The Grid-Property and Product-Like
Hypergraphs

Lydia Ostermeie? & Peter F. Stadler-3—6

IMax Planck Institute for Mathematics in the Sciences, bisaRe 22, D-04103 Leipzig, Germany;
2Bjoinformatics Group, Department of Computer Science, latetdisciplinary Center for Bioinformatics, Uni-
versitat Leipzig, HartelstraRe 16-18, D-04107 LeipzigrGany;*RNomics Group, Fraunhofer Institut for Cell
Therapy and Immunology, PerlickstraRe 1, D-04103 Leip@grmany;°Institute for Theoretical Chemistry,
University of Vienna, Wahringerstrae 17, A-1090 Viennaisia; °The Santa Fe Institute, 1399 Hyde Park
Rd., Santa Fe, NM 87501, USA.

Abstract

Equivalence relations on the edge set of a hypergraph thistystihe “grid-property” (a
certain restrictive condition on diagonal-free grids tbah be seen as a generalization of
the more familiar “square property” on graphs) play a crudike in the theory of Cartesian
hypergraph products. In particular, every convex relatidth the grid property induces a
factorization w.r.t. the Cartesian product. In the clasgraphs, even non-convex relations
with the square property provide rich structural inforroaton local isomorphisms, local
product structures, and product structures of quotierpilgga Here, we examine the grid
property in its own right. Vertex partitions derived frometie equivalence classes of the
edges give rise to equivalence relations on the vertex 4@t ifi turn determine quotient
graphs that have non-trivial product structures.
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1 Introduction

It has been known for nearly half a century that every coretehiypergraph has a unique
prime factor decomposition with respect to Cartesian pcoghi. In the class of graphs,
Cartesian products are conveniently characterized ing@frthe convex closure of certain
relations on the edge set that satisfies the so-called “squaperty”’,e ~ f if either e
and f are opposite edges of a chordless square,ard f are adjacent and do not span a
chordless square. Generalizing the approach of [7], wentgcghowed that an analogous
result holds for Cartesian products of hypergraphs [8]. éMarecisely, the product relation
o on the edge set of a hypergraph i.e., the equivalence relation on its edge sets that
identifies the fibres of the prime factors df as the connected components of the partial
hypergraphs generated by a single equivalence clagsadn be represented as the convex
closure of an initial relatiod. The latter is defined locally by a generalization of the squa
property known as the “grid property”, which we introducerfally in the section 2.



Within the class of graphs, the relatidn[10] and its generalizations have long played
an important role in the context of Cartesian products aed tieneralizations, the Carte-
sian graph bundles [6, 7, 11, 12]. A recent attempt [4] todsaihderstand the structure
of equivalence relations on the edge set of a gi@ghat satisfies the square property, we
uncovered a surprising connection to equitable partitomnthe vertex set db and a Carte-
sian factorization of certain quotient graphs that was nlegkin the context of quantum
walks on graphs [1]. Here, we explore to what extent thesglteesan be generalized to
hypergraphs.

2 The Grid Property

Throughout this contribution we consider finite, connegtg@thple hypergraphsl. The
notations largely follows the survey of hypergraph prodis}. To make this contribution
self-consistent we include the basic definitions and nmtatin the Appendix.

We start by defining grids in hypergraphs. As in the case olesyin graphs, which are
conveniently defined as collections of edges, we regard #secollections of (hyper)edges.

Definition 1. [8] An r x sgrid in a hypergraph H= (V,E) is a collection¥ =
{e1,...,6s, f1,..., fr} C E of edges such that

(i) |lenf;|=1 and

(i) einer = fj N fj/ =0,
foralli,i’e {1,....s}, j,j € {1,...,r}, withi#1’, j # j’. We say thatieand g as well as
fi and f; are parallel edgesf¥.

Adiagonalin ¢ is an edge d& E(H) satisfying

anfind#0 and gNfyNd#£0

fork.K € {1,...,s}and I’ € {1,...,r} with k£ K and | #£ I,

The significance ofliagonal-freggrids is that they appear as the Cartesian product of two
hyperedges. Thus, they can be seen as a natural geneoaliaéthe chordless squares that
appears as products of edges in the Cartesian graph product.

