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Abstract

Equivalence relations on the edge set of a hypergraph that satisfy the “grid-property” (a
certain restrictive condition on diagonal-free grids thatcan be seen as a generalization of
the more familiar “square property” on graphs) play a crucial role in the theory of Cartesian
hypergraph products. In particular, every convex relationwith the grid property induces a
factorization w.r.t. the Cartesian product. In the class ofgraphs, even non-convex relations
with the square property provide rich structural information on local isomorphisms, local
product structures, and product structures of quotient graphs. Here, we examine the grid
property in its own right. Vertex partitions derived from these equivalence classes of the
edges give rise to equivalence relations on the vertex set. This in turn determine quotient
graphs that have non-trivial product structures.
Keywords: grid property, quotient hypergraph, Cartesian hypergraphproduct

1 Introduction

It has been known for nearly half a century that every connected hypergraph has a unique
prime factor decomposition with respect to Cartesian product [5]. In the class of graphs,
Cartesian products are conveniently characterized in terms of the convex closure of certain
relations on the edge set that satisfies the so-called “square property”,e∼ f if either e
and f are opposite edges of a chordless square, ore and f are adjacent and do not span a
chordless square. Generalizing the approach of [7], we recently showed that an analogous
result holds for Cartesian products of hypergraphs [8]. More precisely, the product relation
σ on the edge set of a hypergraphH, i.e., the equivalence relation on its edge sets that
identifies the fibres of the prime factors ofH as the connected components of the partial
hypergraphs generated by a single equivalence class ofσ , can be represented as the convex
closure of an initial relationδ . The latter is defined locally by a generalization of the square
property known as the “grid property”, which we introduce formally in the section 2.
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Within the class of graphs, the relationδ [10] and its generalizations have long played
an important role in the context of Cartesian products and their generalizations, the Carte-
sian graph bundles [6, 7, 11, 12]. A recent attempt [4] to better understand the structure
of equivalence relations on the edge set of a graphG that satisfies the square property, we
uncovered a surprising connection to equitable partitionson the vertex set ofG and a Carte-
sian factorization of certain quotient graphs that was observed in the context of quantum
walks on graphs [1]. Here, we explore to what extent these results can be generalized to
hypergraphs.

2 The Grid Property

Throughout this contribution we consider finite, connected, simple hypergraphsH. The
notations largely follows the survey of hypergraph products [3]. To make this contribution
self-consistent we include the basic definitions and notations in the Appendix.

We start by defining grids in hypergraphs. As in the case of cycles in graphs, which are
conveniently defined as collections of edges, we regard themas collections of (hyper)edges.

Definition 1. [8] An r × s-grid in a hypergraph H= (V,E) is a collection G =
{e1, . . . ,es, f1, . . . , fr} ⊆ E of edges such that

(i) |ei ∩ f j |= 1, and

(ii) ei ∩ei′ = f j ∩ f j ′ = /0,

for all i , i′ ∈ {1, . . . ,s}, j, j ′ ∈ {1, . . . , r}, with i 6= i′, j 6= j ′. We say that ei and ej as well as
fi and fj areparallel edgesof G .

A diagonalin G is an edge d∈ E(H) satisfying

ek∩ fl ∩d 6= /0 and ek′ ∩ fl ′ ∩d 6= /0

for k,k′ ∈ {1, . . . ,s} and l, l ′ ∈ {1, . . . , r} with k 6= k′ and l 6= l ′,

The significance ofdiagonal-freegrids is that they appear as the Cartesian product of two
hyperedges. Thus, they can be seen as a natural generalization of the chordless squares that
appears as products of edges in the Cartesian graph product.

In [8], the following generalization of the “square property” for equivalence relations on
the edge set of simple graphs was introduced:

Definition 2. Let R be an equivalence relation on the edge set E(H) of a hypergraph H.
We say R has thegrid propertyif

(S1) Any two adjacent edges e and f of H belonging to distinct R-equivalence classes span
exactly one diagonal free|e|× | f |-grid G and

(S2) Parallel edges in any diagonalfree gridG of E(H) are in the same R-equivalence
class.

The restriction of these statements to simple graphs recovers the definition of thesquare
propertyused in [4]: (S1) Any two adjacent edgese and f of H belonging to distinctR-
equivalence classes span exactly one square, and (S2) Non-adjacent edges in a chordless
square belong to the sameR-equivalent class.

In graphs, an equivalence relation with the square propertyis readily constructed as the
transitive closure of the relationδ [2, 7, 10]. In [8] the following generalization to hyper-
graphs has been introduced:
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Figure 1: The l.h.s. shows a hypergraphH with an equivalence relationR on E(H) that consists of two
equivalence classes indicated by edges with|e|= 2 (dashed) and edges with|e|= 3 (solid ovals).
Rhas the gridproperty, butδ 6⊆ R, since, e.g.,({2,11,12},{3,7})∈ δ but({2,11,12},{3,7}) /∈
R. The r.h.s. shows the 2-section[H]2 together with the equivalence relationR2 on E([H]2)
induced byR. Its equivalence classes are depicted by dashed and solid edges, respectively.R2

does not satisfy the square property, since edges{2,3} and{2,6} span more than one square.

