(a)

SE = N

hE = sum

fZ(A,B) = A

fP (A, ( cd )) = A

fε = 1

G(EE , x) = [1]

(b)

SE = (A∗)∗

hE = id

fZ(
(
A1

A2

)
,
(
B1

B2

)
) = A1B1A2B2

fP (
(
A1

A2

)
,
(

“a”
“a”

)
) =

(
A1[
A2]

)
fP (
(
A1

A2

)
,
(

“b”
“b”

)
) =

(
A1(
A2)

)
fε = ( εε )

G(EE , x) = [[(])]

(c)

SE = {unit}

hE = notempty

fZ(A,B) = unit

fP (A, ( cd )) = unit

fε = unit

G(EE , x) = [unit]

Finally, we have to define the objective function. For the examples above we

have id(m) = m,

sum(m) =


∅, if m = ∅,[ ∑
x∈nm

x · n
]
, else.

notempty(m) =

∅, if m = ∅,

[unit], else.

Note that an empty multiset is returned for (a) and (b) when the search space

has no elements, and for (c) when there is no parse for the input word. While290

this most general multiset monoid with ∅ as neutral element is used in standard

ADP definitions, it is often possible to use a more specific monoid based on the

underlying data type, e.g. N or B, with corresponding neutral elements like 0

for counting, and false for the word problem. In practical implementations of

ADP, such as ADPfusion, this optimization is done so that arrays of primitive295

types can be used to efficiently store partial solutions.

Definition 12. An MCF-ADP problem instance consists of an MCF-ADP gram-

mar G = (V,A, Z, ER, P ) over Σ, an evaluation algebra EE over Σ, and an input

sequence x ∈ (A∗)dim(Z).
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Solving an MCF-ADP problem means computing G(EE , x) = hE [EE(t) | t ∈300

QG(x)].

We remark that algebraic dynamic programming subsumes semiring parsing

[23] with the use of evaluation algebras. An ADP parser can be turned into a

semiring parser by instantiating the evaluation algebra as parameterized over

semirings.305

Definition 13. Let G be a grammar and x an input string. An object xu is a

subproblem of (parsing) x in G if there is a parse tree t for x and a node u in t

so that xt,u is the part of x processed in the subtree of t rooted in u.

The object xt,u can be specified by an ordered set j(xt,u) of indices referring to

positions in the input string x.310

In the most general setting of dynamic programming it is possible to en-

counter an exponential number of subproblems. A good example is the well-

known DP solution of the Traveling Salesman Problem [4]. To obtain polynomial

time algorithms it is necessary that the “overlapping subproblems condition”

[6] is satisfied.315

Definition 14. The grammar G has the overlapping subproblem property if the

number of distinct index sets j(xt,u) taken over all inputs x with fixed length

|x| = n, all parse trees t for x in G, and all nodes u in t is polynomially bounded

in the input size n.

Theorem 3. Let (V,A, Z, ER, P ) be an MCF-ADP grammar and x an input320

string of length n. Then there are at most O(n2max{dim(v)|v∈V }) subproblems.

Proof. Let (V,A, Z, ER, P ) be a monotone MCF-ADP grammar. A nonter-

minal A ∈ V with dim(A) = d corresponds to an ordered list of d intervals

on the input string x and therefore depends on 2d delimiting index positions

i1 ≤ i2 ≤ . . . ≤ i2d, i.e., for an input of length n there are at most ms(n, 2d)325

distinct evaluations of A that need to be computed and possibly stored, where

ms(n, k) =
∑

1≤i1≤i2≤...ik≤n 1 =
(
n+k−1

k

)
is the multiset coefficient [18, p.38].
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For fixed k, we have ms(n, k) ∈ Θ(nk) ⊆ O(nk). Allowing non-monotone gram-

mars amounts to dropping the order constraints between the index intervals,

i.e., we have to compute at most nk entries.330

The r.h.s. of a production v → t ∈ P therefore defines b = iv(t) intervals

with iv(f(t1, . . . , tm)) =
∑

1≤k≤m∧tk∈V dim(tk) and hence b+d delimiting index

positions. We can safely ignore terminals since they refer to a fixed number of

characters at positions completely determined by, say, the preceding nontermi-

nal. Terminals therefore do not affect the scaling of the number of intervals with335

the input length n. Since each interval corresponding to a nonterminal compo-

nent on the r.h.s. must be contained in one of the intervals corresponding to

A, 2d of the interval boundaries on the r.h.s. are pre-determined by the indices

on the l.h.s. Thus computing any one of the O(n2d) values of A requires not

more than O(nb−d) different parses so that the total effort for evaluating A is340

bounded above by O(nb+d) steps (sub-parses) and O(n2d) memory cells.