In [8], the following generalization of the “square prop@ifior equivalence relations on
the edge set of simple graphs was introduced:

Definition 2. Let R be an equivalence relation on the edge s@t Eof a hypergraph H.
We say R has thgrid propertyif

(S1) Anytwo adjacentedges e and f of H belonging to distireqjiRvalence classes span
exactly one diagonal frefe| x | f|-grid ¢4 and

(S2) Parallel edges in any diagonalfree gi#d of E(H) are in the same R-equivalence
class.

The restriction of these statements to simple graphs resdhe definition of thesquare
propertyused in [4]: (S1) Any two adjacent edgesand f of H belonging to distincRk-
equivalence classes span exactly one square, and (S2)djceat edges in a chordless
square belong to the sarReequivalent class.

In graphs, an equivalence relation with the square propergadily constructed as the
transitive closure of the relatiod [2, 7, 10]. In [8] the following generalization to hyper-
graphs has been introduced:
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Figure 1: The l.h.s. shows a hypergrdphwith an equivalence relatioR on E(H) that consists of two
equivalence classes indicated by edges \ejth- 2 (dashed) and edges witj = 3 (solid ovals).
Rhas the gridproperty, bdt ¢ R, since, e.9.({2,11,12},{3,7}) € d but({2,11,12},{3,7}) ¢
R. The r.h.s. shows the 2-sectiid], together with the equivalence relatiéa on E([H]2)
induced byR. Its equivalence classes are depicted by dashed and sgks e spectivelyR,
does not satisfy the square property, since edg@e3} and{2,6} span more than one square.

Definition 3. Let H be a connected hypergraph. Two edgds®E(H) arein relationd,
ed f, if one of the following conditions holds:

(i) e=f
(i) enf =0ande and f are opposite edges of a four-cycle
(i) enf £ 0and thereis nd|e| x | f|)-grid without diagonals containing them.

The relationd is reflexive and symmetric. Its transitive closudreis therefore an equiv-
alence relation. As shown in [8* has the grid property and any equivalence relation that
containsd has the grid property. Moreover, we can state the following

Proposition 1. If R is an equivalence relation on(B) satisfying the grid property and S
is a coarse equivalence relation, RS, then S also has the grid property.

Conversely, however, if a relatidR on E(H) satisfies the grid property, this does not
necessarily imphyd C R, as shown in Fig. 1. However, we can formulate more restacti
conditions in terms of the 2-sectidHl], of the hypergrapid. Let R be an equivalence
relation onE(H). ThenR induces a relatiof, on E([H],) by settinge’ R, f’ for €, ' €
E([H].) iff there are edges, f € E(H) withe R fande Ce, f' C f.

Proposition 2. If R has the grid property then,Rs an equivalence relation on(fH]5).

Proof. SinceRy is clearly reflexive and symmetric we only need to show ais transi-
tive. Therefore, le¥/, f’',g’ € E([H]2) and suppos€ R, f’ andf’ R, g’. By construction,
there aree, f, f g E(H) suchthal Ce f' C f. f' C f.g CgandeR faswellasf Rg
Furthermore,f’ C f N f, thus,|f N f| > 2, which impliesf R f becauseR satisfies the
grid-property. Sinc® is an equivalence relation, we can concled® gand therefore also
¢ Ry g/. O



Definition 4. An equivalence relation R on(B) has thestrong grid propertyf R has the
grid property and the induced equivalence relationd® E([H],) has the square property.

Lemma 1. An equivalence relation R on(B) has the strong grid property if and only if
O0CR.

Proof. First, letd C R ThenR has the grid property. We have to show tit on
E([H2]) satisfies the square property. Thereforedet {x,y}, f’ = {y,z} € E([H]2) be
two adjacent edges such th@at, f’) ¢ R,. Then there exists adjacent edge$ € E(H)
with € C e, f' C f such that(e, f) ¢ R. Thus,e and f span a unique diagonal-free grid
g ={eeq,....,&,f, f1,..., i} with |ef =1 +1 and|f| =k+1. W.lLo.g., leten f; = {x}
ande; N f = {z}. Henceg andf’ span a squarg,y,z,w) with {w} = e; N f;. This square
must be chordless, since for any chdfdhere exists a diagondID d’ of the grid¥.