Definition 3. Let H be a connected hypergraph. Two edges e, f ∈ E(H) are in relationδ ,
eδ f , if one of the following conditions holds:

(i) e= f

(ii) e∩ f = /0 and e and f are opposite edges of a four-cycle

(iii) e ∩ f 6= /0 and there is no(|e|× | f |)-grid without diagonals containing them.

The relationδ is reflexive and symmetric. Its transitive closureδ ∗ is therefore an equiv-
alence relation. As shown in [8],δ ∗ has the grid property and any equivalence relation that
containsδ has the grid property. Moreover, we can state the following

Proposition 1. If R is an equivalence relation on E(H) satisfying the grid property and S
is a coarse equivalence relation, R⊆ S, then S also has the grid property.

Conversely, however, if a relationR on E(H) satisfies the grid property, this does not
necessarily implyδ ⊆ R, as shown in Fig. 1. However, we can formulate more restrictive
conditions in terms of the 2-section[H]2 of the hypergraphH. Let R be an equivalence
relation onE(H). ThenR induces a relationR2 on E([H]2) by settinge′ R2 f ′ for e′, f ′ ∈
E([H]2) iff there are edgese, f ∈ E(H) with e R f ande′ ⊆ e, f ′ ⊆ f .

Proposition 2. If R has the grid property then R2 is an equivalence relation on E([H]2).

Proof. SinceR2 is clearly reflexive and symmetric we only need to show thatR2 is transi-
tive. Therefore, lete′, f ′,g′ ∈ E([H]2) and supposee′ R2 f ′ and f ′ R2 g′. By construction,
there aree, f , f̂ ,g∈ E(H) such thate′ ⊆ e, f ′ ⊆ f , f ′ ⊆ f̂ ,g′ ⊆ g ande R f as well asf̂ R g.
Furthermore,f ′ ⊆ f ∩ f̂ , thus, | f ∩ f̂ | ≥ 2, which implies f R f̂ becauseR satisfies the
grid-property. SinceR is an equivalence relation, we can concludee R gand therefore also
e′ R2 g′.
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Definition 4. An equivalence relation R on E(H) has thestrong grid propertyif R has the
grid property and the induced equivalence relation R2 on E([H]2) has the square property.

Lemma 1. An equivalence relation R on E(H) has the strong grid property if and only if
δ ⊆ R.

Proof. First, let δ ⊆ R. Then R has the grid property. We have to show thatR2 on
E([H2]) satisfies the square property. Therefore lete′ = {x,y}, f ′ = {y,z} ∈ E([H]2) be
two adjacent edges such that(e′, f ′) /∈ R2. Then there exists adjacent edgese, f ∈ E(H)
with e′ ⊆ e, f ′ ⊆ f such that(e, f ) /∈ R. Thus,e and f span a unique diagonal-free grid
G = {e,e1, . . . ,ek, f , f1, . . . , fl} with |e| = l +1 and| f | = k+1. W.l.o.g., lete∩ f1 = {x}
ande1∩ f = {z}. Hence,e′ and f ′ span a square(x,y,z,w) with {w}= e1∩ f1. This square
must be chordless, since for any chordd′ there exists a diagonald ⊇ d′ of the gridG .

Suppose there exists another square(x,y,z,v) spanned bye′ and f ′. Hence, there exists
ê, f̂ in E(H) such that{x,v} ⊆ ê and{v,z} ⊆ f̂ . Then neither ˆe nor f̂ are contained inG ,
since otherwisêf or ê, respectively, would be a diagonal ofG . If ê= f̂ holds, then ˆewould
be a diagonal of this grid. Hence, ˆe 6= f̂ must hold. However, this impliesf1δ f̂ as well
aseδ f̂ and thereforeeδ ∗ f and consequentlye R f, a contradiction. Thus,R has the strong
grid property ifδ ⊆ R.

Now, supposeR has the strong grid property. We have to show that for any two edges
e, f ∈ E(H) with eδ f holdse R f. First, supposeeδ f such thate and f are not adjacent.
Thus,eand f must be opposite edges of a 4-cycle. Hence, there existse′, f ′ ∈ E([H]2) with
e′ ⊆ e and f ′ ⊆ f such thate′ and f ′ are opposite edges of a square in[H]2. SinceR2 has
the square property, we can concludee′ R2 f ′. That is, there exists edges ˆe, f̂ ∈ E(H) with
e′ ⊆ êand f ′ ⊆ f̂ such that ˆeRf̂ . From| f ∩ f̂ | ≥ 2 and|e∩ ê| ≥ 2, we can concludee Rêand
f R f̂ and finallye R f. Now, lete, f ∈ E(H) be adjacent and suppose, for contraposition,
(e, f ) /∈ R. Thene and f span a unique, diagonal-free grid. The definition ofδ implies
(e, f ) /∈ δ .