Since a MCF-ADP grammar has a finite, input independent number of pro-

ductions it suffices to take the maximum of b+d over all productions to establish

O(nmax{iv(t)+dim(v)|v→t∈P}) sub-parsing steps and O(n2max{dim(v)|v∈V }) as the

total number of parsing steps performed by any MCF-ADP algorithm.345

Corollary 1. Every MCF-ADP grammar satisfies the overlapping subproblem

property.

Each object that appears as solution for one of the subproblems will in

general be part of many parses. In order to reduce the actual running time, the

parse and evaluation of each particular object ideally is performed only once,350

while all further calls to the same object just return the evaluation. To this end,

parsing results are memoized, i.e., tabulated. The actual size of these memo

tables depends, as we have seen above, on the specific MCF-ADP grammar

and, of course, on the properties of objects to be stored.

To address the latter issue, we have to investigate the contribution of the355

evaluation algebra. For every individual parsing step we have to estimate the

computational effort to combine the k objects returned from the subproblems.
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Let `(n) be an upper bound on the size of the list of results returned for a

subproblem as a function of the input size n. Combining the k lists returned

from the subproblems then requires O(`k) effort. The list entries themselves may360

also be objects whose size scales with n. The effort for an individual parsing

step is therefore bounded by µ(n) = `(n)m(P )ζ(n), where m(P ) is the maximum

arity of a production and ζ(n) accounts for the cost of handling large list entries.

The upper bound µ(n) for the computational effort of a single parsing step is

therefore completely determined by the evaluation algebra EE .365

Definition 15. An evaluation algebra EE is polynomially-bounded if the effort

µ(n) of a single parsing step is polynomially bounded.

Summarizing the arguments above, the total effort spent incorporating the

contributions of both grammar and algebra is O(nmax{iv(t)+dim(v)|v→t∈P} µ(n)).

The upper bound for the number of required memory isO(n2max{dim(v)|v∈V }) `(n)ζ(n).370

Example 5. In the case of optimization algorithms or the computation of a

partition function, hE( . ) returns a single scalar, i.e., `(n) = 1 and ζ(n) ∈ O(1),

so that µ(n) ∈ O(1) since m(P ) is independent of n for every given grammar.

On the other hand, if EE returns a representation of every possible parse

then `(n) may grow exponentially with n and ζ(n) will usually also grow with375

n. Non-trivial examples are discussed in some detail at the end of this section.

It is well known that the correctness of dynamic programming algorithms

in general depends on the scoring model. Bellman’s Principle [5] is a sufficient

condition. Conceptually, it states that all optimal solutions of a subproblem

are composed of optimal solutions of its subproblems. Giegerich and Meyer380

[20, Defn. 6] gave an algebraic formulation in the context of ADP that is also

suitable for our setting. It can be expressed in terms of sets of EE-parses of the

form z = {EE(t) | t ∈ T} for some T ⊆ TΣ. For simplicity of notation we allow

hE(zi) = zi whenever zi is a terminal evaluation (and thus strictly speaking

would have the wrong type for hE to be applied).385
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Definition 16. An evaluation algebra EE satisfies Bellman’s Principle if every

function symbol f ∈ FE with arity k satisfies for all sets zi of EE-parses the

following two axioms:

(B1) hE(z1 ] z2) = hE(hE(z1) ] hE(z2)).

(B2) hE [f(x1, . . . , xk) | x1 ∈ z1, . . . , xk ∈ zk]390

= hE [f(x1, . . . , xk) | x1 ∈ hE(z1), . . . , xk ∈ hE(zk)].

Once grammar and algebra have been amalgamated, and nonterminals are

tabulated (the exact machinery is transparent here), the problem instance effec-

tively becomes a total memo function bounded over an appropriate index space.

To solve a dynamic programming problem in practice, a function axiom (in the395

convention of [21]) calls the memo function for the start symbol to start the

recursive computation and tabulation of results. There is at most one memo

table for each nonterminal, and for each nonterminal of an MCFG the index

space is polynomially bounded.

Theorem 4. An MCF-ADP problem instance can be solved with polynomial ef-400

fort if the evaluation algebra EE is polynomially bounded and satisfies the Bell-

mann condition.