Suppose there exists another squarg, z v) spanned by andf’. Hence, there exists
& f in E(H) such that{x,v} C éand{v,z} C f. Then neitheehor f are contained 7,
since otherwisd or é, respectively, would be a diagonal %t If &= f holds, thereould
be a diagonal of this grid. Hencez f must hold. However, this implie§df as well
asedf and therefor@d* f and consequently R f a contradiction. Thusk has the strong
grid property ifd CR.

Now, supposeR has the strong grid property. We have to show that for any wges
e f € E(H) with edf holdse R f. First, supposedf such thate and f are not adjacent.
Thus,eandf must be opposite edges of a 4-cycle. Hence, there eXidtsc E([H]2) with
€ Ceandf’ C f such thae andf’ are opposite edges of a squarght],. SinceR, has
the square property, we can concl@®, f'. That is, there exists edgesf e E(H) with
¢ C éandf’ C f such thaeRf. From|f N f| > 2 andjené| > 2, we can conclude Réand
f R f and finallye R f. Now, lete, f € E(H) be adjacent and suppose, for contraposition,
(e,f) ¢ R Theneand f span a unique, diagonal-free grid. The definitiondoimplies
(e, f) ¢ 0. O

Instead ofd we can also construct a less restrictive, i.e., finer, edgize relation on
E(H) with the grid property.
Definition 5. Two edges & € E(H) are in relationy if one of the following conditions
holds:
(i) e=f
(i) enf=0andeand f are parallel edgesin agridin H
(i) enf # 0and there is no diagonal-frege| x | f|)-grid that contains e and f
(iv) enf # 0and there is more than one diagonal-frige| x |f|)-grid containing e and f

By construction,y is reflexive and symmetric. Its transitive closyreis therefore an
equivalence relation.

Lemma 2. An equivalence relation R on(B) has the grid property if and only if C R.

Proof. First, suppose C R. We have to show tha& satisfies the grid property. Therefore,
lete f € E(H) be two adjacent edges such thietf) ¢ R, hence,(e, f) ¢ y. Then from
condition(iii ) in the definition ofy, we can conclude that there exists a ¢fith H spanned
by eandf, and from conditior{iv) it follows that this grid is unique.

Now, supposeR has the grid property. We have to show thaR ffor all e f € E(H)
with ey f. First, supposey f andeandf are not adjacent. Thusandf must be parallel
edges in a grid, and therefoeeR f. Now, suppose and f are adjacent and suppose, for
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Figure 2:.LHS: The equivalence relatiop on E(H), whose classes are indicated by dashed and solid
ovals, resp., satisfies one of the conditiGhgii) , and(iii) of Definition 5, but violated condition
(iv) since there are two grids spanned by edgke®, 3} and{2,5,9}.
RHS: The edgegu, v} and{v,w} in the graph span two squarés$u,v,w,x}) and({u,v,w,y}).
It holds: {u,v}yo{wy}, {w,y}yo{u,x} and{u,x}yo{v,w}, hence{u,v}y;{v,w}.

contraposition(e, f) ¢ R. Theneand f span a unique grid without diagonals. Then, from
the definition ofy we can concludée, f) ¢ y since neithefiii ) nor (iv) is fulfilled. O

If H is a graph, then we do not have to insist on condifimn in the definition ofy.
To see this, consider the relatign satisfying one of the condition@), (i), and(iii) in
Definition 5. If eand f span more than one square in a graph, then they are guaranteed
be in the transitive closurg of y, see Fig. 2. This is not true in a hypergraph, however, as
the example in Fig. 2 shows.

Corollary 1. For any connected hypergraph H holggs C y* C 6*. If H is a graph, then
w=y =09

In the remainder of this section we collect several usefapprties of the grid property
that generalize well known results for the square prop&tyne of these results have been
shown in previous work, others are novel to our knowledge.