Instead ofδ we can also construct a less restrictive, i.e., finer, equivalence relation on
E(H) with the grid property.

Definition 5. Two edges e, f ∈ E(H) are in relationγ if one of the following conditions
holds:

(i) e= f

(ii) e∩ f = /0 and e and f are parallel edges in a gridG in H

(iii) e ∩ f 6= /0 and there is no diagonal-free(|e|× | f |)-grid that contains e and f

(iv) e∩ f 6= /0 and there is more than one diagonal-free(|e|× | f |)-grid containing e and f

By construction,γ is reflexive and symmetric. Its transitive closureγ∗ is therefore an
equivalence relation.

Lemma 2. An equivalence relation R on E(H) has the grid property if and only ifγ ⊆ R.

Proof. First, supposeγ ⊆ R. We have to show thatR satisfies the grid property. Therefore,
let e, f ∈ E(H) be two adjacent edges such that(e, f ) /∈ R, hence,(e, f ) /∈ γ. Then from
condition(iii ) in the definition ofγ, we can conclude that there exists a gridG in H spanned
by e and f , and from condition(iv) it follows that this grid is unique.

Now, supposeR has the grid property. We have to show thate R f for all e, f ∈ E(H)
with eγ f . First, supposeeγ f andeand f are not adjacent. Thus,e and f must be parallel
edges in a grid, and thereforee R f. Now, supposee and f are adjacent and suppose, for
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Figure 2:LHS: The equivalence relationγ0 on E(H), whose classes are indicated by dashed and solid
ovals, resp., satisfies one of the conditions(i), (ii) , and(iii) of Definition 5, but violated condition
(iv) since there are two grids spanned by edges{1,2,3} and{2,5,9}.
RHS: The edges{u,v} and{v,w} in the graph span two squares,〈{u,v,w,x}〉 and〈{u,v,w,y}〉.
It holds:{u,v}γ0{wy}, {w,y}γ0{u,x} and{u,x}γ0{v,w}, hence{u,v}γ∗0{v,w}.

contraposition,(e, f ) /∈ R. Thene and f span a unique grid without diagonals. Then, from
the definition ofγ we can conclude(e, f ) /∈ γ since neither(iii ) nor (iv) is fulfilled.

If H is a graph, then we do not have to insist on condition(iv) in the definition ofγ.
To see this, consider the relationγ0 satisfying one of the conditions(i), (ii) , and (iii) in
Definition 5. If e and f span more than one square in a graph, then they are guaranteedto
be in the transitive closureγ∗0 of γ0, see Fig. 2. This is not true in a hypergraph, however, as
the example in Fig. 2 shows.

Corollary 1. For any connected hypergraph H holdsγ∗0 ⊆ γ∗ ⊆ δ ∗. If H is a graph, then
γ∗0 = γ∗ = δ ∗.

In the remainder of this section we collect several useful properties of the grid property
that generalize well known results for the square property.Some of these results have been
shown in previous work, others are novel to our knowledge.

We will need the following notation: LetR be an equivalence relation onE(H) and
let ϕ ⊑ R be an equivalence class ofR. An edgee∈ E(H) is a ϕ-edge ife∈ ϕ . For a
givenϕ ⊑ Rwe consider the partial hypergraphHϕ = (V,ϕ) generated by theϕ-edges. The
connected component ofHϕ containing the vertexx∈V(H) is denoted byHx

ϕ . The star with
centeru generated by allϕ-edges incident tou is denoted bySHϕ (u) or Sϕ(u) for short.

Lemma 3 ([8] ). Let R be an equivalence relation on E(H) with the grid property. Then
each vertex of H is incident to at least one edge of each R-class.

Lemma 4 ([8] ). Let R be an equivalence relation on E(H) with the grid property that has
only two equivalence classesϕ andϕ . Then|V(Hx

ϕ)∩V(Hy
ϕ)| ≥ 1 for all x,y ∈ V(H). If

both Hx
ϕ and Hy

ϕ are convex then|V(Hx
ϕ )∩V(Hy

ϕ )|= 1.

Proposition 3. Let R be an equivalence relation on E(H) with the grid property,ϕ ,ψ ⊑ R,
ψ 6= ϕ , e∈ ϕ , and x,y∈ e. Then m(Sψ(x)) = m(Sψ(y)).
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Proof. W.l.o.g., supposeE(Sψ(x)) = { f1, . . . , fk}. The grid property implies that eachfi
together withe spans a unique diagonal-free gridGi , i = 1, . . . ,k and Gi 6= G j if i 6= j.
Furthermore, for eachi = 1, . . . ,k there is an edgef ′i ∈ Gi such thaty ∈ f ′i . ThusGi is
also spanned byf ′i ande. If f ′i = f ′j , this immediately impliesi = j, otherwisef ′i ande
would span more than one grid. Therefore, we havem(Sψ(x)) ≤ m(Sψ(y)). An analogous
argument established andm(Sψ(y))≤ m(Sψ(x)), hence equality must hold.

