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Abstract. Connectedness is a fundamental property of objects and systems.
It is usually viewed as inherently topological, and hence treated as derived
property of sets in (generalized) topological spaces. There have been several
independent attempts, however, to axiomatize connectedness either directly
or in the context of axiom systems describing separation. In this review-like
contribution we attempt to link these theories together. We find that despite
differences in formalism and language they are largely equivalent. Taken to-
gether the available literature provides a coherent mathematical framework
that is not only interesting in its own right but may also be of use in several
areas of computer science from image analysis to combinatorial optimization.
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1. Introduction

Connectedness is a fundamental property of objects and thus plays a key role in
particular in devising computational models for them. In topology it was studied
already in the early 1900s by Hausdorff, Riesz, and Lennes (see [1] for a historic
perspective on this most early work). Topological spaces (and their generalizations
known as closure spaces) come endowed with a natural concept of topological
connectedness that is usually expressed in terms of a separation relation: two
sets A and B are separated if (A ∩ c(B)) ∪ (c(A) ∩ B) = ∅, where c( . ) denotes
the closure. The Hausdorff-Lennes condition stipulates that a set is connected if
it cannot be partitioned into two non-empty separated subsets. Connectedness
thus is usually treated as a derived property of spaces that are defined in terms
of notions of boundary, closure, interior, or neighborhood. An early exposition
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of connectedness is [2]. From a category theory point of view, connectedness is
instead defined in terms of continuity, using a classical theorem from topology as
definition: X is ζ-connected if and only if every ζ-continuous function f : X → 2

is constant, where 2 is the discrete space with two points [3, 4, 5].

Generalized topologies (X,O) in the sense of Császár [6] consist of a set
system O ⊆ 2X that is closed under arbitrary unions, i.e., if Oι ∈ O for ι ∈ I,
then

⋃
ι∈I Oi ∈ O. The elements of O serve as generalization of open sets. In this

setting a space X is O-connected if there are no two disjoint non-empty open
sets O1, O2 ∈ O such that O1 ∪ O2 = X . A variety of derived generalized open
set systems can be constructed in terms of the closure and interior operators on
O, thus giving rise to different flavors of connectedness, see e.g. [7, 8, 9] for a
systematic analysis.

In the 1940s, several authors investigated connectedness as the fundamental
concept of a topological theory starting from axioms for separation between sets
instead of deriving separation from another topological structure [10, 11, 12]. It
was soon recognized this leads to theories that are substantially more general
than topological spaces [12, 13, 14]. In particular, there are natural connectivity
structures that do not coincide with the connected sets of any topological space
(or generalized closure space) [15]. The notion of separation is intimately related
to that of proximity [16]. A set A is proximally-connected in a proximity space
(X, δ) if, for any two non-empty sets A′, A′′ with A′ ∪A′′ = A it holds that A′δA′′

[3], i.e., if A cannot be separated into a pair of far sets, see [17] for some further
developments.

Starting with the 1980s, several authors have begun again to investigate sys-
tems of connected sets either in their own right [18, 19], or motivated by particular
applications. A close connection between knot theory and finite connectivity spaces
has been explored in [20]. Connectivity is also an important concept in digital im-
age analysis and has become a focus in Mathematical Morphology starting with the
work of Serra, Ronse, and collaborators [21, 22] and centers on filter operations,
called openings or closings, that remove grains or fill in pores [23] and provide
an abstract definition of connected components. Several natural constructions in
this context lead to collections of “connected sets” that are not derivable from
topologies:

• The standard notion of connectivity of graphs, for instance, is only topolog-
ical in a relaxed sense. It is derived from the Hausdorff-Lennes condition on
pretopologies, which lack idempotence of the close operator c( . ) rather than
topological spaces [24].

• Different notions of connectivity on hypergraphs have been investigated. Most
naturally, each hyperedge is considered as a connected set. An interesting al-
ternative notion that is equivalent to connectedness for graphs but in general
not on hypergraphs is partition connectedness. A hypergraph H is called par-
tition connected [25] if every partition of its vertex set into t classes is such
that there are at least t− 1 hyperedges that intersect at least two classes. As
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there are a variety of notions of paths in hypergraphs, there are also multiple
nonequivalent concepts of path connectedness.

• A set A is arc-wise connected if for every pair x, y ∈ A there is a continuous
(w.r.t. a given topology) function γ : [0, 1] → A such that γ(0) = x, γ(1) = y,
and γ is a homeomorphism between the unit interval [0, 1] of R and its image.
The closure of the “topologist’s sine curve”, i.e., the set S := {(x, sinx−1)|0 <
x ≤ 1}∪{(0, y)|−1 ≤ y ≤ 1}, for instance, is connected w.r.t. to the standard
topology of the plane, but it is not arc-wise connected. A theorem by Mròwka
[15, Thm.1] demonstrated that the collection A(R2) of all arc-wise connected
sets in the plane cannot be obtained as the connected sets w.r.t. any topology
on R

2.
• A set A is polygonal line connected in R

n, A ∈ P(Rn) if every pair of points
x, y ∈ A can be joined by a polygonal line entirely contained in A [26]. In
this setting, objects are not connected if they have thin, curved parts.

• The family of all subsets of a Euclidean space that are not linearly separable
forms a connectivity space [26].

• Dilation connectivity is defined in terms of one or more structuring connected
sets Q [27]. Denote by Qξ the translation of Q to the origin ξ. The dilation
of a set A by Q is the set of all points ξ such that Qξ ∩ A 6= ∅. The dilation
connectivity provides a direct link to mathematical morphology [28, 29, 30].
Connected sets with respect to the dilation connectivity have an interpreta-
tion as clustering of A.

Connectedness, and in particular the notion of connected components, are of
key interest in topological approaches to image analysis. It is of eminent practical
importance for image filtering and segmentation, image compression and coding,
motion analysis, and pattern recognition, see e.g. [31, 32, 33, 34]. The central role
of connectivity in this area derives from the idea that the connected components of
an object are “non-overlapping” and their “union” reconstitutes the original object
[33], providing a solid theoretical foundation for partitioning, i.e., segmenting,
objects.

More recently, the investigation of generalized topologies associated with
chemical reaction networks has lead to “constructive connectedness” as a more
natural notion of connectivity of chemical spaces than the Hausdorff-Lennes con-
nectivity on the same neighborhood space [35]. The motivation here comes from
the investigation of large chemical reaction networks, i.e., directed hypergraphs.
In this context the closure c(A) of a set of chemical compounds is the set of chem-
ical substances that can be formed by chemical reactions whose educts are taken
from A. Naturally A and B are separated whenever all reactions that can take
place in A ∪B are also feasible in A alone or in B alone, see Fig 1. This notion of
connectedness does not match the usual concepts of connectedness in hypergraphs.

An axiomatic approach to connectivity is also of interest in the context of
fitness landscapes, i.e., functions f : X → R, where R is some well-ordered set,
X is the underlying search space, and f is a fitness or cost function. While X is
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x x

Figure 1. Example of productive connectivity in a chemical
reaction network. The directed hypergraph X is represented as a
bipartite digraph such that each • denotes a chemical compound
(points of X) and each � is a reaction. A reaction is “active”
in a set Z of compounds (here marked by red and cyan, round
vertices) if all its inputs are contained in Z. All active reactions
for Z are marked by circles. The two panels show slightly different
sets Z. The closure function is defined such that c(Z) contains
all points of Z together with the products of all reactions that
are active for Z. c(Z) is indicated by blue outlines. As defined
in [35], (A,B) is a productive separation of Z if, for all subsets
Z ′ ⊆ Z holds (i) c(A ∩ Z ′) ∩ B = ∅ and c(B ∩ Z ′) ∩ A = ∅,
and (ii) c(Z ′) = c(Z ′ ∩ A) and c(Z ′) = c(Z ′ ∩ B). Choose A
as the red and B as the blue vertices of Z. Since c is enlarging
by construction, condition (i) reduces to the Hausdorff-Lennes
condition c(A) ∩ B = c(B) ∩ A = ∅. It is clearly satisfied here.
Condition (ii) also holds since there is no active reaction for Z
that has inputs in both A and B. Note that from the point of
view of active reactions (circled reaction nodes) one might want
to consider the right hand side as connected since their sets of
reaction products share x.

finite (but usually unmanageably large) in combinatorial optimization problems,
X is usually taken to be a continuum in the field of evolutionary computation. In
both settings, coarse grained representations (such as barrier trees [36]), as well
as elaborate stochastic models of optimization algorithms make prominent use of
the connected components of “level sets” Fh = {x|f(x) ≤ h}. A closer inspection
shows that the only intrinsic structure of the search space X that is actually used
in this context is the connectedness of its subsets. This is most transparent in
Trouvé’s “cycle decomposition” of the state space [37] in the theory of simulated
annealing. Here, the connected components of the restriction of the search space
to solutions with a prescribed maximum cost play the key role, see Fig. 2. In most
applications of this type, from simulated annealing to RNA landscapes [24], an ad-
ditive (graph-like) connectivity structure is used. In [36], the connectivity structure
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Figure 2. A combinatorial landscape and its barrier tree.
A landscape consists of a search space X and a cost function
f : X → R. A crucial concept in analyzing landscapes are the con-
nected components of the sets Fh := {x ∈ X |f(x) ≤ h}. Denote
by Fh[x] the connected component of Fh that contains x. Local
minima and saddle points are most conveniently defined in terms
of connected sets: x is a local minimum if y ∈ Ff(x)[x] implies
f(y) = f(x). A saddle point x is characterized by the fact that its
connected component breaks up as soon as the cost cut-off h falls
below f(x), i.e., if there is an ǫ > 0 such that Fh[x] ∩ Fh′ is not
connected for all h, h′ with f(x) − ǫ < h′ < f(x) < h < f(x) + ǫ.
The barrier tree [38] has the local minima as its leaves and the
saddle points as its interior vertices. Note that saddle points
appear as local maxima of f only in two-dimensional drawings,
i.e. when X is represented by a single coordinate axis.

of a discrete search space is discussed that is implied by a genetic algorithm: For
a population A, its closure c(A) is understood as the set of all possible offspring
that can be generated from A, similar to chemical spaces discussed above. The
resulting generalized topology then induces a natural notion of connectedness.

The connectedness of the set of optimal solutions in a multi-objective opti-
mization problem is known to have an impact on the performance of heuristics
[39]. Minimax theorems for functions of the form g : X × Y → R also involve the
connectedness of level sets in one variable. This generates a separation structure
in the sense of Wallace rather than a topology on the sets X and Y [40].

It is the purpose of this contribution to summarize elementary results on
connectivity spaces and their associated separation relations. Much of the mate-
rial compiled here is “mathematical folklore” and many results have already been
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obtained by others in one form or the other. Since we strive to present the connec-
tions between the different formalisms in their most general form, we nevertheless
include simple proofs of many statements that have been published only in a less
general setting or for which we could not find an easily accessible proof in the liter-
ature. We deliberately concentrate on simple, very basic properties of connectivity
structures in an attempt to connect independent lines of reasoning and results that
have been scattered in the literature.