Proof. The Bellman condition ensures that only optimal solutions of subprob-

lems are used to construct the solution as specified in Def. 12. To see this, we

assume that f satisfies (B2). Consider all objects (parses) z in a subproblem.405

Then h(z) is the optimal set of solutions to the subproblem. Now assume there

is a x′ ∈ z \ h(z), i.e., a non-optimal parse, so that f(x′) � f(x) for x ∈ h(z),

i.e., f(x′) would be preferred over f(x) by the choice function but has not been

selected by h. This, however, contradicts (B2). Thus h selects all optimal

solutions.410

Since the number of subproblems in an MCF-ADP grammar is bounded by

a polynomial and the effort to evaluate each subproblem is also polynomial due

the assumption that the evaluation algebra is polynomial bounded, the total

effort is polynomial.
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We close this section with two real-life examples of dynamic programming415

applications to RNA folding that have non-trivial contribution to running time

and memory deriving from the evaluation algebra. Both examples are also of

practical interest for MCF-ADP grammars that model RNA structures with

pseudoknots or RNA-RNA interactions. The contributions of the scoring al-

gebra would remain unaltered also for more elaborate MCFG models of RNA420

structures.

Example: Density of States Algorithm

The parameters µ nor ζ will in general not be in O(1), even though this

is the case for the most typical case, namely optimization, counting, or the

computation of partition functions. In [14], for example, an algorithm for the425

computation of the density of states with fixed energy increment is described

where the parses correspond to histograms counting the number of structures

with given energy. The fixed bin width and fundamental properties of the RNA

energy model imply that the histograms are of size O(n); hence O(`(n)) = O(n),

O(µ) = O(n2), and O(ζ) = O(1). Although there are only O(n3) sub-parses430

with O(n2) memoized entries, the total running time is therefore O(n5) with

O(n3) memory consumption.

Example: Classified Dynamic Programming

The technique of classified dynamic programming sorts parse results into

different classes. For each class an optimal solution is then calculated separately.435

This technique sometimes allows changing only the choice function instead of

having to write a class of algorithms, each specific to one of the classes of

classified DP. In classified dynamic programming however both ζ and µ depend

on the definition of the classes and we cannot a priori expect them to be in

O(1). After all, each chosen multiset yields a multiset yielding parses for the440

next production rule.

The RNAshapes algorithm [44] provides an alternative to the usual partition-

function based ensemble calculations for RNA secondary structure prediction.
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It accumulates a set of coarse-grained shape structures, of which there are expo-

nentially many in the length of the input sequence. Each shape collects results445

for a class of RNA structures, say all hairpin-like or all clover-leaf structures.

The number of shapes scales as qn, where q > 1 is a constant that lies in the

range of 1.1 – 1.26 for the different shape classes discussed in [63].

Thus `(n)ζ(n) with `(n) = qn and ζ(n) = O(n) is incurred as an additional

factor for the memory consumption, with ζ determined by the linear-length450

encoding for each RNA shape as a string. Under the tacit assumption that the

RNAshapes algorithm has a binarized normal form grammar (which holds only

approximately due to the energy evaluation algebra being used), the running

time amounts to O(n3µ(n)) where µ(n) amounts to a factor of `(n)2 ζ(n)2 due

to the binary form. This yields a total running time of RNAshapes of O(n3q2n).455

Normal-form optimizations

Under certain circumstances the performance can be optimized compared

to above worst case estimates. W.l.o.g. assume the existence of a production

rule A → αβγ. If the evaluating function e for this rule has linear structure,

i.e. for all triples of parses (a, b, c) returned by α, β, or γ respectively, we have460

that e(a, b, c) = a � b � c, then, a � b � c = (a � b) � c = a � (b � c) from

which it follows that either B → αβ or C → βγ yields immediately reducible

parses. Note that reducibility is required. While it is always possible to rewrite

a grammar in (C)NF, individual production rules will not necessarily allow

an optimizing reduction to a single value (or a set of values in case of more465

complex choice functions). In the case of CFGs, this special structure of the

evaluation algebra allows us to replace G by its CNF. Thus every production

has at most two nonterminals on its r.h.s., leading to an O(n3) time and O(n2)

space requirement. The same ideas can be used to simplify MCFGs. However,

there is no guarantee for an absolute performance bound.470
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6. Implementation

We have implemented MCFGs in two different ways. An earlier prototype is

available at http://adp-multi.ruhoh.com. Below, we describe a new imple-

mentation as an extension of our generalized Algebraic Dynamic Programming

(gADP) framework [25, 17, 27, 29] which offers superior running time perfor-475

mance. gADP is divided into two layers. The first layer is a set of low-level

Haskell functions that define syntactic and terminal symbols, as well as op-

erators to combine symbols into production rules. It forms the ADPfusion 1

library [25]. This implementation strategy provides two advantages: first, the

whole of the Haskell language is available to the user, and second, ADPfusion480

is open and can be extended by the user. The ADPfusion library provides all

capabilities needed to write linear and context-free grammars in one or more

dimensions. It has been extended here to handle also MCFGs.