We will need the following notation: LeR be an equivalence relation d&(H) and
let ¢ C R be an equivalence class Bf An edgeec E(H) is a¢-edge ifec ¢. For a
given¢ C Rwe consider the partial hypergraplp = (V, ¢ ) generated by thé¢-edges. The
connected componentblfy containing the vertex e V (H) is denoted byHg. The star with
centeru generated by alp-edges incident ta is denoted bys,, (u) or Sy (u) for short.

Lemma 3([8] ). Let R be an equivalence relation or{HE) with the grid property. Then
each vertex of H is incident to at least one edge of each Rsclas

Lemma4([8]). Let R be an equivalence relation or{HE) with the grid property that has
only two equivalence class¢sand@. Then|V(Hg) mV(H%)| > 1forallx,yeV(H). If

both Hj and Hj are convex thei (H§) NV (Hy)| = 1.

Proposition 3. Let R be an equivalence relation orjHE) with the grid propertyg, y C R,
Y#,ecp,andxy e e. Then niSy(x)) = m(Sy(y)).



Proof. W.l.o.g., suppos& (Sy(x)) = {f1,..., fx}. The grid property implies that eadh
together withe spans a unique diagonal-free gegl, i = 1,... .k and%; # ¢, if i # |.
Furthermore, for each=1,... k there is an edgd/ € ¢ such thaty € f/. Thus% is
also spanned by/ ande. If f{ = fj, this immediately implies = |, otherwisef/ ande
would span more than one grid. Therefore, we haygy(x)) < m(Sy(y)). An analogous
argument established amiSy (y)) < m(Sy(x)), hence equality must hold. O

Lemma 5. Let R be an equivalence relation orfHE) with the strong grid propertyp, ¢ C
R,y # ¢, ec ¢, and xy € e. Then the stars generated by gHedges centered in x and y,

resp., are isomorphic, &x) = Sy(y).

Proof. Letec ¢ CE(H),x,y € V(H) such thak,y € e. LetE(Sy(x)) = {f1,..., f™} and
E(Syly) ={d%. .g"}). We havem = as a consequence of Prop. 3.

By the grld property, e € ¢ and fl ¢ ¢ span a unique grid¥' =
{fifl... fled,... e'K} in H for all i =1,....,m, with |[f'| =k +1, |¢f =1+ 1.
From the proof of Prop. 3, we can conclude that for ia# 1,...,m there eX|sts a
uniquely determined edgg’ with g € %. W..o.g., letg' := fi for all | — 1,.
Moreover, set := eandfj := ' foralli =1,...,m. By the deflnmon of a grid, we have
e=ULo(fine) = LJH)(1°S Nne) foralli,j= 1 ,m. W.lLo.g., letfine= f{neforall
s=0,...,landi,j=1,.

The vertex set osp(x) iSV(Sp(X)) =Um, f =UM, UK, (Fin€). Itwill be convenient
to relabel them in the following manner: We $&tSy(x)) > v:= x;, iff vis the uniquely
determined vertex wit§v} = f! ﬂdi. Note that vertices with different labels are not neces-
sarily distinct. Analogously, we assign labels to vertisesf H as follows:w := y‘ri iff wis
the uniquely determined vertex wiflw} = g-e.. Sincey € g' foralli=1...,m, it follows
Y €V(Sy(y)) forallri =0,....k,i=1,...,m

With this notation, we have to prove that the map defined by

X, W 1)
forallri=0,....k, i=1,...,m, is an isomorphism betweesy (x)and Sy (y). Thus, we
have to show that;, = if and only if yi, =y4,. If i = j this immediately implies; = s,

otherW|see'r nes # 0. Now assume that# j. Suppose flrstr =x§, e, fing =f ﬂeéj.
If y'r + ySJ theng me', £ gl mesj, which |mpI|ese'r + es because otherwisgi would be
a diagonal of the grldﬁ But the we find a 4- cyclex e',l,y'rI d.y.g st, ) |n H, with
g,g ey andér es € ¢, which contradicts the strong grid property. Thxls xSJ implies
y'I = st, i.e., the mappmgrI Hy'rl is well defined.