2. General Connectivity Spaces

2.1. Basic Definitions

Throughout this contribution we are interested in connectedness structures on an
arbitrary set X . The most direct approach is to specify axioms for a collection
C ⊆ 2X of connected subsets of X .

Definition 2.1. A connectivity space is a pair (X,C) with C ⊆ 2X such that

(c0) ∅ ∈ C

(c1) Zı ∈ C for all ı ∈ I and
⋂

ı∈I Zı 6= ∅ implies
⋃

ı∈I Zı ∈ C

Connectivity spaces [21, 18, 20] have also been termed “connective spaces”
or “c-spaces” in [19], and “partial connection” in [41]. An equivalent definition,
using the name “connectivity system” was used in [42].

Consider an arbitrary set Z ∈ C and let BZ be a subset of C such that (i)
Z ∈ BZ and (ii) Z ′ ∈ BZ implies Z ′ ∩ Z 6= ∅.

Fact 2.2. C satisfies axiom (c1) if and only if the following holds:

(c1’) Let Z ∈ C and BZ ⊆ C such that (i) Z ∈ BZ and (ii) Z ′ ∈ BZ implies
Z ′ ∩ Z 6= ∅. Then

⋃
Z′∈BZ

Z ′ ∈ C.

Proof. Suppose (c1) holds and Z, Z ′ and BZ is defined as in (c1’). Then Z ′∪Z ∈ C

for all Z ′ ∈ BZ . Furthermore
⋃

Z′∈BZ
Z ′ =

⋃
Z′∈BZ

(Z ′ ∪ Z). The latter sets are
connected and their intersection contains Z, hence their union is connected as well
by axiom (c1). The converse is obvious. �

2.2. Connected Components

The concept of connected components is a key ingredient of any theory of connec-
tivity.

Definition 2.3. For every A ⊆ X and every x ∈ X the set

A[x] =
⋃{

A′ ⊆ X
∣∣A′ ⊆ A, x ∈ A′, A′ ∈ C

}
(2.1)

is called the connected component of x ∈ A.

By definition A[x] = ∅ if x /∈ A. Furthermore A[x] ∈ C as a direct consequence
of axiom (c1) for non-empty A[x] and of axiom (c0) for A[x] = ∅. It is important
to note that x ∈ A does not guarantee that A[x] is non-empty.
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Fact 2.4. Given an arbitrary collection B ⊆ 2X of connected sets there is a unique
minimal collection µ′(B) ⊆ 2X such that B ⊆ µ′(B) and µ′(B) satisfies (c0) and
(c1).

This observation has been made repeatedly in the literature for more re-
stricted types of connectivity spaces, see e.g. [19]. A complete discussion in full

generality can be found in [41]. By construction µ′ : 22
X

→ 22
X

is idempotent,
i.e., µ′(µ′(B)) = µ′(B) and expanding, i.e., B ⊆ µ′(B). B is called a basis of the
connectivity space µ′(B). Furthermore, we say that B is complete if B = µ′(B),
i.e., if the basis already satisfies (c0) and (c1).

The connected sets of µ′(B) can be characterized directly in terms of “chain-
ing” [41], see also [26] for the analogous construction in a more restrictive setting:
A ∈ µ′(B) if and only if any two points x, y ∈ A can be joined by a sequence
of connected sets Zi ∈ B, Zi ⊆ A, 0 ≤ i ≤ n such that x ∈ Z0, y ∈ Zn, and
Zi−1 ∩ Zi 6= ∅ for 0 < i ≤ n.

An alternative construction, first described in [43], see also [44, Thm.3], uses
transfinite induction to produce the connected components: For given A ∈ 2X and
x ∈ A let A0[x] =

⋃
{Z ∈ B|Z ⊆ A, x ∈ Z}. Then define recursively Ak[x] =

Ak−1[x] ∪
⋃
{Z ∈ B|Z ⊆ A, Z ∩ Ak−1[x] 6= ∅} and set A∗[x] =

⋃∞
k=0 Ak[x]. By

(c1) A∗[x] ∈ µ′(B) and A∗[x] = A for A ∈ B and x ∈ A. Thus µ′(B) = {A∗[x]|A ∈
2X , x ∈ A} and the A∗[x] are indeed the connected components of A w.r.t. µ′(B).
Note that A[x] can be empty since A∗[x] = ∅ if and only if A0[x] = ∅.

In this most general setting, therefore, the set system {A[x]|x ∈ A} does not
define a partition of A but only a partial partition [41], and may even consist of

the empty set only. We write Å = {x ∈ A|A[x] = ∅} for the part of A not covered

by connected components. If C satisfies (c0) and (c1), Å is the set of all points in A
that are not contained in any connected subset of A. An example of a connectivity
space in which not all points are covered by connected components is shown in
Fig. 3.

For later reference we note the following simple

Fact 2.5. Let C be a connected component of A and suppose C ⊆ B ⊆ A. Then C
is a connected component of B.

Proof. By construction C is connected and there is no connected subset of A that
intersects both C and A\C. Hence no such set exists in B ⊆ A, i.e., C is a maximal
connected subset of B. �

2.3. Connectivity Openings

An alternative starting point to the theory of connectivity spaces are the properties
of connected components. This avenue was explored e.g. in [21, 22, 26, 41, 45].

Definition 2.6. A “connectivity opening” is a map γ : X×2X → 2X : (x,A) 7→ A[x]
that satisfies for all x ∈ X and all A,B ∈ 2X the following axioms:

(o0) x /∈ A implies A[x] = ∅.
(o1) A[x] ⊆ A.
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A

x
z

A[x]

Figure 3. Example of a connective space with non-connected
points. Every unit circle (dashed) that can be fit into A (outlined
in black) is connected. By (c1), so is the union of embedded
cycles, shown here as three disjoint shaded areas that constitute
the connected components of A. A point x located within a
(connected) circle and its connected component A[x] are marked.
In contrast, z is not located inside a circle, i.e., A[z] = ∅, as
for any point located in the white parts of A, which together
represent Å.

(o2) A ⊆ B implies A[x] ⊆ B[x].
(o3) (A[x])[x] = A[x].
(o4) If y ∈ A[x] then A[y] = A[x].

For later reference we note that (o2) is equivalent to

A[x] ∪B[x] ⊆ (A ∪B)[x] (2.2)

Theorem 2.7. [41, Thm.21] There is one-to-one correspondence between systems
of connected components satisfying axioms (o0) to (o4) and connectivity spaces
satisfying (c0) and (c1) given by Definition 2.3 and

C =
{
Z ∈ 2X

∣∣Z = A[x], A ⊆ X, x ∈ X
}

(2.3)

The structure of connected components as partial partitions forms the basis
of a systematic investigation of the lattice of partial partitions in [45]. This work
identifies a particular type of block-splitting operators that produce exactly the
connectivity openings. This order and lattice-theoretic angle is developed further
in [46, 47].
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3. Separation Spaces

3.1. Separations of Connectivity Spaces

Definition 3.1. Let C ⊆ 2X be an arbitrary collection of connected sets. A pair
(A,B) is C-separating if for every connected subset Z ∈ C with Z ⊆ A ∪ B holds
Z ∩ A = ∅ or Z ∩B = ∅.

The intuition behind this definition is that the pair (A,B) does not “separate”
any connected set. By construction every non-empty connected subset Z ⊆ A∪B
lies either in A \B or in B \A. We write SC, or when the context is clear, simply
S for the collection of all separations w.r.t. to a given collection of connected sets
C.

Recall that Y̊ is the set of points in Y ⊆ X that do not belong to any
connected component of Y , i.e., a point y ∈ Y̊ is separated from every subset of
Y including {y} itself. More formally, if there is a separation (A,B) ∈ S with

y ∈ Y ⊆ A ∪ B and y ∈ A ∩ B 6= ∅, then y ∈ Y̊ . Conversely, for y ∈ Y̊ we have

({y}, Y ′) ∈ S for all Y ′ ⊆ Y . In particular, (Y̊ , Y̊ ) ∈ S and ({y}, {y}) ∈ S for all

y ∈ Y̊ . Thus we can express Y̊ in terms of the separation S associated with C as
follows:

Y̊ = {y ∈ Y |∃(A,B) ∈ S such that Y ⊆ A ∪B, y ∈ A ∩B} (3.1)

The separation S defined by a collection C of connected sets already has
several interesting properties:

Theorem 3.2. The separation S w.r.t. C satisfies

(S0) (A, ∅) ∈ S

(S1) (A,B) ∈ S implies (B,A) ∈ S.
(S2) (A,B) ∈ S, A′ ⊆ A, and B′ ⊆ B implies (A′, B′) ∈ S.

(SR0) Y \ Y̊ ⊆ A ∪B ⊆ Y and (A,B) ∈ S implies
(
A ∪ Y̊ , B ∪ Y̊

)
∈ S.

(SR1) (A,B) ∈ S and (A ∪B,C) ∈ S implies (A,B ∪ C) ∈ S.
(SR2) If (Ai, Bi) ∈ S and Ai ∪Bi = Y ⊆ X for i ∈ I then

(⋂
i∈I Ai,

⋃
i∈I Bi

)
∈ S.

Proof. (S0) and (S1) follow trivially from the definition. For every Z ∈ C such
that Z ⊆ A ∪ B we have Z ∩ A = ∅ or Z ∩ B = ∅. Thus Z ∩ A′ ⊆ Z ∩ A = ∅
or Z ∩ B′ ⊆ Z ∩ B = ∅ holds for all A′ ⊆ A and B′ ⊆ B in particular whenever
Z ⊆ A′ ∪B′ ⊆ A ∪B. Thus (A′, B′) ∈ S, and (S2) is satisfied.

Suppose Y \ Y̊ ⊆ A∪B. By definition Y̊ does not intersect any connected subsets

of Y . Thus, for all Z ∈ C, Z ⊆ Y holds A ∩ Z = ∅ if and only if (A ∪ Y̊ ) ∩ Z = ∅.

Since all connected subsets of Y are contained in Y \ Y̊ , we can conclude for every

separation (A,B) ∈ S with Y \ Y̊ ⊆ A ∪B that (A ∪ Y̊ , B ∪ Y̊ ) ∈ S.
Every set Z ∈ C with Z ⊆ A∪B∪C satisfies Z∩(A∪B) = ∅ or Z∩C = ∅ because
(A ∪ B,C) ∈ S. If Z ∩ C = ∅ then Z ⊆ A ∪ B and the assumption (A,B) =∈ S

implies Z ∩A = ∅ or Z ∩B = Z ∩ (B∪C) = ∅. Otherwise, Z ∩ (A∪B) = ∅ implies
in particular Z ∩A = ∅. Thus, in both cases Z ∩A = ∅ or Z ∩ (B ∪C) = ∅. Since
this is true for all Z ∈ A ∪B ∪ C, we have (A,B ∪ C) ∈ S.
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Figure 4. Symmetric separations and connected sets. The pair
(A,B) separates X since no connected set contained in A∪B (Z1

through Z6) intersects both A and B. Note that the intersection
of A and B need not be empty. However, A∩B must not contain
a connected set.