MCFGs and their nonterminals with dimension greater one require spe-

cial handling. In rules, where higher-dimensional nonterminals are interleaved,485

split syntactic variables have been introduced as a new type of object (i.e.

for V1, U1, V2, U2 below that combine to form U and V respectively). These

handle the individual dimensions of each nonterminal when the objects are on

the right-hand side of a rule. Rule definitions, where nonterminals objects are

used in their entirety, are much easier to handle. Such an object is isomorphic490

to a multi-tape syntactic variable w.r.t. its index type. As a consequence, we

were able to make use of the multi-tape extensions of ADPfusion introduced in

[26, 27].

In order to further simplify development of formal grammars, we provide a

high-level interface to ADPfusion. gADP [28, 29], in particular our implemen-495

tation of a domain-specific language for multi-tape grammars 2, provides an

embedded domain-specific language (eDSL) that transparently compiles into ef-

ficient low-level code via ADPfusion. This eDSL hides most of the low-level

1http://hackage.haskell.org/package/ADPfusion
2http://hackage.haskell.org/package/FormalGrammars
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plumbing required for (interleaved) nonterminals. Currently, ADPfusion and

gADP allow writing monotone MCFGs. In particular, (interleaved) nonterminals500

may be part of multi-dimensional symbols.

To illustrate how one implements an MCF-ADP grammar using gADP in prac-

tice, we provide the GenussFold package 3. GenussFold currently provides an

implementation of RNA folding with recursive H-type pseudoknots as depicted

in Fig. 1(1). The grammar is a simplified version of the one in [49] and can be

read as the usual Nussinov grammar with an additional rule for the interleaved

nonterminals and rules for each individual two-dimensional nonterminal:

S → (S)S | .S | ε

S → U1V1U2V2

U →
(
S(U1

U2S)

)
| ( εε )

V →
(
S[V1

V2S]

)
| ( εε )

This grammar closely resembles the one in Appendix A, except that we allow

only H-type pseudoknotted structures. The non-standard, yet in bioinformatics

commonly used, MCFG notation above is explained in Appendix A as well.

We have also implemented the same algorithm in the C programming lan-505

guage to provide a gauge for the relative efficiency of the code generated by

ADPfusion for these types of grammars. Since we use the C version only for

performance comparisons, it does not provide backtracking of co-optimal struc-

tures, while GenussFold provides full backtracking via automated calculation

of an algebra product operator analogous to CF-ADP applications.510

The C version was compiled using clang/LLVM 3.5 via clang -O3. The

Haskell version employs GHC 7.10.1 together with the LLVM 3.5 backend. We

have used ghc -O2 -fllvm -foptlo-O3 as compiler options.

The running time behaviour shown in Fig. 2 is somewhat curious. For small

input sizes, the Haskell runtime system dominates the running time. As to why515

the Haskell implementation actually performs better for very large input sizes

3http://hackage.haskell.org/package/GenussFold
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Figure 2: Running time for the O(n6) recursive pseudoknot grammar. Both the C and Haskell

version make use of the LLVM framework for compilation. The C version only calculates the

optimal score, while the Haskell version produces a backtracked dot-bracket string as well.

Times are averaged over 5 random sequences of length 40 to 200 in steps of 10 characters.

will need to be investigated. The scoring model is, however, extremely simplistic

and small changes in the loop-branch code will have disproportionate effects.

7. Concluding Remarks

We expand the ADP framework by incorporating the expressive power of520

MCFGs. Our adaptation is seamless and all concepts known from ADP carry

over easily, often without changes, e.g. signatures, tree grammars, yield parsing,

evaluation algebras, and Bellman’s principle. The core of the generalization

from CFG to MCFGs lies in the introduction of rewriting algebras and their

use in yield parsing, together with allowing word tuples in several places. As525

a consequence we can now solve optimization problems whose search spaces

cannot be described by CFGs, including the RNA pseudoknotted secondary

structure prediction problem.
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Our particular implementation in gADP also provides additional advanced

features. These include the ability to easily combine smaller grammars into a530

larger, final grammar, via algebraic operations on the grammars themselves and

the possibility to automatically derive outside productions for inside grammars.