From analogous considerations we can conck‘rlide xéj if y‘rI ySJ which proves injec-

tivity. FurthermoreV (Sy(y)) = U1 d' = UZ, UrL; (' ne) = UM, Uty {yi}. Thus, this

mapping is surjective and therefore bijective. Moreoviecethe edges @y (x) andSy(y)

are given byf' = Ui _o(f'Ne) = Ur_o{X } andg' = Ur_o(g' Ne) = Ur_o{¥t}, resp., this
O

mapping is an isomorphism.

The isomorphisngy (x) = Sy (y) given in Equation (1) isnducedby the edges € ¢ in
the sense that vertices §f;(x) are mapped onto vertices 8 (y) if and only if they are in
the same edge that is paralleleoThe grid property is by itself not sufficient to determine
these local isomorphism, as Fig. 1 shows: The vertices 2 ard 6onnected by a dashed



edge, but the stars generated by the solid edges centerednd &, respectively, are not
isomorphic.

3 Quotient hypergraphs

In this section, we prove that several results that have bkrewn for graphs in [4] are also
true for hypergraphs.

Definition 6 (Quotient Hypergraph)Let H = (V,E) be a hypergraph and let” =
{V1,...,Vk} be a partition of the vertex set V of H. Theotient hypergraphl /& has
vertex set V\H/ &) = {V1,... W} and f={Vi;,...;\i,} CV(H/Z) is an edge in HZ
iff there exists an edgeeE(H) such that

() enVi; #0forall j=1,...,rand
(i) e CUj_1Vi;.
By construction, the set

PR:={V(H}) | xeV(H)}

is a partition ofV(H) for every¢ C R. The quotient hypergrapH/gZ;‘ has as its vertex
sets the connected componehis. The set{Hf,fl,...,H;k} is an edge iff there are edges
e€ E(H) such thaenV (Hy') # 0 if and only ifw € V(Hg) forie {1,...,k}.

In the following we will be interested in particular in theraplements oR-classes, i.e.,
ing := E\ ¢. The corresponding partial hypergraphs are denoteldgywith connected
componentsiz for a givenx € V(H). We observe that € V(Hz) if and only if there is a

pathP := (X = xp,€1,X1,... 6, Xk =Y) fromxtoy such thag ¢ ¢ forall 1 <i <k.
Just like #§, the sets

PR = {V(H%) |er(H)} )
form a partition ofV (H) for everyg C R. To see this, we note thate V(Hg) holds for
allxeV(H). Thus,P#0 forallP e 3%5 andUPe@gP =V(H). Furthermorey (Hg) N
V(H%) = 0 if and only ifx andy are in same connected component wirti.e., if and only
if V(HY) =V (Hj).

We furthermore will need the intersections

VR(X) == () V(H3).
$CR

These sets form the classes of the common refinement of ttiticpm@%, PCRie,

gZR:{ﬂV(H@y(x)) |er(H)}{VR(X)|XEv(H)} (3)

$CR

is again a partition o¥/ (H).

The main statement of this section is the following factatizn theorem for quotient
hypergrapt / 2R, It directly generalizes the corresponding result for dexgsaphs shown
in [4].
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Figure 3: The equivalence relatioR on E(H) with equivalence classeg; (solid), ¢, (dashed)
has the grid property. We havg@{;1 = {{1,5,9},{2,6,10},{3,7,11},{4,8,12}}, 3%52 =
{{1,...,4,9,...,12},{5,...,8}}, and 2R = {{1,9},{2,10},{3,11},{4,12}. The correspond-
ing quotient graphbly, /325, i = 1,2 and the product gragh/ 2R are shown on the right-hand
side.

Theorem 1. If R is an equivalence relation with the grid property ofHE then
H/ 2R = D0ycrHy | P
To prove this theorem, we first have to verify the followingima.