Consider an arbitrary Z ∈ C with Z ⊆ Y = Ai ∪ Bi for some Y ⊆ X and
(Ai, Bi) ∈ S. If Z ∩Ai = ∅ for some j ∈ I then Z ∩

⋂
i∈I Ai = ∅. In the remaining

case, Z ∩ Ai 6= ∅ and thus Z ∩ Bi = ∅ for all i ∈ I. This implies
⋃

i∈I(Z ∩ Bi) =

Z ∩
(⋃

i∈I Bi

)
= ∅. Thus (SR2) holds. �

A set of pairs S ⊆ X ×X is called grounded if it satisfies (S0), symmetric
if (S1) holds, and hereditary if (S2) is satisfied. S is a separation if it satisfies
(S0) and (S2). Separations are equivalent to so-called semi-topogenous orders on
2X by virtue of (A,B) ∈ S iff A ≺ X \ B [48, 49]. Non-symmetric separations
have been considered as an alternative basis of topology and in the context of
quasi-proximities [50]. Since connectivity is inherently symmetric, however, there
is nothing to be gained for our purposes by dropping the symmetry axiom (S1),
hence we will only consider symmetric separations throughout this contribution.
Symmetric separation spaces have already been studied in some detail in [12,
13, 14, 43, 49]. The converse of separation is proximity or nearness. The concept
was introduced by Frigyes Riesz already in 1909 [51]. Since proximities have been
studied mostly with much stronger axiom systems than the ones of interest here,
we will return to this point of view only later, see Section 7.4.

3.2. Ronse’s Axioms

Properties (SR1) and (SR2) were introduced in a somewhat different and a slightly
less general form by Ronse [26]. The following discussion heavily borrows from
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[26] to establish analogous results for connectivity spaces in full generality. Most
prominently we add property (SR0) here to deal with those points that do not
belong to any connected component.

The following property effectively describes when a symmetric separation has
a structure that conforms to the idea of connected components.

(SR3) Every set Y ⊆ X can be partitioned into a set Y ◦ and a collection Yj , j ∈ J ,
such that
(i) For all y ∈ Y ◦ there is (A,B) ∈ S such that y ∈ A∩B and A∪B = Y ;

For all (A,B) ∈ S with Yj ⊆ A ∪B we have A ∩ Yj = ∅ or B ∩ Yj = ∅;
(ii) For every subset K ⊆ J we have


⋃

j∈K

Yj ∪ Y ◦,
⋃

j∈J\K

Yj ∪ Y ◦


 ∈ S

We will show that the sets Yj play the role of the connected components of Y ,
while Y ◦ comprises the points of Y not contained in any connected component of
Y .

Lemma 3.3. If S is a symmetric separation satisfying (SR0), (SR1), and (SR2)
then (SR3) also holds.

Proof. Consider Y ⊆ X and define Y = {(U, V )|U ∪ V = Y and (U, V ) ∈ S}. We
define Y (p) = ∅ if there is (U, V ) ∈ Y such that p ∈ U ∩ V and set Y ◦ :=
{p ∈ Y |Y (p) = ∅}. Otherwise we can, by exploiting symmetry, rename all pairs
(Ui, Vi) ∈ Y such that p ∈ Ui and p /∈ Vi and define Y (p) =

⋂
i Ui. Since Y \Ui ⊆ Vi

must hold for all (Ui, Vi) ∈ Y, we have Y \ Y (p) ⊆
⋃

i Vi and thus by (SR2)
(Y (p), Y \ Y (p)) ∈ S and hence also (Y (p), Y \ Y (p)) ∈ Y.

Now suppose q ∈ Y (p) and Y (q) = ∅. By construction, then, there is (U, V ) ∈
Y with q ∈ U ∩V , p ∈ U , and p /∈ V since Y (p) 6= ∅. By (S2), (U \V, V ) ∈ Y ⊆ S,
and hence p ∈ U \V and q /∈ U \V . Since the intersection in the definition of Y (p)
also runs over U \V , we arrive at the contradiction q /∈ Y (p). Thus Y (p)∩Y ◦ = ∅.

By definition of Y (p) and Y ◦ we have Y ◦ ∪
⋃

p∈Y Y (p) = Y . Now suppose

Y (p) 6= ∅ and Y (q) 6= ∅. As shown above, (Y (p), Y \ Y (p)) ∈ Y and (Y (q), Y \
Y (q)) ∈ Y, whence Y (q)∩Y (p) = ∅ or Y (q)∩ (Y \Y (p)) = ∅; and Y (p)∩Y (q) = ∅
or Y (p) ∩ (Y \ Y (q)) = ∅. Thus Y (p) ∩ Y (q) = ∅, or both Y (q) ∩ (Y \ Y (p)) = ∅
and Y (p) ∩ (Y \ Y (q)) = ∅ must hold, whence Y (q) ⊆ Y (p) and Y (p) ⊆ Y (q), i.e.,
Y (p) = Y (q).

Thus the Y (p) together with Y ◦ form a partition of Y . Denote by Yj , j ∈ J ,
the collection of the non-empty Y (p), and suppose there is (P,Q) ∈ S such that
Yj ⊆ P ∪Q and Yj ∩P 6= ∅ and Yj ∩Q 6= ∅. Then (Yj ∩P, Yj ∩Q) ∈ S by (S2). On
the other hand, we have already shown that (Yj , Y \ Yj) ∈ S. Following [26] set
A := P ∩Yj , B := Q∩Yj , and C := Y \Yj we find (A,B) ∈ S and (A∪B,C) ∈ S.
By (SR1) we therefore have (P ∩ Yj , Y \ Yj ∪ (Q∩ Yj)) ∈ Y ⊆ S. This contradicts
the minimality of Yj unless P = Yj . Since Yj ∩ Y ◦ = ∅ we have Yj ∩ Q = ∅, a
contradiction. Hence the partition of Y satisfies statement (i) of (SR3).
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From (Yj , Y \Yj) ∈ S for j ∈ J we obtain by (SR2)
(⋂

i∈I(Y \ Yi),
⋃

i∈I Yi

)
∈

S for all I ⊆ J . Because Yk ⊆ Y \
⋃

i∈I Yi for all k ∈ K ⊆ J \ I we have by (S2)

also
(⋃

i∈I Yi,
⋃

i∈K Yi

)
∈ S whenever K ∩ I = ∅.

Property (SR0) now immediately implies (ii), i.e., (SR3) holds. �

Lemma 3.4. Let S be a symmetric separation satisfying (SR3) and let U ⊆ Y ⊆ X.
Then (U, Y \ U) ∈ S implies that U = U◦ ∪

⋃
Yi, where U◦ ⊆ Y ◦ and the Yi are

classes of the partition defined by (SR3). Furthermore, U can be replaced by U∪Y ◦.

Proof. (U, Y \U) ∈ S implies Yj ∩U = ∅, i.e., Yj ⊆ Y \U , or Yj ∩ (Y \U) = ∅, i.e.,
Yj ⊆ U . Thus U and Y \U together contain all Yj , j ∈ J and each Yj is contained
in either U or Y \ U . The remainders of U and Y \ U therefore are necessarily
subsets of Y ◦. �

Lemma 3.5. Let S be a symmetric separation satisfying (SR3). Then S satisfies
(SR0), (SR1), and (SR2).

Proof. (SR0) follows directly from (ii).
To verify (SR1), consider three not necessarily distinct sets A,B,C ⊆ X with

(A,B) ∈ S and (A ∪B,C) ∈ S, and let Y = A ∪B ∪ C. Then by Lemma 3.4 we
have the representations A =

⋃
i∈IA

Yi ∪ A◦, B =
⋃

i∈IB
Yi ∪B◦, C =

⋃
i∈IC

Yi ∪
C◦. Since (A,B) ∈ S, property (SR3;i) implies A ∩ Yj = ∅ or B ∩ Yj = ∅,
i.e., IA ∩ IB = ∅. Analogously, we can conclude that (IA ∪ IB) ∩ IC = ∅, i.e.,
the index sets IA, IB, and IC are pairwise disjoint. Thus, by (SR3;ii) we have(⋃

j∈A Yj ∪ Y ◦,
⋃

j∈IB∪IC
Yj ∪ Y ◦

)
∈ S. Heredity now implies (A,B ∪ C) ∈ S,

i.e., (SR1) holds.
To verify (SR2) let Y ⊆ X and consider a family of pairs (Ai, Bi) ∈ S,

i ∈ I, with (Ai ∪ Bi) = Y such that
⋃
Ai 6= ∅. From Lemma 3.4 we have, for

each i ∈ I, Ai = A◦
i ∪

⋃
j∈Ji

Yj . Let K =
⋂

i∈I Ji and set A◦ =
⋂

i∈I A
◦
i . Then

A◦ ∪
⋃

j∈K Yj ⊆
⋂

i∈I Ai. For every j /∈ K, there is an i ∈ I such that Yj ∈ Bi,

i.e.,
⋃

j∈J\K Yj ⊆
⋃

i∈I Bi. Thus
(⋂

i∈I Ai,
⋃

i∈I Bi

)
∈ S, i.e., (SR2) holds. �

Taken together we observe that (SR3) is equivalent to (SR0), (SR1), and
(SR2). The following observation characterizes the C-separating pairs in terms of
connected components. It is again a direct generalization of results by Ronse [26].

Lemma 3.6. Given a connectivity space C on X, the corresponding separation space
SC consists of all pairs (A,B) such that every connected component of A ∪ B is
contained in either A or B.

Proof. Suppose there is a connected component Z ⊆ A ∪B such that A ∩ Z 6= ∅
and B ∩ Z 6= ∅. Then (A,B) /∈ SC. On the other hand, suppose that (A,B) is
such that every connected component of A∪B is contained in either A or B, and
let Z ′ ∈ C, Z ′ ⊆ A ∪ B. Then Z is contained in either A or B since otherwise
the connected component Z of A ∪B that contains Z ′ would not be contained in
either A or B. Thus SC is characterized as claimed. �
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3.3. S-connectedness

Originally conceived by Wallace [12], a notion of connected sets can be obtained
in a very natural manner from a collection S of pairs of separated sets.

Definition 3.7. Let S be a symmetric separation on X . A set Z ∈ X is called
S-connected if Z ∩ A = ∅ or Z ∩B = ∅ for all (A,B) ∈ S such that Z ⊆ A ∪B.