Since the latter capability is grammar- and implementation-agnostic for single-

and multi-tape linear and context-free grammars, it extends to MCFGs as well.
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Appendix A. Example: RNA secondary structure prediction for 1-540

structures

We describe here in some detail the MCF-ADP formulation of a typical

application to RNA structure with pseudoknots. The class of 1-structures is

motivated by a classification of RNA pseudoknots in terms of the genus sub-

structures [45, 10, 49]. More precisely, it restricts the types of pseudoknots545

to irreducible components of topological genus 1, which amounts to the four

prototypical crossing diagrams in Fig. A.3 [46, 10, 49]. The gfold software

implements a dynamic programming algorithm with a realistic energy model

for this class of structures [49]. The heuristic tt2ne [9] and the Monte Carlo

approach McGenus [8] address the same class of structures.550

For expositional clarity we only describe here a simplified version of the

grammar that ignores the distinction between different “loop types” that play a

role in realistic energy models for RNAs. Their inclusion expands the grammar

to several dozen nonterminals. A näıve description of the class of 1-structures
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(H) (K) (L) (M)

Figure A.3: The four irreducible types of pseudoknots characterize 1-structures. The first two

are known as H-type and as kissing hairpin (K), respectively. Each arc in the diagram stands

for a collection of nested base pairs.

as a grammar was given in [49] in the following form:

I → S | T

S → (S)S | .S | ε

T → I(T)S

T → IA1IB1IA2IB2S

T → IA1IB1IA2IC1IB2IC2S

T → IA1IB1IC1IA2IB2IC2S

T → IA1IB1IC1IA2ID1IB2IC2ID2S

~X →
(
(XIX1

X2I)X

)
|
(
(X
)X

)
Here, the non-terminal I refers to arbitrary RNA structures, S to pseudoknot-

free secondary structures, and T to structures with pseudoknots. For the latter,

we distinguish the four types of Fig. A.3 (4th to 7th production). For each

X ∈ {A,B,C,D} we have distinct terminals (X , )X that we conceive as dif-

ferent types of opening and closing brackets. We note that this grammar is555

further transformed in [49] by introducing intermediate non-terminals to reduce

the computational complexity. For expositional clarity, we stick to the näıve

formulation here. The grammar notation used above is non-standard but has

been used several times in the field of bioinformatics – we will call this notation

inlined MCFG, or IMCFG, from now on. While the standard MCFG notation560

introduced in [55] is based on restricting the allowed form of rewriting functions

of generalized context-free grammars, the IMCFG notation is a generalization

based on context-free grammars and is mnemonically closer to the structures it
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represents. While more compact and easier to understand, it is in conflict with

our formal integration of MCFGs into the ADP framework. It is, however, sim-565

ple to transform both notations into each other. Before showing the complete

transformed grammar, let us look at a small example.

The transformation from IMCFG to MCFG notation works by creating a

function for each production which then matches the used terminals and nonter-

minals. For example, the IMCFG rule S → A1B1A2B2 becomes S → fabab[A,B]570

with fabab[
(
A1

A2

)
,
(
B1

B2

)
] = A1B1A2B2. For the reverse direction each rewriting

function is inlined into each production where it was used.

The IMCFG grammar above generates so-called dot-bracket notation strings

where each such string, e.g. ((..).)., describes an RNA secondary structure.

While this is useful for reasoning about those structures at a language level, it575

is not the grammar form that is eventually used for solving the optimization

problem. Instead we need a grammar which, given an RNA primary structure,

generates all possible secondary structures in the form of derivation trees, as it

is those trees that are assigned a score and chosen from. The IMCFG gram-

mar above has as input a dot-bracket string and generates exactly one or zero580

derivation trees, answering the question whether the given secondary structure

is generated by the grammar. By using RNA bases (a, g, c, u) and pairs (au, cg,

gu) instead of dots and brackets, such grammar can easily be made into one that

is suitable for optimization in terms of RNA secondary structure prediction.

The transformed grammar suitable for solving the described optimization585

problem is now given as:
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dim(I, S, T, U) = 1 dim(A,B,C,D, P ) = 2

I → fsimple(S) | fknotted(T )

S → fpaired(P, S, S) | funpaired(U, S) | fε

T → fknot(I, P, T, S) |

fknotH(I, A, I, B, I, I, S) |

fknotK(I, A, I, B, I, I, C, I, I, S) |

fknotL(I, A, I, B, I, C, I, I, I, S) |

fknotM (I, A, I, B, I, C, I, I,D, I, I, I, S)

~X → fstackX(P, I,X, I) | fendstackX(P )

P → fpair(
(
a
u

)
) | fpair(

(
u
a

)
) | fpair(

(
c
g

)
) | fpair(

(
g
c

)
) | fpair(

(
g
u

)
) | fpair(

(
u
g

)
)

U → fbase(a) | fbase(g) | fbase(c) | fbase(u)

where X ∈ {A,B,C,D}.