Lemma 6. Let R be an equivalence relation on the edge set of a connbgfeetgraph H
that satisfies the grid property and I¢t= R, ve V(H). Then for all x V(Hg) and all
edges e Y # ¢ withve e, C R, there exists an edge with x € g, such that holds

enV(Hg)=0 ifandonlyif &NV (Hy)=0
forallw eV (H).

Proof. Let v e e:= e € . For anyx € V(HY) there exists a pattRy := (v =
Vo, f1,V1,..., k1, Tk, Vk = X) such thatf; € ¢ for all i =1,... k. By the grid property,
g and f; span anep| x |f1|-grid %1. Thus, there exists an edge € %, with |e;| = |ep
such thawy € e; € . Furthermore, for alv € ey there is an edgé)” € ¢ with f}YNe; # 0
if and only if w € f}'. Hence,g ﬂV(H(‘i’,V) =0 if and only ifelmV(H“I;") = (0. Moreover,
sincev; € foNey, fo € ¢, e € Y, these two edges again span|eqi x | fo|-grid 4.
Inductively, we construct a collection of edges...,e such thatg_; and f; span an
le_1| x |fi]-grid ¢4 such thatg € 4 andv; € e N f;. Therefore, by the same argument
as before, we have_1 NV (Hg') = 0 if and only ife NV (H§') = 0 and consequentigyh N
V(HY) =0ifand onlyife NV (Hg') =0 foralli =1,... k. By settinge, := &, the assertion
follows. O

Proof of Thm 1.Let ¢4, ... ¢ denote the equivalence classe®ot etx,vi,...,vop € V(H),
where thev; are not necessarily distinct. K< V(Hq‘g_) foralli=1,...nthenVr(x) =

Nit1V (Hg).



We observe that for £ i < nthe vertex set ofly, /ﬁ% is given byV (Hy, /@¢ )= {H |
vi € V(H)}. Hence, we have

V(DP:1H¢i/9%) _ {(Hay o HE) [V EV(H), 1,...,n},
where(H) 5 Hy ) = (H;i,...,H%:) if and only if u; eV(H@‘?i) foralli=1,....n
We define a mapping (H/ #%) — V(O Hy, / 23 ) as follows:

VR(X) =+ (Hgh,- . Hg?)

iff xeV(Hy ) foralli=1,.

ForaIIer( ) there exisy;, i =1,...,n, such that(eV(H ), €.9. choose; = x. And
since fromx € V(HW.) andx eV (Hj ) foIIows HW =HZ, this mappmg is well defined.

Since bothx € V(H ) andy e V( @5.) we concludeH?,,I = Hy we can conclude that
this mapping is |njectlve To prove surjectivity, it suffic show thaﬂ, 1V(H ) =+ Q for
arbitraryv; € V(H). We show by induction for ak < n holdsﬂik:lV(HV' ) # (D Fork 1
this is trivially fulfilled. Letk > 1 and supposg)_;V (H "i) # 0. We have to show, that
this impliesﬂk“V(H"' ) # 0. From the induction hypothesis, we can conclude therd mus

be a vertexx € V(H) such thatx € V(H i) for all i = 1,...,k and hencg)k_,V( @5.)
NiC1V(H; ) foralli = 1,... .k Therefore, we have to show
k
V(H$k+1) < mV(H%i)' (4)
i=1

V k+1 \
From that and Lemma 4 we obtain®V (Hg, )NV (H ““) NiZTV (Hy ) and the as-
sumption follows.

Lety € V(Hg,.,). Then there exists a paf@from x to y such that all edges @ are in
classgy. 1. Clearly, they are notin clagi fori = 1,...k and thereforg V(Hgi) for all
i =1,...k, from what Equation (4) and finally surjectivity follows.