We write CS for the collection of the S-connected sets.

Theorem 3.8. If S ⊆ 2X × 2X is symmetric, then the the collection CS of S-
connected sets on X satisfies (c0) and (c1).

Proof. ∅ ∈ CS follows trivially from A ∩ ∅ = ∅, thus (c0) holds. Now fix a pair
(A,B) ∈ S and let B ⊆ CS be an arbitrary collection of S-connected sets such
that (i) Z ⊆ A ∪ B and (ii) there is z such that z ∈ Z for all Z ∈ B. W.l.o.g.
suppose z ∈ A. Since Z is S-connected and z ∈ A ∩ Z, we have Z ∩ B = ∅, and
thus

⋃

Z∈B

(Z ∩B) =

(
⋃

Z∈B

Z

)
∩B = ∅

whenever
⋃

Z∈B
Z ⊆ A∪B. Thus

⋃
Z∈B

Z is S-connected and hence contained in
CS. �

Note that neither axiom (S0) nor (S2) is used here. The following result
parallels the second part of Prop. 3.3 in [26]:

Lemma 3.9. Given a symmetric separation S on X satisfying (SR0), (SR1), and
(SR2), the S-connected components of a set Y ⊆ X are exactly the sets Yj de-

scribed in condition (SR3). Furthermore, Y ◦ = Y̊ .

Proof. By Lemma 3.3, S satisfies (SR3). Property (SR3;i) immediately implies
that the sets Yj are S-connected. Consider an arbitrary subset Y ⊆ X , let Yj ⊆ Y
and denote by Zj the CS-connected component of Y that contains Yj . By (SR3;ii)
we have (Yj , Y \ Yj) ∈ S and since Zj ∈ CS we have Zj ∩ Y \ Yj = ∅, i.e. Zj ⊆ Yj .
Since Yj ⊆ Zj by construction, we conclude Zj = Yj , i.e., the Yj are the connected
components of Y as claimed.

We have y ∈ Y ◦ if and only if y is not contained in a connected component
of Y , i.e., if and only if there is a pair (A,B) ∈ S such that Y ⊆ A ∪ B and

y ∈ A ∩B. This is equivalent to y ∈ Y̊ by equ.(3.1). �

Lemma 3.10. Let S be a symmetric separation satisfying (SR0), (SR1), and (SR2).
If (A,B) is CS-separating, then (A,B) ∈ S.

Proof. Suppose (A,B) is CS-separating. Then either A = ∅ or B = ∅, in which
case (A,B) is triviallyS-separating, or both A and B are non-empty, in which case
A ∪B /∈ CS. Let Yj , j ∈ J denote components of Y := A ∪B described in (SR3).
By Lemma 3.9 they are connected components of Y in CS. Therefore Yj ∩ A = ∅
or Yj ∩B = ∅, i.e., Yj is contained either in A or in B. With JA := {j|Yj ⊆ A} and
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JB := {j|Yj ⊆ B} we have A =
⋃

j∈JA
Yj∪ (A∩Y ◦) and B =

⋃
j∈JB

Yj ∪ (B∩Y ◦),

which by (SR3;ii) implies (A,B) ∈ S. �

Lemma 3.11. If Z 6∈ C then Z is not SC-connected.

Proof. Suppose Y /∈ C and let U be a connected component of Y . Since Y is not
connected, U ⊂ Y and hence V = Y \ U 6= ∅. As a consequence of Lemma 3.6,
every connected component of Y = U ∪ V is either contained in U or in V ,
hence (U, V ) ∈ SC. Since U ∩ Y 6= ∅ and V ∩ Y 6= ∅ it follows that Y is not
SC-connected. �

We can summarize these two lemmas as CSC
⊆ C and SCS

⊆ S.

Galois Connection. For the reminder of this subsection, the pairs of the form
(A, ∅), which were included by axiom (S0) following [12, 13] to avoid having to
exclude empty sets explicitly in much of the discussion become a bit of a nuisance.

We therefore set Ŝ := S\N, where N denotes the set of all pairs (A, ∅) and (∅, B).

Obviously, there is a one-to-one correspondence between S and Ŝ. Furthermore,
we define

D := {{A;B}|A 6= ∅, B 6= ∅} (3.2)

where {A;B} denotes an unordered pair of subsets of X and we identify the two
ordered pairs (A,B) and (B,A) with the single unordered pair {A;B}. With this

slight abuse of notation, we have Ŝ ⊆ D if and only if S satisfies (S0) and (S1).
It is easy to check that both D and 2X form a complete lattice. Furthermore,

if two symmetric separations S1 and S2 give rise to the same collections of Si-
connected sets, their union S1 ∪ S2 again generates the same collection of S-
connected sets. Furthermore, axioms (S0), (S1), (S2), (SR0), (SR1), and (SR2)
remain intact in

⋃
ı∈I Sı and

⋂
ı∈I Sı whenever Sı have the same S-connected

sets for all ı ∈ I.
We introduce the binary relation ≬ on D × 2X by setting {A;B} ≬ Z if and

only if Z ⊆ A ∪B implies Z ∩A = ∅ or Z ∩B = ∅. Note that this same definition
also makes perfect sense for ordered pairs (A,B). Finally, we introduce two maps
Σ and Φ and follows:

Σ :22
X

→ 2D : C 7→ Σ(C)

{A;B} ∈ Σ(C) ⇔ ∀Z ∈ C, {A;B} ≬ Z

Φ :2D → 22
X

: Ŝ 7→ Φ(Ŝ)

Z ∈ Φ(Ŝ) ⇔ ∀{A;B} ∈ Ŝ, {A;B} ≬ Z

(3.3)

The maps Σ and Φ by construction form a Galois connection. Theorem 3.8 shows

that Φ(Ŝ) is a connectivity space, i.e., it satisfies (c0) and (c1). Theorem 3.2 shows
that Σ(C) is a symmetric separation satisfying (SR0), (SR1), and (SR2).

In terms of Σ and Φ, we can recast Lemmas 3.10 and 3.11 as Σ(Φ(S)) ⊆
S and Φ(Σ(C)) ⊆ C. The theory of Galois connections establishes the reverse
inclusions, see e.g. [52] or the discussion in [26].
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We summarize this reasoning in the following

Theorem 3.12. There is a one-to-one correspondence between connectivity spaces
and symmetric separations satisfying axioms (SR0), (SR1), and (SR2) such that

SC =
{
(A,B) ⊆ 2X × 2X |(A,B) ≬ Z for all Z ∈ C

}

CS =
{
Z ⊆ 2X |(A,B) ≬ Z for all (A,B) ∈ S

} (3.4)

Finally, we record two simple consequences of (SR3) and the fact that the
sets Yj are the connected components of Y ⊆ X .

Fact 3.13. If (X,C) satisfies (c1) and Z ′, Z ′′ ∈ C, then either Z ′ ∪ Z ′′ ∈ C or
(Z ′, Z ′′) ∈ SC.

Fact 3.14. For every A ⊆ X and x ∈ A we have (A[x], A \A[x]) ∈ S

3.4. The (SR0) Axiom Revisited

The explicit use of Y̊ in axiom (SR0) lacks a certain conciseness, although it turned
out to be particularly convenient to handle the properties of the “disconnected
points” in the proofs above. We show here that it can be replaced by a more
elegant axiom. We start with simple characterization of Y̊ :

Fact 3.15. Suppose S satisfies (S0), (S1), (S2), and (SR0). Then A ⊆ Y̊ if and
only if A ⊆ Y and (A, Y ) ∈ S.

Proof. Suppose A ⊆ Y̊ . From (S0) we know (Y, ∅) ∈ S and (SR0) implies (Y, Y̊ ) ∈

S. By heredity we also have (Y,A) ∈ S for all A ⊆ Y̊ . Conversely, if (Y,A) ∈ S

for A ⊆ Y then by definition A ⊆ Y̊ . �

An immediate consequence of Fact 3.15 is

Fact 3.16. Suppose S satisfies (S0), (S1), (S2), and (SR0). Then

(SR0-1) Aι ⊆ B and (Aι, B) ∈ S for all ι ∈ I implies (
⋃

ι∈I Aι, B) ∈ S.

Lemma 3.17. Suppose S satisfies (S0), (S1), and (S2). Then (SR0) is equivalent
to (SR0-1) and

(SR0-2) (A ∪B ∪ C,A) ∈ S and (B,C) ∈ S if and only if (A ∪B,A ∪ C) ∈ S.

Proof. Suppose (SR0) holds. We first observe that Y \ Y̊ ⊆ B ∪ C ⊆ Y implies

that here is a set A ⊆ Y̊ such that A ∪ B ∪ C = Y . Fact 3.15 then implies that
A ⊆ Y̊ and (A ∪ B ∪ C,A) ∈ S are equivalent. By (SR0) (Y̊ ∪ B, Y̊ ∪ C) ∈ S,
and by (S2) also (A ∪ B,A ∪ C) ∈ S. Thus (A ∪ B ∪ C,A) ∈ S and (B,C) ∈ S

implies (A ∪ B,A ∪ C) ∈ S. Conversely, (A ∪ B,A ∪ C) ∈ S implies (B,C) ∈ S

and A ⊆ Y̊ . The latter inclusion implies (A∪B ∪C,A) ∈ S by virtue of Fact 3.15.
Thus (SR0-2) holds.

Now suppose (SR0-1) and (SR0-2) hold. Consider three sets A, B, and C and
set Y := A ∪B ∪ C. Hence we have Y \A ⊆ B ∪C ⊆ Y . By (SR0-2), (B,C) ∈ S

implies (A∪B,A∪C) ∈ S for all A satisfying (A∪B ∪C,A) ∈ S. Every such set



16 Bärbel M. R. Stadler and Peter F. Stadler

A is, by definition, contained in Y̊ .
Now consider all sets Aι for which there is a separation of the form (Aι ∪Bι, Aι ∪

Cι) ∈ S with Aι ∪ Bι ∪ Cι = Y . The definition of Y̊ amounts to Y̊ =
⋃

ι Aι.

Property (SR0-1) thus implies (Y, Y̊ ) = (Y̊ ∪ B ∪ C, Y̊ ) ∈ S. Invoking (SR0-2)

again, we arrive at (B ∪ Y̊ , C ∪ Y̊ ) ∈ S, i.e., (SR0) is satisfied. �

Lemma 3.18. Suppose S satisfies (S0), (S1), (S2), (SR1), and (SR2). Then (SR0)
is equivalent to

(SR0-0) (A ∪B,A ∪C) ∈ S implies (A ∪B ∪C,A) ∈ S.