ER :

fsimple(S) = S

fknotted(T ) = T

fpaired(
(
P1

P2

)
, S(1), S(2)) = P1S

(1)P2S
(2)

funpaired(U, S) = US

fε = ε

fknot(I,
(
P1

P2

)
, T, S) = IP1TP2S

fstackX(
(
P1

P2

)
, I(1),

(
X1

X2

)
, I(2)) =

(
P1I

(1)X1

X2I
(2)P2

)
fendstackX(

(
P1

P2

)
) =

(
P1

P2

)
fpair(

(
b1
b2

)
) =

(
b1
b2

)
fbase(b) = b
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fknotH(I(1),
(
A1

A2

)
, I(2),

(
B1

B2

)
, I(3), I(4), S)

= I(1)A1I
(2)B1I

(3)A2I
(4)B2S

fknotK(I(1),
(
A1

A2

)
, I(2),

(
B1

B2

)
, I(3), I(4),

(
C1

C2

)
, I(5), I(6), S)

= I(1)A1I
(2)B1I

(3)A2I
(4)C1I

(5)B2I
(6)C2S

fknotL(I(1),
(
A1

A2

)
, I(2),

(
B1

B2

)
, I(3),

(
C1

C2

)
, I(4), I(5), I(6), S)

= I(1)A1I
(2)B1I

(3)C1I
(4)A2I

(5)B2I
(6)C2S

fknotM (I(1),
(
A1

A2

)
, I(2),

(
B1

B2

)
, I(3),

(
C1

C2

)
, I(4), I(5),

(
D1

D2

)
, I(6), I(7), I(8), S)

= I(1)A1I
(2)B1I

(3)C1I
(4)A2I

(5)D1I
(6)B2I

(7)C2I
(7)D2S

While being more verbose, the transformation to a tree grammar also has a

convenient side-effect: all productions are now annotated with a meaningful and

descriptive name, in the form of the given function name. This is useful when590

talking about specific grammar productions and assigning an interpretation to

them in evaluation algebras.

As a simplification of the full energy model from [49] we use base pair count-

ing as the scoring scheme and choose the structure(s) with most base pairs as

optimum. This simplification is merely done to ease understanding and keep

the example within reasonable length. Before we solve the optimization problem

though, let us enumerate the search space for a given primary structure with

an evaluation algebra EDB that returns dot-bracket strings. This algebra has

all the functions of the rewriting algebra except for the following:

fstackX(
(
P1

P2

)
, I(1),

(
X1

X2

)
, I(2)) =

(
(XI

(1)X1

X2I
(2))X

)
fendstackX(

(
P1

P2

)
) =

(
(X
)X

)
fpair(

(
b1
b2

)
) =

(
(
)

)
fbase(b) = .
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For the primary structure agcguu we get:

G(EDB , agcguu) = [......,...().,...(.),..()..,.()...,.()().,.()(.),

.(..).,.(()).,.(...),.(.()),.(().),(...).,(.()).,

(().).,(....),(..()),(.().),(()..),(()()),((..)),

((())),([..)],([())],(..[)],(()[)],.(.[)]].

By manual counting we already see what the result of the optimization will

be, the maximum number of base pairs of all secondary structures is 3, and

the corresponding structures are (()()), ((())), ([())], and (()[)]. We

can visualize these optimal structures in a more appealing way with Feynman

diagrams:

a g c g u u a g c g u u

a g c g u u a g c g u u

Let us turn to the optimization now. The evaluation algebra EBP for basepair
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maximization is given as:

SBP = N

hBP = maximum

fε = 0

fpair(
(
P1

P2

)
) = 1

fbase(b) = 0

fsimple(S) = S

fknotted(T ) = T

fpaired(P, S
(1), S(2)) = P + S(1) + S(2)

funpaired(U, S) = U + S

fknot(I, P, T, S) = I + P + T + S

fstackX(P, I(1), X, I(2)) = P + I(1) +X + I(2)

fendstackX(P ) = P

and equally for fknot{H,K,L,M} by simple summation of function arguments. The

objective function is defined as

maximum(m) =

∅, if m = ∅,

[max(m)], else.

where max determines the maximum of all set elements.