It remains to prove the isomorphism property, that is, we ehato
show that {Vr(x1),...,Vr(X)} is an edge in E(H/2R) if and only if
{(Hgh. . Hgh), o (Hgt ... Hg )} is an edge i) Hy, / P,

Let {Vr(X1),-..,VR(x)} be an edge ifE(H/ZR). Thus, there exists edgec E(H)
such thaEﬁVR(xJ) #0forallj=1,...,kandeC U'J‘ 1Vr(X;). Clearly,e € ¢n, for some
me {1,...,n}, and hence € ¢, for aII [ #m, wh|ch |mpI|esH¢| H% forall j=1,...,k
and alll #m. We have to show tha(lH } is an edge irHg /3%5 Recall, that
VR(Xj) = N1V (H J) and consequentlysmvr(xj) # 0 impliesenV (Hj ] ) # 0, as well
aseC UJ:1VR(XJ) impliese C | J* :1V(H¢i). Thus, by definition of quotlent hypergraphs
we have{Hﬁ,...,H%‘:n} € E(Hg, /%5 ) and hence{(H%ll,...,H%t),...,(H%"l,...,H%';)}
is an edge i Hy, / P,

Now, let {(Hg!,...,Hgl )., (Hg ... . Hg )} be an edge it Hg /P, Then there
exists somem € {1,...,n} such thatH?),;ll = % forall j=1,....k and alll # m and

{Hg ..., Hy } €E(Hg, /28 ). Thatis, there exists € ¢ such thaeNV (Hg' ) # 0 for



allj=1,... kandeC U‘j(:1V(H$fn). Hence, there existse eNHg',. By Lemma 6, we can

conclude that there exists an edge ¢, such thai; € € ande ﬂV(H;L]) #0forall j=

1,....kande NV (HY ) =0 if w¢ V(Hy ) for somej € {1,...,k}. Letzj € €NV (Hy ).
Consequentlyz; € V(H%l) = V(Hg) for all | # m, hencez; € Vr(Xj), and therefore
€NVr(xj) #0forall j=1,...,n. Furthermore, since‘ﬂV(H%’m) =0 ifwgéV(H%) forj e

{1,...,k}, we havee C Ulj(:]_V(Xj) and consequentifVr(x),...,Vr(X)} € E(H/2R),
completing the proof. O

The following result provides a surprisingly simple chaeaization of product relations
consisting of exactly two classes.

Theorem 2. Let R be an equivalence relation onHE) consisting only of equivalence
classesp and@. Then|V(Hg) mV(H%)| =1 holds for all xy € V(H) if and only if R
is a product relation.

The proof of Theorem 2 is essentially the same proof as thdh&analogous results for
simple graphs in [4]. In the graph case, these two theoreenmiimately related to graph
bundles [9], which intuitively can be seen as generalizegiof products in the sense they
consist of isomorphic fibres held together by a collectioagpfares. The grid property thus
can be expected to play an important role for hypergraphlegntlVe will explore this topic
in detail in a forthcoming manuscript.
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Appendix: Basic Notation and Terminology

Hypergraphs. A (finite) hypergraph H= (V,E) consists of a set ofertices V=V (H) and

a collectionE = E(H) of non-empty subsets & known ashyperedgesor simplyedges
Throughout this contribution, we consider only finite hygraphs without multiple edges,
i.e., E is a finite set. We writan(H) = |E(H)| for the number of edges. A hypergraph
H = (V,E) is simpleif no edge is contained in any other edge &gd> 2 forallec E. A
simple graphis a simple hypergraph such that = 2 holds for alle € E. Two verticesu
andv areadjacentin H = (V,E) if there is an edge € E such thatu,v € e. Two edges
e f € E are adjacentien f # 0. We say that a vertexand an edge of H areincidentif
vee.

A loopatx eV is an edgex} € E. We denote byCH the hypergraph obtained frokh
adding a loop at each vertex. Conversaliy denotes the hypergraph obtained by removing
all loops fromH. A partial hypergraph H= (V’,E’) of a hypergraptd = (V,E), denoted
by H' C H, is a hypergraph such th& CV andE’ C E. In the class of graphs partial
hypergraphs are callesibgraphs The partial hypergrapH|[V'] = (V/,E’) is induced(by
V'if E' = {e€ E |eCV'}. A partial hypergraph of a simple hypergraph is always sempl
Thestar Sv) with centrev €V is the partial hypergraph generated by the edges containing
V.