Proof. We first observe that (SR0-1) is a special case of axiom (SR2) and thus
can be dropped entirely. Furthermore, if (A ∪ B ∪ C,A) ∈ S and (B,C) ∈ S

then by heredity (S2) we also have (B ∪ C,A) ∈ S. Symmetry (S1) and property
(SR1) imply (C,B ∪ A) ∈ S. Applying (SR1) again to (B ∪ A,C) ∈ S and
((B ∪A)∪C,A) ∈ S yields (B ∪A,C ∪A) ∈ S, i.e., the “only if” part of (SR0-2)
is already a consequence of (SR1), hence we can replace (SR0) by the “if”-part of
(SR0-2). �

3.5. Subspaces

A subset Y ⊆ X inherits the connectivity structure C of X by means of CY =
{A ∈ C|A ⊆ Y }. Analogously, the separation relation S is inherited by means of
(A,B) ∈ SY if and only if (A,B) ∈ S and A,B ⊆ Y .

4. Isotonic Closure Spaces

4.1. Kuratowski’s Axioms and the Wallace Function

The connection between separations and isotonic closure spaces has been inves-
tigated already in the mid 20th century [12, 14, 15] in the context of Wallace
separations and even more restrictive variants of proximity spaces [53, 50, 54]. In
2005, Harris [55] considered the general case of symmetric separations satisfying
only (S1) and (S2).

Definition 4.1. [12, 14] Let S ⊆ 2X × 2X be an arbitrary relation. Its Wallace
function w : 2X → 2X is defined as

w(A) =
⋂

{B ⊆ X |(A,X \B) ∈ S}

Fact 4.2. [13] If S is a symmetric separation, i.e., if axioms (S1) and (S2) are
satisfied, then the Wallace function can be written as

w(A) = {x ∈ X |({x}, A) /∈ S} (4.1)

Topological spaces and their generalization can be characterized by Kura-
towski’s axioms [56] for a closure function c : 2X → 2X :

(K0) c(∅) = ∅. (grounded)
(K1) A′ ⊆ A implies c(A′) ⊆ c(A) for all A ⊆ X . (isotone)
(K2) A ⊆ c(A) for all A ⊆ X . (enlarging)
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(K3) c(A ∪B) ⊆ c(A) ∪ c(B) for all A,B ⊆ X . (subadditive)
(K4) c(c(A)) = c(A) for all A ⊆ X . (idempotent)

A pair (X, c) satisfying (K0) and (K1) is a often called a closure space. In this
setting, (K3) can be replaced by c(A ∪B) = c(A) ∪ c(B). (X, c) is a neighborhood
space if in addition it is enlarging. A pretopology is also subadditive, and a topology
satisfies all five axioms. If (X, c) satisfies (K0), (K1), (K2), and (K4), then it is a
general convexity.

It follows directly from Definition 4.1 that w is isotone if S is hereditary (S2).
Furthermore (S0) implies (∅, X) ∈ S and hence w(∅) = ∅, i.e., (K0).

A closure space is point-wise symmetric if it satisfies

(R0) x ∈ c({y}) implies y ∈ c({x}) for all x, y ∈ X .

Since by definition w({x}) = {y ∈ X |({x}, {y}) /∈ S}, we have y ∈ w({x}) if and
only if ({x}, {y}) /∈ S, i.e., if and only if ({y}, {x}) /∈ S, i.e., iff x ∈ w({y}). Thus
w satisfies the symmetry axiom (R0).

The pair (X,w) therefore is a point-wise symmetric closure space.
We note for later reference that, as a direct consequence the definition of the

Wallace function, the set of non-connected points can be represented as

Y̊ = {y ∈ Y |y /∈ w(Y )} = Y \ w(Y ) (4.2)

4.2. Hausdorff-Lennes Separations

Definition 4.3. Let (X, c) be a closure space. Then we call

SHL =
{
(A,B) ∈ 2X × 2X

∣∣(A ∩ c(B)) ∪ (c(A) ∩B) = ∅
}

(4.3)

the Hausdorff-Lennes separation of (X, c)

It follows immediately from the definition that SHL is a symmetric separa-
tion, i.e., that (S0), (S1), and (S2) hold. The Hausdorff-Lennes condition, equ.(4.3),
gives the textbook definition of connectedness w.r.t. a topological space.

The following property plays a key role in the theory of separations and their
associated closure spaces:

(SX) If ({x}, B) ∈ S for all x ∈ A and (A, {y}) ∈ S for all y ∈ B then (A,B) ∈ S.

The following result is a variant of (3.3.) in [12], Theorem 3.2 of [14], see also [50]
and [55, Thm.3]:

Theorem 4.4. If S satisfies (S1) and (S2) and (SX) then (A,B) ∈ S if and only
if A ∩ w(B) = ∅ and w(A) ∩B = ∅, i.e., S is the Hausdorff-Lennes separation of
the point-wise symmetric isotone closure space (X,w).

The properties of point-symmetric closure spaces are therefore characterized
by their Hausdorff-Lennes separations.

Fact 4.5. If S satisfies (S2) and (SX), i.e., if the corresponding closure function
w is point-wise symmetric (R0), then S is “grounded”, i.e., satisfies (S0), if and
only if (X,w) is grounded, i.e., if (K0) holds.
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Proof. In [55] the equivalence of (K0) with the (in general weaker) axiom “({x}, ∅) ∈
S for all x ∈ X” is shown. This property is equivalent to (S0) whenever S is sym-
metric (S2) and satisfies (SX). �

4.3. Topological Connectivity Spaces

Definition 4.6. Let (X, c) be a closure space. We say that Z ⊆ X is topologically
connected if it is SHL-connected.

The discussion in the previous subsection established that closure spaces are
equivalent to symmetric separations satisfying (SX). This does not, however, imply
that they are equivalent to connectivity spaces. The following examples show that
(SX) is independent of the axioms (SR1) and (SR2). Thus there are in general
distinct closure spaces that give rise to the same connectivity space.

In the following two examples we use the shorthand notation ab|c to mean
({a, b}, {c}) ∈ S here.
Example. Set X = {a, b, c} and suppose S consists of trivial pairs stipulated by
(S0) and the non-trivial separating pairs a|b, a|c, b|c, and ab|c and their symmetric
counterparts. It is straightforward to check that (S0), (S1), and (S2) holds. From
a|b and ab|c (SR1) would imply b|ac, a contradiction.
Example. Conversely, set X = {a, a′, b, b′} and suppose S contains the non-trivial
separating pairs a|bb′, a′|bb′, b|aa′, b′|aa′ as well as the pairs b|ab′, b′|ab, b|a′b′,
b′|a′b, a|ba′, a′|ba, a|ab′, and a′|ab′ implied by (SR1) as well as their symmetric
counterparts and the subsets a|b, etc., implied heredity. Here (S0), (S1), (S2),
and (SR1) hold by construction. Axiom (SX), however, would imply that S also
contains aa′|bb′ from a|bb′, a′|bb′, b|aa′ and b′|aa′, a contradiction.

Corollary 4.7. A symmetric separation S is generated by the topologically con-
nected sets of a point-symmetric closure space if and only if S satisfies (SX),
(SR0), (SR1), and (SR2).

Proof. By theorem 3.12 (SR0), (SR1), and (SR2) are necessary and sufficient for
S to be the separation of a connectivity space. By theorem 4.4, (SX) is necessary
and sufficient for S to be the Haussdorf-Lennes separation of a closure space. �

For symmetric separations satisfying (SX) it is straightforward to translate
axioms (SR0), (SR1), (SR2) to Wallace functions making use of the equivalence

(A,B) ∈ S ⇔ A ∩ w(B) = ∅ ∧ B ∩ w(A) = ∅ . (4.4)

In the presence of (SX) we can rephrase (SR0-2), (SR1), and (SR2) as additional
axioms for closure spaces:

(KR0) (A∪B ∪C)∩ c(A) = ∅, c(A∪B∪C)∩A = ∅, B∩ c(C) = ∅ and c(B)∩C = ∅
holds and only if (A ∪B) ∩ c(A ∪ C) = ∅ and c(A ∪B) ∩ (A ∪ C) = ∅.

(KR1) c(A) ∩B = c(B) ∩ A = c(C) ∩ (A ∪B) = C ∩ c(A ∪B) = ∅ implies
A ∩ c(B ∪ C) = c(A) ∩ (B ∪ C) = ∅.

(KR2) If Ai ∪Bi = Y for all i ∈ I and c(Ai) ∩Bi = Ai ∩ c(Bi) = ∅ then⋂
i∈I Ai ∩ c

(⋃
i∈I Bi

)
= ∅ and c

(⋂
i∈I Ai

)
∩
⋃

i∈I Bi = ∅.
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To our knowledge these properties have not been studied in the context of closure
spaces so far.

Axiom (SX) does not hold for the C-separations of arbitrary connectivity
spaces. It is of interest therefore, to better understand it in terms of connected
sets. It will be convenient in many of the subsequent arguments to use the following
negative re-statement of Definition 3.1:

Fact 4.8. Let S be a a symmetric separation satisfying (SR0), (SR1), and (SR2)
and let C be the equivalent connectivity space. Then (A,B) /∈ S if and only there
is Z ∈ C such that Z ∩A 6= ∅ and Z ∩B 6= ∅.

An immediate consequence of Fact 4.8 and equ.(4.1) is

Lemma 4.9. Suppose S is a symmetric separation satisfying (SR0), (SR1), and
(SR2) and let C be the equivalent connectivity space. Then its Wallace function is
of the form x ∈ w(A) if and only if there is a connected set Z ⊆ A∪{x} such that
Z ∩ A 6= ∅ and x ∈ Z.

Thus the elements of w(A) are exactly the touching points of [19], see also
[14, Thm.4.9].

In isotone closure spaces some of the theorems regarding connected sets that
are well known from topological spaces still hold for the topological (Hausdorff-
Lennes) connectivity. In particular, if A is topologically connected and A ⊆ c(A),
then c(A) is topologically connected [57]. Following Thm.1.4. of [7] we also conclude
that B is topologically connected whenver A ⊆ B ⊆ c(A) and A is topologically
connected.

We conclude this section by expressing axiom (SX) in terms of connected sets.
Let us say that A and B form a proper bipartition of Z, in symbols Z = A∪̇B,
whenever Z = A ∪B, A 6= ∅, B 6= ∅, and A ∩B = ∅. Then we can state

(cX) For all Z ∈ C and all A∪̇B = Z there is x ∈ A and ∅ 6= B′ ⊆ B such that
{x} ∪B′ ∈ C or y ∈ B and ∅ 6= A′ ⊆ A such that A′ ∪ {y} ∈ C.

Lemma 4.10. Suppose S is a symmetric separation satisfying (SR0), (SR1), and
(SR2) and let C be the equivalent connectivity space. Then S fulfils (SX) if and
only if C satisfies (cX).

Proof. It will be convenient to express (SX) in its negated form: If (A,B) /∈ S

then there is x ∈ A such that ({x}, B) /∈ S or y ∈ B such that (A, {y}) /∈ S. We
assume (S0), (S1), (S2), and (c0), (c1), respectively.