Lemma 5. Let R be an equivalence relation on E(H) with the strong grid property,ϕ ,ψ ⊑
R,ψ 6= ϕ , e∈ ϕ , and x,y∈ e. Then the stars generated by allψ-edges centered in x and y,
resp., are isomorphic, Sψ(x)∼= Sψ(y).

Proof. Let e∈ ϕ ⊆ E(H), x,y∈V(H) such thatx,y∈ e. Let E(Sψ(x)) = { f 1, . . . , f m} and
E(Sψ(y) = {g1, . . .gm′

}). We havem= m′ as a consequence of Prop. 3.
By the grid property, e ∈ ϕ and f i ∈ ψ span a unique grid G i =

{ f i , f i
1, . . . , f i

l ,e,e
i
1, . . . ,e

i
ki
} in H for all i = 1, . . . ,m, with | f i | = ki + 1, |e| = l + 1.

From the proof of Prop. 3, we can conclude that for alli = 1, . . . ,m there exists a
uniquely determined edgeg j with g j ∈ Gi. W.l.o.g., let gi := f i

1 for all i = 1, . . . ,m.
Moreover, setei

0 := e and f i
0 := f i for all i = 1, . . . ,m. By the definition of a grid, we have

e=
⋃l

s=0( f i
s ∩e) =

⋃l
s=0( f j

s ∩e) for all i, j = 1, . . . ,m. W.l.o.g., let f i
s∩e= f j

s ∩e for all
s= 0, . . . , l andi, j = 1, . . . ,m.

The vertex set ofSψ(x) isV(Sψ(x)) =
⋃m

i=1 f i =
⋃m

i=1
⋃ki

r=1( f i ∩ei
r). It will be convenient

to relabel them in the following manner: We setV(Sψ(x)) ∋ v := xi
r i

iff v is the uniquely
determined vertex with{v}= f i ∩ei

r i
. Note that vertices with different labels are not neces-

sarily distinct. Analogously, we assign labels to verticesw of H as follows:w := yi
r i

iff w is
the uniquely determined vertex with{w}= gi

∩ei
r i
. Sincey∈ gi for all i = 1. . . ,m, it follows

yi
r i
∈V(Sψ(y)) for all r i = 0, . . . ,ki , i = 1, . . . ,m.
With this notation, we have to prove that the map defined by

xi
r i
7→ yi

r i
(1)

for all r i = 0, . . . ,ki , i = 1, . . . ,m, is an isomorphism betweenSψ(x)andSψ(y). Thus, we

have to show thatxi
r i
= x j

sj if and only if yi
r i
= y j

sj . If i = j this immediately impliesr i = si ,

otherwiseei
r i
∩ei

si
6= /0. Now assume thati 6= j. Suppose firstxi

r i
= x j

sj , i.e., f i ∩ei
r i
= f j ∩ej

sj .

If yi
r i
6= y j

sj , thengi ∩ei
r i
6= g j ∩ej

sj , which impliesei
r i
6= ej

sj because otherwiseg j would be

a diagonal of the gridGi . But the we find a 4-cycle(xi
r i
,ei

r i
,yi

r i
,gi ,y,g j ,y j

sj ,e
j
r j ) in H, with

gi ,g j ∈ ψ andei
r i
,ej

sj ∈ ϕ , which contradicts the strong grid property. Thus,xi
r i
= x j

sj implies

yi
r i
= y j

sj , i.e., the mappingxi
r i
7→ yi

r i
is well defined.

From analogous considerations we can concludexi
r i
= x j

sj if yi
r i
= y j

sj , which proves injec-

tivity. Furthermore,V(Sψ(y)) =
⋃m

i=1gi =
⋃m

i=1
⋃ki

r=1(g
i ∩ei

r) =
⋃m

i=1
⋃ki

r=1{yi
r}. Thus, this

mapping is surjective and therefore bijective. Moreover, since the edges ofSψ(x) andSψ(y)
are given byf i =

⋃l
r=0( f i ∩ei

r) =
⋃l

r=0{xi
r} andgi =

⋃l
r=0(g

i ∩ei
r) =

⋃l
r=0{yi

r}, resp., this
mapping is an isomorphism.

The isomorphismSψ(x) ∼= Sψ(y) given in Equation (1) isinducedby the edgee∈ ϕ in
the sense that vertices ofSψ(x) are mapped onto vertices ofSψ(y) if and only if they are in
the same edge that is parallel toe. The grid property is by itself not sufficient to determine
these local isomorphism, as Fig. 1 shows: The vertices 2 and 6are connected by a dashed
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edge, but the stars generated by the solid edges centered in 2and 6, respectively, are not
isomorphic.