For the primary structure acuguu we get:

G(EBP , agcguu) = [3],

matching our expectation. Each search space candidate corresponds to a deriva-

tion tree. We can reconstruct the score of a candidate by annotating its tree
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with the individual scores, here done for the optimum candidate ([())]:

I[3]

T[3]

I[0]

S[0]

ε

A[1]

P[1]

a u

I[0]

S[0]

ε

B[1]

P[1]

g u

I[1]

S[1]

P[1]

c g

S[0]

ε

S[0]

ε

I[0]

S[0]

ε

S[0]

ε

Coming back to the result, 3, the corresponding RNA secondary structures

can be determined by using more complex evaluation algebras. A convenient595

tool for the construction of those are algebra products, further explained in [59].

In this case, with the lexicographic algebra product EBP ∗ EDB the result would

be [(3, (()())), (3, ((()))), (3, ([())]), (3, (()[)])], that is, a multiset contain-

ing tuples with the maximum basepair count and the corresponding secondary

structures as dot-bracket strings. We do not describe algebra products further600

here as our formalism allows their use unchanged.

Appendix B. Multisets

A multiset [7] is a collection of objects. It generalizes the concept of sets by

allowing elements to appear more than once. A multiset over a set S can be

formally defined as a function from S to N, where N = {0, 1, 2, . . . }. A finite605

multiset f is such function with only finitely many x such that f(x) > 0. The

notation [e1, . . . , en] is used to distinguish multisets from sets. The number of

times an element occurs in a multiset is called its multiplicity. A set can be seen

as a multiset where all multiplicities are at most one. If e is an element of a

multiset f with multiplicity m, one writes e ∈m f . If m > 0, one writes e ∈ f .610
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The cardinality |f | of a multiset is the sum of all multiplicities. The union f ∪ g

of two multisets is the multiset (f ∪g)(x) = max{f(x), g(x)}, the additive union

f ] g is the multiset (f ] g)(x) = f(x) + g(x). The set of multisets over a set S

is denoted M(S) = {f | f : S → N}.

As for sets, a builder notation for multisets is introduced. We could find only

one reference where such a notation is both used and an attempt was made to

formally define its interpretation using mathematical logic [36]. In other cases

such notation is used without reference or by referring to list comprehension

syntax common in functional programming, implicitly ignoring the list order.

Here, we base our notation and interpretation on [36] but extend it slightly

to match the intuitive interpretation from list comprehensions. The multiset-

builder notation has the form [x | ∃y : P (x, y)] where P is a predicate and the

multiplicity of x in the resulting multiset is |[y | P (x, y)]|. For an arbitrary

multiset f (or a set seen as a multiset) and f̂ = [y | y ∈ f ∧ P (y)] it holds

that ∀y∃m : y ∈m f ↔ y ∈m f̂ , that is, the multiplicities of the input multiset

carry over to the resulting multiset. The original interpretation in [36] is based

on sets being the only type of input, that is, the multiplicity of x was simply

defined as |{y | P (x, y)}|. In our case, and similar to list comprehensions, we

need multisets as input too. With the original interpretation, we would lose the

multiplicity information of the input multisets. Let’s look at some examples:

M1 = {1, 2, 3},M2 = [1, 3, 3],M3 = [2, 2]

[x mod 2 | x ∈M1] = [0, 1, 1]

[(x, y) | x ∈M2, y ∈M3] = [(1, 2), (1, 2), (3, 2), (3, 2), (3, 2), (3, 2)]

With the original interpretation in [36], the results would have been:

[x mod 2 | x ∈M1] = [0, 1, 1]

[(x, y) | x ∈M2, y ∈M3] = [(1, 2), (3, 2)]
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Appendix C. Alternative MCFG Definition615

We first cite the original MCFG definition (modulo some grammar and sym-

bol adaptations), and then show which changes we applied.

Definition 17. [54] An MCFG is a tuple G = (V,A, Z,R, P ) where V is a finite

set of nonterminal symbols, A a finite set of terminal symbols disjoint from V ,

Z ∈ V the start symbol, R a finite set of rewriting functions, and P a finite set620

of productions. Each v ∈ V has a dimension dim(v) ≥ 1, where dim(Z) = 1.

Productions have the form v0 → f [v1, . . . , vk] with vi ∈ V , 0 ≤ i ≤ k, and

f : (A∗)dim(v1) × . . .× (A∗)dim(vk) → (A∗)dim(v0) ∈ R. Productions of the form

v → f [] with f [] =

(
f1...
fd

)
are written as v →

(
f1...
fd

)
and are called terminating

productions. Each rewriting function f ∈ R must satisfy the following condition625

(F) Let xi = (xi1, . . . , xidim(vi)) denote the ith argument of f for 1 ≤ i ≤ k.