Now suppose (SX) holds and consider Z ∈ C and a pair of non-empty subsets
A and B of Z such that A ∪B = Z. In particular, we may assume that A and B
are disjoint. By assumption, (A,B) /∈ S and hence, by (SX), there is x ∈ A such
that ({x}, B) /∈ S or y ∈ B such that (A, {y}) /∈ S. By Fact 4.8 there is Z ′ ∈ C

such that Z ′ = {x} ∪B′ with B′ ⊆ B, or there is Z ′′ ∈ C such that Z ′′ = {y}∪A′

with A′ ⊆ A, i.e., (cX) holds.
Conversely, suppose (cX) holds. Consider a pair of sets C,D ∈ 2X such that

(C,D) /∈ S. Then by Fact 4.8 there is a Z ∈ C, Z ⊆ C ∪D with A := Z ∩ C 6= ∅
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xA’

A
B

Figure 5. Illustration of axiom (cX). Every connected set Z
can be bipartitioned in two arbitrary subsets that can be labeled
A and B in such a way that there is a non-empty subset A′ ⊆ A
and a single point x ∈ B such that A′ ∪ {x} is connected.

and B := Z ∩ D 6= ∅. By (cX) there is x ∈ A and ∅ 6= B′ ⊆ B ⊆ D with
Z ′ := {x}∪B′ ∈ C or y ∈ B and ∅ 6= A′ ⊆ A ⊆ C with Z ′′ := {y}∪A′ ∈ C. If (SX)
does not hold, then by Fact 4.8 ({x}, B′) /∈ S or ({y}, A′) /∈ S, a contradiction. �

Corollary 4.11. A connectivity C of X consists of the HL-connected sets of a closure
space (X, c) if and only if it satisfies (c0), (c1), and (cX).

Axiom (cX) implies that every connected set with at least 4 points contains a
strictly smaller connected set comprising at least 2 points. In [19] a strictly weaker
condition has been investigated:

(c3) If Y, Z, Y ∪ Z ∈ C then there is z ∈ Y ∪ Z such that Y ∪ {z} ∈ C and
Z ∪ {z} ∈ C.

Lemma 4.12. If C satisfies (c0) and (c1), then (cX) implies (c3).

Proof. Consider Z,Z ′, Z ′′ ∈ C such that Z ′ ∪ Z ′′ = Z. By (cX) there is w.l.o.g.
x ∈ Z ′ and Y ⊆ Z ′′ such that {x} ∪ Y ∈ C. By (c1) this implies {x} ∪Z ′′ ∈ C and
{x} ∪ Z ′ = Z ′ ∈ C by definition. �

We note that (c3) does not imply (cX) because there is, in general no guar-
antee that a particular bipartition of a connected set Z ∈ C into two non-empty
sets A∪B = Z is such that A or B contains a connected set. Therefore, there are
connectivity spaces satisfying (c3) that do not derive from closure spaces.
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5. Integral Connectivity Spaces

5.1. Integral Connectivity Spaces

In most settings it is natural to require that singletons (individual points) are
connected. This amounts to the axiom

(c2) {x} ∈ C for all x ∈ X

Spaces (X,C) satisfying (c0), (c1), and (c2) are called connections in [21] and
integral connectivity spaces in [20], and c-spaces in [19]. We will use the term
integral connectivity space here.

In terms of the connectivity openings, (c2) is equivalently expressed as

(o5) {x}[x] = {x}.

We remark that (o5) can be expressed equivalently as “x ∈ A[x] for all x ∈ A and
all A ∈ 2X .” Thus the sets {A[x]|x ∈ A} form a partition of A. In the presence of
(o5) one can replace (o4) equivalently by the weaker condition

(o4’) A[x] ∩ A[y] = ∅ or A[x] = A[y].

Details can be found in [41, Lemma 19].
It is natural therefore, to complete a basis B by adding all singletons to

µ′(B), i.e., µ(B) := µ′(B) ∪ {{x}|x ∈ X} [41, Prop.24]. It is obvious that µ(B) is
the smallest collection of subsets of X satisfying (c0), (c1), and (c2).

In particular, Y̊ = ∅ if (c2) holds. As an immediate consequence, the corre-
sponding separation S satisfies

(S3) (X,Y ) ∈ S implies X ∩ Y = ∅.

Ronse showed in [26] that there is a bijection between integral connectivity spaces
and symmetric separations satisfying (S3), (SR1), and (SR2). We remark that one
recovers Ronse’s phrasing of (SR2) by making explicit use of the disjunctive axiom
(S3) to replace Bi → Y \Ai.

5.2. Wallace Separations

Symmetric, grounded, hereditary, and disjunctive relations S on 2X , i.e., the ones
that satisfy (S0), (S1), (S2), and (S3) were considered already by Wallace in the
1940s [12] and were later investigated under the name Wallace separations [14, 15].
Most of the results outlined in the previous sections for the non-disjunctive setting
were obtained for the disjunctive case in this classical literature. We call (X,S) a
Wallace separation space if S satisfies (S0), (S1), (S2), and (S3).

Lemma 5.1. Suppose C satisfies (c0) and (c1) and S is the corresponding symmet-
ric separation (which satisfies (SR1) and (SR2)). Then S is a Wallace separation,
i.e., S satisfies (S3), if and only if C satisfies (c2).

Proof. Suppose S is disjunctive (S3). Then, by definition {x} is S-connected for
all x ∈ X since for all (A,B) ∈ S with x ∈ A ∪B and A ∩B = ∅, either x /∈ A or
x /∈ B. Conversely, suppose {x} ∈ C for all x ∈ X . Then (A,B) ∈ S if x ∈ A ∪ B
implies x /∈ A or x /∈ B. Thus A ∩B = ∅. �
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Fact 5.2. [55, 13] If S satisfies (S1), and (SX), i.e., the corresponding Wallace
function w is pointwise symmetric (R0), then S is disjunctive (S3) if and only if
(X,w) is enlarging (K2).

The maximal separations satisfying (S0), (S1), (S2), (S3), and (SX) thus
correspond exactly to the symmetric neighborhood spaces, i.e., the closure spaces
satisfying (K0), (R0), (K1), and (K2).

Again, there are in general multiple non-isomorphic closure spaces that give
rise to the same integral connectivity space since the axioms (S0), (S1), (S2), (S3),
and (SX) do not imply (SR1) and (SR2).

Fact 5.3. [57, Thm. 5.2] An isotone closure space (X,w) is connected if and only if
it is not the disjoint union of two closed sets, where a set A is closed if A = c(A).

5.3. Connectedness of Generalized Topologies sensu Császár

A “generalized topological space” (GTS) in the sense of Császár [6] consists of a set
system O ⊆ 2X such that (i) ∅ ∈ O and (ii) Oι ∈ O for ι ∈ I implies

⋃
ι∈I Oι ∈ O.

The elements of O are regarded as generalized open sets, their complements are
closed sets. For each A ⊆ X denote by j(A) the union of all open sets contained
in A and by k(A) the intersection of all closed sets containing A. By construction,
k : 2X → 2X is a generalized closure operator satisfying (K1), (K2), and (K4).
The associated interior operator j(A) satisfies j(A) = X \k(X \A). Property (K0)
is equivalent to requiring that, in addition, X ∈ O.

A set A ⊆ X is
semi-open, A ∈ Oσ, iff A ⊆ kj(A);
pre-open, A ∈ Oπ , iff A ⊆ jk(A);
α-open, A ∈ Oα, iff A ⊆ jkj(A);
β-open, iff A ∈ Oβ , A ⊆ kjk(A) [58].
Note that if A is open, it is also semi-open, pre-open, α-open, and β-open. Since
kjkj = kj and jkjk = jk [6] we see that jk, kj, jkj, kjk are idempotent (K4). A
GTS is said to be χ-connected, for χ ∈ {σ, π, α, β}, if there are no two non-empty
disjoint subsets U, V ∈ Oχ such that U ∪ V = X , see e.g. [7, 8, 9] for a systematic
analysis. This definition generalizes Fact 5.3. Properties of the Hausdorff-Lennes
separation w.r.t. χ are studied e.g. in [59].

In the most general setting, [7] considers an isotonic function γ : 2X → 2X .
Then Oγ = {A|A ⊆ γ(A)} is a GTS. Call a set γ-closed if X \ A ∈ Oγ and
let kγ be the corresponding generalized closure operator, which again satisfies
(K0), (K1), (K2), and (K4). Two sets U and V are called γ-separated if they are
Hausdorff-Lennes separated w.r.t. kγ , i.e., kγ(U) ∩ V = U ∩ kγ(V ) = ∅. Clearly,
γ-separatedness defines a Wallace separation with corresponding Wallace function
kγ . The γ-connected sets of [7] are exactly the connected sets w.r.t. to this sep-
aration. This includes, in particular, also the specific GTS Oχ mentioned in the
previous paragraph.
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We note, finally, that [7] also shows directly that the γ-connected sets sat-
isfy (c1) and that γ-connected components are well-defined. Furthermore, the γ-
connected components of a γ-closed set Q = kγ(Q) are also γ-closed.

6. The Additivity Axiom

A key role in the theory of separations and proximities is played by the following
axiom of additivity:

(S4) (A,B ∪ C) ∈ S whenever (A,B) ∈ S and (A,C) ∈ S

It was introduced already by Wallace [12], who called separation spaces (X,S)
that satisfy (S0) through (S4) “s-spaces”. They are considered under the name
basic proximity spaces e.g. in [60] and as “Č-proximities” in [61].

A key consequence of (S4) is the classical “decomposition theorem” for con-
nected topological spaces [12, 62]:

Theorem 6.1. Let (X,C) be a connectivity space, and let S = SC be its corre-
sponding symmetric separation. If S satisfies (S4) then the following condition
holds:

(D) C,Z ∈ C, C ⊆ Z, Z \ C := M ∪N and (M,N) ∈ S implies C ∪M ∈ C and
C ∪N ∈ C.

Proof. We follow [12, Thm.4.5.ii]. Suppose C ∪ M /∈ C, i.e., there is (A,B) ∈ S

with A 6= ∅, B 6= ∅, and A∪B = C ∪M and thus C ⊆ A∪B. Thus C ∈ C, implies
A ∩ C = ∅ or B ∩ C = ∅. W.l.o.g., we assume A ∩ C = ∅, thus A ⊆ M , and by
(S2) (A,N) ∈ S. From this and (A,B) ∈ S, we conclude using axiom (S4) that
(A,B ∪ N) ∈ S. But Z = C ∪ M ∪ N = A ∪ B ∪ N is connected, thus either
A or B ∪ N , and hence B, must be empty, a contradiction. Thus C ∪ M ∈ C.
Connectedness of C ∪N is shown analogously. �

A variant of the Decomposition Theorem (D) can be stated in terms of con-
nected sets only.