3 Quotient hypergraphs

In this section, we prove that several results that have beenshown for graphs in [4] are also
true for hypergraphs.

Definition 6 (Quotient Hypergraph). Let H = (V,E) be a hypergraph and letP =
{V1, . . . ,Vk} be a partition of the vertex set V of H. Thequotient hypergraphH/P has
vertex set V(H/P) = {V1, . . . ,Vk} and f = {Vi1, . . . ;Vir} ⊆ V(H/P) is an edge in H/P
iff there exists an edge e∈ E(H) such that

(i) e∩Vi j 6= /0 for all j = 1, . . . , r and

(ii) e ⊆
⋃r

j=1Vi j .

By construction, the set

P
R
ϕ :=

{

V(Hx
ϕ) | x∈V(H)

}

is a partition ofV(H) for everyϕ ⊑ R. The quotient hypergraphH/PR
ϕ has as its vertex

sets the connected componentsHx
ϕ . The set{Hx1

ϕ , . . . ,Hxk
ϕ } is an edge iff there are edges

e∈ E(H) such thate∩V(Hw
ϕ ) 6= /0 if and only if w∈V(Hxi

ϕ ) for i ∈ {1, . . . ,k}.
In the following we will be interested in particular in the complements ofR-classes, i.e.,

in ϕ := E \ϕ . The corresponding partial hypergraphs are denoted byHϕ , with connected
componentsHx

ϕ for a givenx∈V(H). We observe thaty∈V(Hx
ϕ ) if and only if there is a

pathP := (x= x0,e1,x1, . . .ek,xk = y) from x to y such thatei /∈ ϕ for all 1≤ i ≤ k.
Just likePR

ϕ , the sets

P
R
ϕ :=

{

V(Hx
ϕ) | x∈V(H)

}

(2)

form a partition ofV(H) for everyϕ ⊑ R. To see this, we note thatx ∈ V(Hx
ϕ) holds for

all x ∈ V(H). Thus,P 6= /0 for all P ∈ PR
ϕ and

⋃

P∈PR
ϕ

P = V(H). Furthermore,V(Hx
ϕ )∩

V(Hy
ϕ ) 6= /0 if and only ifx andy are in same connected component w.r.t.ϕ , i.e., if and only

if V(Hx
ϕ) =V(Hy

ϕ).
We furthermore will need the intersections

VR(x) :=
⋂

ϕ⊑R

V(Hx
ϕ) .

These sets form the classes of the common refinement of the partitionsPR
ϕ , ϕ ⊑ R, i.e.,

P
R :=

{

⋂

ϕ⊑R

V(Hϕ(x)) | x∈V(H)

}

= {VR(x) | x∈V(H)} (3)

is again a partition ofV(H).
The main statement of this section is the following factorization theorem for quotient

hypergraphH/PR. It directly generalizes the corresponding result for simple graphs shown
in [4].
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= Hϕ1
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ϕ1
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Figure 3: The equivalence relationR on E(H) with equivalence classesϕ1 (solid), ϕ2 (dashed)
has the grid property. We havePR

ϕ1
= {{1,5,9},{2,6,10},{3,7,11},{4,8,12}}, PR

ϕ2
=

{{1, . . . ,4,9, . . . ,12},{5, . . . ,8}}, andPR= {{1,9},{2,10},{3,11},{4,12}. The correspond-
ing quotient graphsHϕi/P

R
ϕ i

, i = 1,2 and the product graphH/PR are shown on the right-hand
side.

Theorem 1. If R is an equivalence relation with the grid property on E(H) then

H/PR∼=�ϕ⊑RHϕ/P
R
ϕ .

To prove this theorem, we first have to verify the following lemma.

Lemma 6. Let R be an equivalence relation on the edge set of a connectedhypergraph H
that satisfies the grid property and letϕ ⊑ R, v∈ V(H). Then for all x∈ V(Hv

ϕ) and all
edges e∈ ψ 6= ϕ with v∈ e,ψ ⊑ R, there exists an edge ex with x∈ ex such that holds

e∩V(Hw
ϕ ) = /0 if and only if ex∩V(Hw

ϕ ) = /0

for all w ∈V(H).

Proof. Let v ∈ e := e0 ∈ ψ . For any x ∈ V(Hv) there exists a pathPvx := (v =
v0, f1,v1, . . . ,vk−1, fk,vk = x) such thatfi ∈ ϕ for all i = 1, . . . ,k. By the grid property,
e0 and f1 span an|e0| × | f1|-grid G1. Thus, there exists an edgee1 ∈ G1, with |e1| = |e0|
such thatv1 ∈ e1 ∈ ψ . Furthermore, for allw∈ e0 there is an edgef w

1 ∈ ϕ with f w
1 ∩e1 6= /0

if and only if w ∈ f w
1 . Hence,e0∩V(Hw

ϕ ) = /0 if and only if e1∩V(Hw
ϕ ) = /0. Moreover,

sincev1 ∈ f2∩e1, f2 ∈ ϕ , e1 ∈ ψ , these two edges again span an|e1|× | f2|-grid G2.
Inductively, we construct a collection of edgese1, . . . ,ek such thatei−1 and fi span an

|ei−1| × | fi |-grid Gi such thatei ∈ Gi and vi ∈ ei ∩ fi . Therefore, by the same argument
as before, we haveei−1∩V(Hw

ϕ ) = /0 if and only if ei ∩V(Hw
ϕ ) = /0 and consequentlye0∩

V(Hw
ϕ ) = /0 if and only ifei ∩V(Hw

ϕ ) = /0 for all i = 1, . . . ,k. By settingex := ek, the assertion
follows.