A walkin H = (V,E) is a sequencB,, v, = (Vo,€1,V1,€,...,6&,Vk), Whereey, ..., e € E
andvp,...,V € V, such that eacki_1 # v; andvi_1,v; €  foralli =1,... k. The walk
Pyo.v is said tgoin the vertices/g andvy. A pathis a walk where both the vertices, .. ., vk
and the edges;, ..., & are all distinct. A path between two edggsande; is pathRy,
joining vertices any pair of vertices € g andv; < gj. A cycleof lengthk, or k-cycle, is
a sequencévp, e, Vi, ey, ..., Vk_1,6&,Vo), such thaR, v, is a path. Thestar S(v) with
centrev €V is the partial hypergraph ¢ generated by the edges containing

The distance ¢ (v,V') between two verticegy, v of H is the length of a shortest path
joining them. We setly(v,V') = o if there is no such path. A hypergraph= (V,E)
is calledconnectedif any two vertices are joined by a (finite) path. A conneagpedial
hypergrapH’ C H is calledconvexif all shortest paths itd between two vertices ik’
are also contained iH’. A not necessarily connected partial hypergrel H is convex,
if all of its connected components are convex.

For two hypergraphsl; = (V4,E;) andHz = (Va, Ez) ahomomorphisnfrom Hy into Ha
is a mappingx : Vi — V, such thator(e) = {a(v1),...,a(v)} is an edge irH, whenever
e={vi,..., }isanedgeimd;. A homomorphism fronid; into H, implies also a mapping
s E1 — Ex. A mappinga : Vi — V, is aweak homomorphisnifi edges are mapped
either to edges or to vertices. A bijective homomorphisns a hypergraplisomorphism
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a(e) € Ey if and only if e € E;. We sayH; andH, areisomorphig in symbolsH; 2 Hy,
if there exists an isomorphism between them. An isomorplfiem a hypergrapli onto
itself is anautomorphism

The 2-section[H], of a hypergraphH = (V,E) is the graph(V,E’) with E' =
{{x,y} CV |x#£y,FecE: {xy} Ce}, thatis, two vertices are adjacent[id], if they
belong to the same hyperedgeHn

Relations. We will consider equivalence relatiofson E, i.e., RC E x E such that (i)
(e,e) € R, (ii) (e f) € Rimplies (f,e) € R and (iii) (e, f) € R and (f,g) € R implies
(e,g) € R. The equivalence classes Bfwill be denoted by Greek lettergy C E. We
will furthermore write¢ C R for mean thatp is an equivalence class Bf

ArelationQ is finer than a relatioR while the relatiorR is coarser thaQ if (e, f) € Q
implies (e, f) € R, i.e, Q C R. In other words, for each clask of R there is a collection
{X|x € 3} of Q-classes, whose union equés Equivalently, for allp = Q andy C Rwe
have eitheyp Cporp Ny =0.

The Cartesian Product. Let H; andH;, be two Hypergraphs. Th€artesian product
H = H1OH, has vertex se¥(H) = V(H1) x V(H,), that is the Cartesian product of the
vertex sets of the factors and the edge set

E(H)={{x} x f ixeV(H1),f €E(Ho)}

U{ex{y}:ecE(H1),yeV(Ha)}. ®)

The Cartesian product is associative and commutative,ttrei€artesian product of arbi-
trarily many hypergraphs is well defined. Every connectepengraph has unique repre-
sentation as Cartesian product of prime hypergraphs [5].

The mappingp; : V(O ;Hi) — V(H;) defined byp;(v) = vi for v = (vq,Vo,...,Vn) is
calledprojectiononto thei-th factor ofH. The induced partial hypergrap}¥ of H with
vertex seV (H") = {ve V(H) | p;(v) = w;, forall j #i} is calledH;-layer through w It
is isomorphic taH;.

An equivalence relatioR on the edge sef(H) of a Cartesian produ¢i = O ,H; of
(not necessarily prime) hypergrapHsis a product relationif e R f holds if and only if
there exists g € {1,...,n} such thatp;j(e)| > 1 and|p;(f)| > 1.
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