(c4a) Suppose C,Z ∈ C, C ⊆ Z and suppose W is a connected component of Z \C.
Then C ∪W ∈ C.

A simple consequence of (c4a) is

Lemma 6.2. Let (X,C) be an integral connectivity space satisfying (c4a). Suppose
Z ∈ C, consider three pairwise disjoint non-empty C-connected subsets Zi ⊆ Z,
i = {1, 2, 3}, and denote by Zi|k the connected component of Z \ Zk that contains
Zi for i 6= k ∈ {1, 2, 3}. Then at least two of the three conditions Z1 ⊆ Z2|3,
Z2 ⊆ Z3|1, and Z3 ⊆ Z1|2 are satisfied.

Proof. We distinguish two cases: (i) Z2 and Z3 are in distinct connected compo-
nents W2 and W3 of Z \Z1. By (c4a) both Z1∪W2 ∈ C and Z1∪W3 ∈ C and hence
Z1 ⊆ Z2|3 and Z3 ⊆ Z1|2. (ii) Z2 and Z2 are in the same connected component
W of Z \ Z1, i.e., Z2 ⊆ Z3|1. Consider Z \ Z2. Now either Z1 and Z3 are in the
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same connected component – in which case Z3 ⊆ Z1|2 – or there are two distinct
connected components of Z \ Z2, say W ′

1 containing Z1 and W ′
3 containing Z3.

The same argument as in (i) yields Z1 ⊆ Z2|3. �

In [19] a similar, but weaker, condition was proposed:

(c4b) Suppose C,Z ∈ C, C ⊆ Z and suppose W is a connected component of Z \C.
Then Z \W ∈ C.

Fact 6.3. In an integral connectivity space (c4a) implies (c4b).

Proof. Since (c2) holds, the set Z \ C is partitioned into connected components
Wι, ι ∈ I. By (c4a), C ∪ Wι ∈ C. Fixing a particular Wκ, κ ∈ I, (c1) implies
C ∪

⋃
ι∈I\{κ}Wι = Z \Wκ ∈ C. �

Note that this implication is not true if (c2) does not hold.

Lemma 6.4. Suppose C is an integral connectivity space. Then property (D) is
equivalent to (c4a).

Proof. Suppose (D) holds. Let C,Z ∈ C, C ⊆ Z, and W a connected component
of Z \C. Define U = (Z \C) \W , i.e., Z \C = U ∪W . By Fact 3.14 (U,W ) ∈ S.
By (D) we have U ∪ C = Z \W ∈ C and W ∪C ∈ C.

Conversely, suppose (c4a) holds. Denote by Wι, ι ∈ I, the connected com-
ponents of Z \ C. As above set Uι = (Z \ C) \ Wι, thus (Uι,Wι) ∈ S for all

ι ∈ I. Since (X,C) is integral, Y̊ = ∅ and (SR3) reduces to its first part (SR3:i). It
implies that a bipartition M ∪̇N of Z \C into S-separated sets, i.e., (M,N) ∈ S,
must be of the form M =

⋃
ι∈J Wι and N =

⋃
ι∈I\J Wι for any choice of I and

J . By (c4a) Wι ∪ C ∈ C. Property (c1) now implies M ∪ C =
⋃

ι∈J(Wι ∪ C) and
N ∪ C =

⋃
ι∈I\J(Wι ∪C) are connected, i.e., (D) holds. �

The following property was used in [19] as an alternative additivity axiom:

(c4b’) Let A,B,Zı ∈ C for all ı ∈ I and suppose A ∪B ∪
⋃

ı∈I

Zı ∈ C. Then there is

J ⊆ I such that A ∪
⋃

∈J

Z ∈ C and
⋃

∈I\J

Z ∪B ∈ C.

Note that we may assume, as in [19], that the sets A, B, and Zı, ı ∈ I are pairwise
disjoint since overlapping sets can just as well be unified if this is not the case
initially.

Lemma 6.5. Suppose (X,C) satisfies (c0), (c1) and (c2). Then (c4b’) and (c4b)
are equivalent.

Proof. Suppose (c4b’) holds and let Zı ∈ C, ı ∈ I be the connected components
of Z \ C except for a particular connected component W . By (c2) we have W ∪⋃

ı∈I Zı = Z \ C. By (c4b’) there is J ⊆ I such that C ∪
⋃

∈J Z ∈ C and⋃
∈I\J Z ∪W ∈ C. Since W is a connected component of Z \C, no larger subset
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of Z\C containingW is connected, thus J = I, i.e., C∪
⋃

ı∈I Zı = C∪(Z\C)\W =
Z \W ∈ C.

To see the converse implication, let A,B,Zı ∈ C, ı ∈ I, assume Z := A ∪⋃
ı∈I Zı ∪ B ∈ C, and let W be the connected component of Z \ A containing B,

which is necessarily of the form W = B ∪
⋃

∈J Z for some J ⊆ I. Then (c4b)

implies that Z \W = A ∪
⋃

∈I\J ∈ C, i.e., (c4b’) holds. �

Note that in the absence of (c2) we can only conclude that (c4b) implies
(c4b’).

Lemma 6.6. Let (X,C) be a finite integral connectivity space. Then (c4a) and (c4b)
are equivalent.

Proof. We already know that (c4a) implies (c4b) in general. Thus suppose (c4b)
holds. We proceed by induction in the number n of connected components of Z\C.
For n = 0 we have Z \ C = ∅ and C = Z. For n = 1, W = Z \ C by (c2) and
C ∪W = Z ∈ C by (c4b).

Now suppose the result is true for up to n ≥ 1 components and suppose Z \C
have n+ 1 connected components. Given a connected component W of Z \C, let
W ′ be another connected component and set Z ′ = Z \W ′; by (c4b), Z ′ ∈ C. By
Fact 2.5 the connected components of Z ′ \ C = (Z \W ′) \ C = (Z \ C) \W ′ are
exactly the connected components of Z \C other than W ′. Therefore Z ′ \C has n
connected components among which is W . The induction hypothesis thus implies
C ∪W ∈ C. �

In the infinite case this proof idea of course fails. We have not been able,
however, to construct a connectivity space satisfying (c4b) but not (c4a).

An even weaker variant of (c4b) was discussed in [19]:

(c4”) If Zi ∈ C for i ∈ I = {1, ..., n} and
n⋃

i=1

Zi ∈ C, then for every nonempty J ⊂ I

there is j ∈ J and k ∈ I \ J such that Zj ∪ Zk ∈ C.

Since n is finite we can view V := {Zi|1 ≤ i ≤ n} as the vertices of a graph
G := G({Zi}) with edges i ∼ k whenever Zi ∪ Zk ∈ C. Condition (c4”) means
that there is an edge across every vertex cut. Thus (c4”) is equivalent to graph-
theoretic connectedness of G. In particular, for every pair of sets Zi, Zj there is a
path P = (i =: i0, i1, . . . , iℓ := j) in G such that Zh∪Zh+1 ∈ C and any connected
subgraph of G with vertex set V ′ corresponds to a collection {Zi|i ∈ V ′} with⋃

i∈V ′ Zi ∈ C. In the following we will occasionally make use of this graph-theoretic
interpretation of (c4”).

Fact 6.7. Axiom (c4”) is equivalent to the following statement
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(c4”’) If Zi ∈ C for i = 1, . . . , n and

n⋃

i=1

Zi ∈ C, then there is a permutation π with

arbitrary choice of π(1) such that

k⋃

j=1

Zπ(j) ∈ C for all 1 ≤ k ≤ n.

Proof. Given G({Zi}), the order π can be constructed by a breadth-first-search
on G({Zi}) starting with π(1), which exists as an immediate consequence of the
graph-theoretic connectedness of G({Zi}).

To see the converse, we proceed by induction. For n = 1, 2 property (c4”) is
trival. In the general step we know that G({Zi}i<n) is connected. Choose π(1) = n.
Then by assumption Zn ∪ Zπ(2) ∈ C, i.e, {Zn, Zπ(2)} is an edge in G({Zi}), and
hence G({Zi}) is connected. �

Both properties (c4”) and (c4”’) have been described as properties of con-
nected sets e.g. in Kuratowski’s book on point set topology [62].

Lemma 6.8. (c4b’) implies (c4”).

Proof. Let Zi ∈ C for i = 1, ..., n and Z :=
⋃n

i=1 Zi ∈ C. We proceed by induction.
For n = 2, (c4”) is satisfied trivially. For n = 3, (c4b’) implies that there is at least
one pair of constituent sets, say Z1 and Z2, such that Z1∪Z2 ∈ C. Now set A = Z1

and B = Z2. Then (c4b’) implies that Z1 ∪ Z3 ∈ C or Z2 ∪ Z3 ∈ C, the graph
G with three vertices in the proof of fact 6.7 is connected. Now suppose n > 3.
By (c4b’) there is a subdivision of Z into two connected sets both comprising
fewer constituents Zi. Subdividing each of these further we obtain at least one
connected set comprising exactly two constituents, i.e., there is j 6= k such that
Z ′ := Zj ∪ Zk ∈ C. Thus we can write Z as a union of n − 1 connected sets, and
hence by assumption the corresponding graph G′ on n − 1 vertices is connected.
The vertex representing Z ′ is connected to a non-empty set L = {l1, . . . lu} of
vertices representing constituents Zl. Thus Zj∪Zk∪Zl ∈ C for all l ∈ L and hence
Zl∪Zj ∈ C or Zl∪Zk ∈ C. Thus there is a path between l′ and l′′ for all l′, l′′ ∈ L,
and hence the n-vertex graph G is connected if and only if the n− 1-vertex graph
G′ is connected. As in the proof of fact 6.7, connectedness of G implies that (c4”)
is satisfied. �

Note that in the absence of (c2) we have only the implications (c4a) =⇒
(c4b’) =⇒ (c4”).

We remark that the equivalence of (c4b), (c4b’), and (c4”) is claimed in [19]
alluding to Kuratowski’s book [62], but without hinting at a proof. We suspect
that property (c4”), and thus also (c4”’), is in general strictly weaker than (c4b’).

For n = 3 we may rephrase (c4”) in the following form.

Fact 6.9. Suppose (c0), (c1), and (c4a) holds, Z ′, Z ′′, Z ′′′ ∈ C and Z ′∪Z ′′∪Z ′′′ ∈ C.
Then at least two of the unions Z ′ ∪ Z ′′, Z ′ ∪ Z ′′′, and Z ′′ ∪ Z ′′′ are connected.
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A

ZB

Figure 6. Illustration of axiom (c4). Any nontrivial, but oth-
erwise arbitrary partition of a connected set Z into two disjoint
subsets A (red) and B (white) has the property that for every
connected component A′ of A there is at least one connected
component B′ of B so that the union A′ ∪B′ is again connected.
All such pairs are indicated here by edges.

This can also be seen as a special case of Lemma 6.2. Note that Fact 6.9 does
not imply (c4”).