Proof of Thm 1.Let ϕ1, . . .ϕn denote the equivalence classes ofR. Letx,v1, . . . ,vn ∈V(H),
where thevi are not necessarily distinct. Ifx ∈ V(Hvi

ϕ i
) for all i = 1, . . .n thenVR(x) =

⋂n
i=1V(Hvi

ϕ i
).
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We observe that for 1≤ i ≤ n the vertex set ofHϕi/P
R
ϕ i

is given byV(Hϕi/P
R
ϕ i
) = {Hvi

ϕ i
|

vi ∈V(H)}. Hence, we have

V
(

�
n
i=1Hϕi/P

R
ϕ i

)

=
{

(Hv1
ϕ1
, . . . ,Hvn

ϕn
) | vi ∈V(H), i = 1, . . . ,n

}

,

where(Hv1
ϕ1
, . . . ,Hvn

ϕn
) = (Hu1

ϕ1
, . . . ,Hun

ϕn
) if and only if ui ∈V(Hvi

ϕ i
) for all i = 1, . . . ,n.

We define a mappingV(H/PR)→V(�n
i=1Hϕi/P

R
ϕ i
) as follows:

VR(x) 7→ (Hv1
ϕ1
, . . . ,Hvn

ϕn
)

iff x∈V(Hvi
ϕ i
) for all i = 1, . . .n.

For allx∈V(H) there existvi , i = 1, . . . ,n, such thatx∈V(Hvi
ϕ i
), e.g. choosevi = x. And

since fromx∈V(Hvi
ϕ i
) andx∈V(Hui

ϕ i
) follows Hvi

ϕ i
= Hui

ϕ i
, this mapping is well defined.

Since bothx ∈ V(Hvi
ϕ i
) andy ∈ V(Hvi

ϕ i
) we concludeHx

ϕ i
= Hy

ϕ i
we can conclude that

this mapping is injective. To prove surjectivity, it suffices to show that
⋂n

i=1V(Hvi
ϕ i
) 6= /0 for

arbitraryvi ∈V(H). We show by induction for allk≤ n holds
⋂k

i=1V(Hvi
ϕ i
) 6= /0. Fork= 1

this is trivially fulfilled. Let k ≥ 1 and suppose
⋂k

i=1V(Hvi
ϕ i
) 6= /0. We have to show, that

this implies
⋂k+1

i=1 V(Hvi
ϕ i
) 6= /0. From the induction hypothesis, we can conclude there must

be a vertexx ∈ V(H) such thatx ∈ V(Hvi
ϕ i
) for all i = 1, . . . ,k and hence

⋂k
i=1V(Hvi

ϕ i
) =

⋂k
i=1V(Hx

ϕ i
) for all i = 1, . . . ,k. Therefore, we have to show

V(Hx
ϕk+1

)⊆
k
⋂

i=1

V(Hx
ϕ i
). (4)

From that and Lemma 4 we obtain /06= V(Hx
ϕk+1

)∩V(H
vk+1
ϕk+1

) ⊆
⋂k+1

i=1 V(Hvi
ϕ i
) and the as-

sumption follows.
Let y∈V(Hx

ϕk+1
). Then there exists a pathQ from x to y such that all edges ofQ are in

classϕk+1. Clearly, they are not in classϕi for i = 1, . . .k and thereforey∈V(Hx
ϕ i
) for all

i = 1, . . .k, from what Equation (4) and finally surjectivity follows.
It remains to prove the isomorphism property, that is, we have to

show that {VR(x1), . . . ,VR(xk)} is an edge in E(H/PR) if and only if
{(Hx1

ϕ1
, . . . ,Hx1

ϕn
), . . . ,(Hxk

ϕ1
, . . . ,Hxk

ϕn
)} is an edge in�n

i=1Hϕi/Pϕ i
.