The hth component of the function value for 1 ≤ h ≤ dim(v0), denoted

by f [h], is defined as

f [h][x1, . . . , xk] = βh0zh1βh1zh2 . . . zhvhβhvh (*)

where βhl ∈ A∗, 0 ≤ l ≤ dim(vh), and zhl ∈ {xij | 1 ≤ i ≤ k, 1 ≤ j ≤

dim(vi)} for 1 ≤ l ≤ dim(vh). The total number of occurrences of xij in

the right-hand sides of (*) from h = 1 through dim(v0) is at most one.

Definition 18. [54] The derivation relation
∗⇒ of the MCFG G is defined re-

cursively:630

(i) If v → a ∈ P with a ∈ (A∗)dim(v) then one writes v
∗⇒ a.

(ii) If v0 → f [v1, . . . , vk] ∈ P and vi
∗⇒ ai (1 ≤ i ≤ k), then one writes

v0
∗⇒ f [a1, . . . , ak].

In this contribution a modified definition of MCFGs is used. The modi-

fied version allows terminals as function arguments in productions and instead635

disallows the introduction of terminals in rewriting functions. The derivation

relation is adapted accordingly to allow terminals as function arguments.
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In detail, in our MCFG definition, productions have the form v0 → f [v1, . . . , vk]

with vi ∈ V ∪ (A∗)∗, 0 ≤ i ≤ k and rewrite functions have the property that

the resulting components of an application is the concatenation of components

of its arguments only. The terminals that are “created” by the rewrite rule in

Seki’s version therefore are already upon input in our variant, i.e., they appear

explicitly in the production. Our rewrite function merely “moves” each terminal

to its place in the output of the rewrite function. Elimination of the emission of

terminals in rewrite functions amounts to replacing equ.(*) in condition F by

f [h][x1, . . . , xk] = zh1zh2 . . . zhvh (*)

Condition (F) thus becomes just a slightly different way of expressing Defini-

tion 1 and Definition 2. Our rephrasing of MCFGs is therefore weakly equivalent

to Seki’s original definition.640

The following shows an equivalent of the example MCFG grammar when

using the original definition:

Z → fZ [A,B]

A → fA[A] | ( εε )

B → fB [B] | ( εε )

fZ [
(
A1

A2

)
,
(
B1

B2

)
] = A1B1A2B2

fA[
(
A1

A2

)
] =

(
A1a
A2a

)
fB [
(
B1

B2

)
] =

(
B1b
B2b

)
The terminals moved into the rewriting functions and one additional rewrit-645

ing function had to be defined to handle the a and b terminal symbols separately,

as the rewriting functions cannot be parameterized over terminals.

When going the reverse way one simply replaces the terminals in the rewrit-

ing functions with parameters and adds those to the productions:

Z → fZ [A,B]

A → fA[A,
(
a
a

)
] | ( εε )

B → fB [B,
(
b
b

)
] | ( εε )

fZ [
(
A1

A2

)
,
(
B1

B2

)
] = A1B1A2B2

fA[
(
A1

A2

)
, ( cd )] =

(
A1c
A2d

)
fB [
(
B1

B2

)
, ( cd )] =

(
B1c
B2d

)
650

If desired, the two now semantically identical rewriting functions fA and fB

can be replaced by a single one, which would produce the example MCFG as
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used in this work.

This leads us to the following conclusion:655

Theorem 5. The class of languages produced by Seki’s original definition of

MCFGs is equal to the class produced by our modified definition.

Appendix D. MCF-ADP grammar yield languages class

In this section we show that MCF-ADP grammar yield languages are multi-

ple context-free languages, and vice versa. We restrict ourselves to MCF-ADP660

grammars where the start symbol is one-dimensional as formal language hierar-

chies are typically related to word languages and do not know the concepts of

tuples of words.

Each MCF-ADP grammar G is trivially transformed to an MCFG G′ – the

functions of the rewriting algebra become the rewriting functions. By construc-665

tion, Ly(G) = L(G′), for each derivation in G there is one in G′, and vice versa.

This means that MCF-ADP grammar yield languages are multiple context-free

languages. As we will see, the reverse is also true.

Each MCFG G′ can be transformed into an MCF-ADP grammar G by using

the identity function as rewriting function for terminating productions, that670

is, V →
( w1...
wd

)
becomes V → idd(

( w1...
wd

)
) with idd(

( w1...
wd

)
) =

( w1...
wd

)
, while

all other productions and rewriting functions are reused unchanged. Again, by

construction, L(G′) = Ly(G). So, multiple context-free languages are MCF-

ADP grammar yield languages. We conclude:

The class of yield languages of MCF-ADP grammars is equal to the class of675

languages generated by MCFGs.
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