Let {VR(x1), . . . ,VR(xk)} be an edge inE(H/PR). Thus, there exists edgee∈ E(H)
such thate∩VR(x j) 6= /0 for all j = 1, . . . ,k ande⊆

⋃k
j=1VR(x j). Clearly,e∈ ϕm for some

m∈ {1, . . . ,n}, and hencee∈ ϕ l for all l 6= m, which impliesHx1
ϕ l

= H
xj
ϕ l

for all j = 1, . . . ,k

and alll 6= m. We have to show that{Hx1
ϕm

, . . . ,Hxk
ϕm

} is an edge inHϕm
/PR

ϕm
. Recall, that

VR(x j ) =
⋂n

i=1V(H
xj
ϕ i
) and consequently,e∩Vr(x j) 6= /0 impliese∩V(H

xj
ϕm

) 6= /0, as well

ase⊆
⋃k

j=1VR(x j ) impliese⊆
⋃k

j=1V(H
xj
ϕ i
). Thus, by definition of quotient hypergraphs

we have{Hx1
ϕm

, . . . ,Hxk
ϕm

} ∈ E(Hϕm
/PR

ϕm
) and hence{(Hx1

ϕ1
, . . . ,Hx1

ϕn
), . . . ,(Hxk

ϕ1
, . . . ,Hxk

ϕn
)}

is an edge in�n
i=1Hϕi/Pϕ i

.
Now, let {(Hx1

ϕ1
, . . . ,Hx1

ϕn
), . . . ,(Hxk

ϕ1
, . . . ,Hxk

ϕn
)} be an edge in�n

i=1Hϕi/Pϕ i
. Then there

exists somem ∈ {1, . . . ,n} such thatHx1
ϕ l

= H
xj
ϕ l

for all j = 1, . . . ,k and all l 6= m and

{Hx1
ϕm

, . . . ,Hxk
ϕm

} ∈ E(Hϕm
/PR

ϕm
). That is, there existse∈ ϕm such thate∩V(H

xj
ϕm) 6= /0 for

9



all j = 1, . . . ,k ande⊆
⋃k

j=1V(H
xj
ϕm). Hence, there existsx∈ e∩Hx1

ϕm. By Lemma 6, we can

conclude that there exists an edgee′ ∈ ϕm such thatx1 ∈ e′ ande′∩V(H
xj
ϕm

) 6= /0 for all j =

1, . . . ,k ande′∩V(Hw
ϕm

) = /0 if w /∈V(H
xj
ϕm

) for somej ∈ {1, . . . ,k}. Let zj ∈ e′∩V(H
xj
ϕm

).

Consequently,zj ∈ V(Hx1
ϕ l
) = V(H

xj
ϕ l
) for all l 6= m, hencezj ∈ VR(x j), and therefore

e′∩VR(x j) 6= /0 for all j =1, . . . ,n. Furthermore, sincee′∩V(Hw
ϕm

)= /0 if w /∈V(H
xj
ϕm

) for j ∈

{1, . . . ,k}, we havee′ ⊆
⋃k

j=1V(x j) and consequently{VR(x1), . . . ,VR(xk)} ∈ E(H/PR),
completing the proof.

The following result provides a surprisingly simple characterization of product relations
consisting of exactly two classes.

Theorem 2. Let R be an equivalence relation on E(H) consisting only of equivalence
classesϕ and ϕ . Then|V(Hx

ϕ)∩V(Hy
ϕ )| = 1 holds for all x,y ∈ V(H) if and only if R

is a product relation.

The proof of Theorem 2 is essentially the same proof as that for the analogous results for
simple graphs in [4]. In the graph case, these two theorems are intimately related to graph
bundles [9], which intuitively can be seen as generalizations of products in the sense they
consist of isomorphic fibres held together by a collection ofsquares. The grid property thus
can be expected to play an important role for hypergraph bundles. We will explore this topic
in detail in a forthcoming manuscript.
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Appendix: Basic Notation and Terminology

Hypergraphs. A (finite) hypergraph H= (V,E) consists of a set ofvertices V=V(H) and
a collectionE = E(H) of non-empty subsets ofV known ashyperedges, or simplyedges.
Throughout this contribution, we consider only finite hypergraphs without multiple edges,
i.e., E is a finite set. We writem(H) = |E(H)| for the number of edges. A hypergraph
H = (V,E) is simpleif no edge is contained in any other edge and|e| ≥ 2 for all e∈ E. A
simple graphis a simple hypergraph such that|e| = 2 holds for alle∈ E. Two verticesu
andv areadjacentin H = (V,E) if there is an edgee∈ E such thatu,v ∈ e. Two edges
e, f ∈ E are adjacent ife∩ f 6= /0. We say that a vertexv and an edgee of H areincidentif
v∈ e.

A loop at x∈V is an edge{x} ∈ E. We denote byLH the hypergraph obtained fromH
adding a loop at each vertex. Conversely,NH denotes the hypergraph obtained by removing
all loops fromH. A partial hypergraph H′ = (V ′,E′) of a hypergraphH = (V,E), denoted
by H ′ ⊆ H, is a hypergraph such thatV ′ ⊆ V andE′ ⊆ E. In the class of graphs partial
hypergraphs are calledsubgraphs. The partial hypergraphH[V′] = (V ′,E′) is induced(by
V ′ if E′ = {e∈ E | e⊆V ′}. A partial hypergraph of a simple hypergraph is always simple.
Thestar S(v) with centrev∈V is the partial hypergraph generated by the edges containing
v.

A walk in H = (V,E) is a sequencePv0,vk = (v0,e1,v1,e2, . . . ,ek,vk), wheree1, . . . ,ek ∈ E
andv0, . . . ,vk ∈ V, such that eachvi−1 6= vi andvi−1,vi ∈ ei for all i = 1, . . . ,k. The walk
Pv0,vk is said tojoin the verticesv0 andvk. A pathis a walk where both the verticesv0, . . . ,vk

and the edgese1, . . . ,ek are all distinct. A path between two edgesei andej is pathPvivj

joining vertices any pair of verticesvi ∈ ei andv j ∈ ej . A cycleof lengthk, or k-cycle, is
a sequence(v0,e1,v1,e2, . . . ,vk−1,ek,v0), such thatPv0,vk−1 is a path. Thestar SH(v) with
centrev∈V is the partial hypergraph ofH generated by the edges containingv.

The distance dH(v,v′) between two verticesv0,vk of H is the length of a shortest path
joining them. We setdH(v,v′) = ∞ if there is no such path. A hypergraphH = (V,E)
is calledconnected, if any two vertices are joined by a (finite) path. A connectedpartial
hypergraphH ′ ⊆ H is calledconvex, if all shortest paths inH between two vertices inH ′

are also contained inH ′. A not necessarily connected partial hypergraphH ′ ⊆ H is convex,
if all of its connected components are convex.

For two hypergraphsH1 = (V1,E1) andH2 = (V2,E2) a homomorphismfrom H1 into H2

is a mappingα : V1 →V2 such thatα(e) = {α(v1), . . . ,α(vr)} is an edge inH2 whenever
e= {v1, . . . ,vr} is an edge inH1. A homomorphism fromH1 into H2 implies also a mapping
αE : E1 → E2. A mappingα : V1 → V2 is a weak homomorphismif edges are mapped
either to edges or to vertices. A bijective homomorphismα is a hypergraphisomorphism
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α(e) ∈ E2 if and only if e∈ E1. We say,H1 andH2 areisomorphic, in symbolsH1
∼= H2,

if there exists an isomorphism between them. An isomorphismfrom a hypergraphH onto
itself is anautomorphism.

The 2-section[H]2 of a hypergraphH = (V,E) is the graph(V,E′) with E′ =
{{x,y} ⊆V | x 6= y, ∃ e∈ E : {x,y} ⊆ e}, that is, two vertices are adjacent in[H]2 if they
belong to the same hyperedge inH.

Relations. We will consider equivalence relationsR on E, i.e., R⊆ E ×E such that (i)
(e,e) ∈ R, (ii) (e, f ) ∈ R implies ( f ,e) ∈ R and (iii) (e, f ) ∈ R and ( f ,g) ∈ R implies
(e,g) ∈ R. The equivalence classes ofR will be denoted by Greek letters,ϕ ⊆ E. We
will furthermore writeϕ ⊑ R for mean thatϕ is an equivalence class ofR.

A relationQ is finer than a relationR while the relationR is coarser thanQ if (e, f ) ∈ Q
implies (e, f ) ∈ R, i.e, Q ⊆ R. In other words, for each classϑ of R there is a collection
{χ |χ ⊆ ϑ} of Q-classes, whose union equalsϑ . Equivalently, for allϕ ⊑ Q andψ ⊑ Rwe
have eitherϕ ⊆ ψ or ϕ ∩ψ = /0.

The Cartesian Product. Let H1 and H2 be two Hypergraphs. TheCartesian product
H = H1�H2 has vertex setV(H) = V(H1)×V(H2), that is the Cartesian product of the
vertex sets of the factors and the edge set

E(H) =
{

{x}× f : x∈V(H1), f ∈ E(H2)
}

∪
{

e×{y} : e∈ E(H1),y∈V(H2)
}

.
(5)

The Cartesian product is associative and commutative, thusthe Cartesian product of arbi-
trarily many hypergraphs is well defined. Every connected hypergraph has unique repre-
sentation as Cartesian product of prime hypergraphs [5].

The mappingpi : V(�n
i=1Hi) → V(Hi) defined bypi(v) = vi for v = (v1,v2, . . . ,vn) is

calledprojectiononto thei-th factor ofH. The induced partial hypergraphHw
i of H with

vertex setV(Hw
i ) = {v∈V(H) | p j(v) = wj , for all j 6= i} is calledHi-layer through w. It

is isomorphic toHi .
An equivalence relationR on the edge setE(H) of a Cartesian productH = �

n
i=1Hi of

(not necessarily prime) hypergraphsHi is a product relationif e R f holds if and only if
there exists aj ∈ {1, . . . ,n} such that|p j(e)|> 1 and|p j( f )| > 1.
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