We next introduce a stronger condition for the decomposability of connected
sets. It is sketched in Fig. 6.

(c4) Let Z ∈ C, Z = A∪̇B a proper bipartition, and Aι, B the connected compo-
nents of A and B. Then for every ι ∈ I there is a  ∈ J such that Aι∪B ∈ C.

An immediate consequence of (c4) is

Fact 6.10. Suppose (c0), (c1), (c2), and (c4) holds. Let Z ∈ C and suppose Z =
A∪̇B. Then there is Z ′ ⊆ Z, Z ′ ∈ C such that both A′ = Z ′ ∩ A ∈ C and B′ =
Z ′ ∩B ∈ C.

Fact 6.11. In an integral connectivity space, (c4) implies (c4a).

Proof. Suppose Z ∈ C, C ⊆ Z, and W is a connected component of Z \ C. In the
statement of (c4) substitute Z \ C → A and C → B. Then Aι is W and B must
be C, hence C ∪W ∈ C, i.e., (c4a) holds. �

Lemma 6.12. Suppose S satisfies (S0), (S1), (S2), (S3), and (S4). Then the cor-
responding integral connecitivity space satisfies (c4).

Proof. Suppose Z = A∪̇B and Z ∈ C. Since (S0), (S1), (S2) and (S3) are equivalent
to (c0), (c1), and (c2), we can partition A and B into their connected components
A =

⋃
ι∈I Aι and B =

⋃
∈I B. By (SR3) we have (Aι, A \Aι) ∈ S for all ι ∈ I.

Now suppose (Aι, B) ∈ S. Then (S4) implies (Aι, (A\Aι)∪B) = (Aι, Z\Aι) ∈
S contradicting the connectivity of Z. Thus (Aι, B) /∈ S.

By Fact 4.8 there is a connected set Z ′ in Aι ∪ B intersecting both Aι and
B, i.e., Z ′ intersects a subset of the connected components of B, say the one
indexed by J ′ ⊆ J . By (c1), the union Z ′′ = Aι ∪ B′, where B′ =

⋃
∈J′ B, is
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also C-connected. By Fact 2.5, the connected components of B′ are exactly the B,
 ∈ J ′.

For each connected component B of B′ we have (B, B
′ \ B) ∈ S. Sup-

pose (B, Aι) ∈ S. Then (S4) implies (B, (B
′ \ B) ∪ Aι) = (B, Z

′′ \ B) ∈ S

contradicting the connectedness of Z ′′. Thus (Aι, B) /∈ S and by Fact 4.8 there
is a connected set in Aι ∪ B intersecting both Aι and B. Since Aι and B are
connected, Aι ∪B ∈ C. �

Lemma 6.13. Let (X,C) be a finite integral connectivity space. Then (c4a) and
(c4) are equivalent.

Proof. By Fact 6.11 we only need to prove that (c4a) implies (c4).
Let Z ∈ C and Z = A∪̇B. Denote by Ai and Bj the connected components of

A and B, resp. We proceed by induction in the number n of connected components
of A. For n = 1, (c4a) implies A1 ∪ Bj ∈ C for all j. The induction hypothesis
stipulates that, if A has at most n connected components, then for each component
Ai there is a component Bj such that Ai ∪Bj ∈ C.

Now suppose A has n + 1 connected components. Fix a component Ak and
consider Z ′ = Z \ Ak. Since B′ = Z ′ ∩ B = B, the connected components of
B′ are exactly the Bk. The connected components of A′ = Z ′ ∩ A = A \ Ak are
exactly the connected components of A except Ak. Case 1: Z ′ is connected. Then
by induction hypothesis, there is a Bj for each of the n connected components Ai,
i 6= k, of A′ such that Ai ∪ Bj ∈ C. Case 2: Z ′ is not connected. Then let W be
a connected component of Z ′. Since each connected component of A′ and B′ is
either contained in W or disjoint from W by Fact 2.5, W is a union of components
Ai, i 6= k, and Bj . By (c4a) Ak ∪W ∈ C. W cannot be contained in A′ since this
would imply Ak ∪ W is a connected subset of A, contradicting the fact that Ak

is a connected component of A. If W ⊆ B, then W coincides with a connected
component Bl of B and Ak ∪Bl ∈ C. In the remaining case W consists of a non-
empty subset of the connected components of Ai of A and Bj of B, which are
exactly the connected components of A ∩ W and B ∩ W . In particular, A ∩ W
contains at most n connected components Ai since Ak ∩W = ∅ by construction.
In summary, for all connected components of A with the possible exception of Ak

there is a connected component Bj of B so that Ai ∪ Bj ∈ C. Since the choice
of Ak was arbitrary, we repeat the argument with a different fixed choice Ak′ to
demonstrate that there is a connected component Bl of B such that Ak ∪Bl ∈ C.
Thus the induction hypothesis holds for n + 1 connected components of A, and
thus (c4) is satisfied. �

It remains open whether (c4) and (c4a) are equivalent in general. We sus-
pect that this is not the case, although we have not been able to construct a
counterexample.

Theorem 6.14. Let (X,C) be an integral connectivity space and let SC be the cor-
responding symmetric separation. Then (c4) is equivalent to (S4).
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Proof. We already know from Lemma 6.12 that (S4) implies (c4). Thus assume
that (c4) holds and there are three sets A,B,C ∈ X such that (A,B) ∈ S,
(A,C) ∈ S but (A,B ∪ C) /∈ S. We aim to show that this is impossible.

From (A,B ∪ C) /∈ S and Fact 4.8 we infer there is Z ∈ C such that Z ⊆
A∪B ∪C, A∩Z 6= ∅ and Z ∩ (B ∪C) 6= ∅. As a consequence of (c4), furthermore,
we can choose Z such that A′ := Z∩A ∈ C and Z∩(B∪C) ∈ C. We set B′ = B∩Z,
and C′ = C ∩ Z. From the assumptions (A,B) ∈ S and (A,C) ∈ S we known
that Z cannot be contained in either A ∪B or A ∪ C. Thus, B′ 6= ∅ and C′ 6= ∅.

From (A,B) ∈ S and (S2) implies (A′, B′) ∈ S. Since A′ ∈ C by construction,
we conclude that A′ is a connected component of (A′∪B′). Thus (c4) implies that
there is a connected component Cι of C

′ such that A′∩Cι ∈ C. However, (A,C) ∈ S

implies (A′, C′) ∈ S and thus also (A′, Cι) ∈ S, a contradiction. �

We close this section by briefly investigating the impact of additivity on
closure spaces.

Theorem 6.15. If (X,C) is an integral connectivity space satisfying (c4). Then (c3)
implies (cX).

Proof. Let Z ∈ C and A∪̇B = Z. By Fact 6.10 Z contains a connected set Z ′

such that A′ = Z ′ ∩ A and B′ = Z ′ ∩ B are C-connected. By (c3) there is a
z ∈ A′∪B′ = Z ′ ⊆ Z such that A′∪{z} ∈ C and B′∪{z} ∈ C. Either A′∪{z} 6= A′

or B′ ∪ {z} 6= B′, i.e., the assertion of (cX) holds. �

We close this section by linking (S4) with the corresponding property of the
Wallace closure.

Theorem 6.16. [55] If S is a symmetric separation and satisfies (SX), i.e., the
corresponding isotone closure function w is pointwise symmetric (R0), then S is
additive (S4) iff (X,w) is sub-additive (K3).

Proof. Let x ∈ A and B,C ⊆ X such that ({x}, B∪C) /∈ S. By (S4) ({x}, B) /∈ S

or ({x}, C) /∈ S. By definition of w, thus w(B∪C) ⊆ w(B)∪w(C), i.e., w satisfies
(K3).

Conversely, suppose c is subadditive. Suppose (A,B) ∈ S, i.e., A ∩ c(B) =
B∩c(A) = ∅ and (A,C) ∈ S, i.e., A∩c(C) = C∩c(A) = ∅. Thus c(A)∩(B∪C) = ∅
and A ∩ (c(B) ∪ c(C)) = ∅. Since c(B ∪ C) ⊂ c(B) ∪ c(C) by (K3), we also have
A ∩ c(B ∩ C) = ∅, and thus (A,B ∪ C) ∈ S. �

Additive integral connectivity spaces that satisfy (c3) are therefore equivalent
to the pretopological spaces that satisfy (SR1) and (SR2). It remains open whether
the “connectologies” defined by [19], i.e., the integral connectivity spaces satisfying
(c3) and (c4a) coincide with these particular pretopological spaces or whether they
form a more general class.
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7. Some Additional Properties of Interest

7.1. Idempotency

Several axioms are of interest in the context of proximity spaces, see e.g. [53, 63].
These might also be of interest in the more general setting of Wallace separation
spaces and (integral) connectivity spaces.

Of particular interest are axioms that render the corresponding Wallace func-
tion idempotent:

(C) (x,A) ∈ S implies (x,w(A)) ∈ S.
(S5) ({x}, B) /∈ S and ({y}, C) /∈ S for all y ∈ B implies ({x}, C) /∈ S.
(LO) (A,B) /∈ S and ({y}, C) /∈ S for all y ∈ B implies (A,C) /∈ S.
(L) (A,B) ∈ S if and only if (w(A), w(B)) ∈ S.

Lemma 7.1. [55, Thm.4] Suppose S is a Wallace separation satisfying (SX). Then
w is idempotent (K4) if and only if S satisfies (S5).

Axiom (C) was introduced as axiom S.VI. already in [12]. It can replace (S5)
as a condition for idempotency of w if S is an additive Wallace separation, i.e., if
(S0), (S1), (S2), (S3), and (S4) holds [64]. The Lodato axiom (LO) [65] specializes
(by replacing A with the singleton set {x}) to (S5). Since ({x}, C) /∈ S for x ∈ A
implies (A,C) /∈ S, we conclude that (LO) implies (S5). Using equ.(4.1), (S5) can
be rewritten as “B ⊆ w(C) implies w(B) ⊆ w(C)” and setting B := w(C) yields
“w(w(C)) ⊆ w(C)” [66, Thm. 1.4]. Thus, a Wallace separation satisfying (S5) has
an idempotent Wallace function. (LO) is equivalent to (L) in an additive Wallace
separation [66, Thm. 1.5].

7.2. Separation Axioms

Separation axioms can be naturally phrased in terms of S. Since we pre-suppose
symmetry, i.e., (R0), the weakest meaningful separation axioms are

(T1) ({x}, {y}) ∈ S whenever x 6= y. Equivalently. {x, y} /∈ C if x 6= y.
(T2) For every two distinct points x, y ∈ X there are sets U, V ∈ 2X such that

U ∪ V = X , ({x}, U) ∈ S, and ({y}, V ) ∈ S.

Fact 7.2. Let (X,S) be a Wallace separation space. Then (T2) implies (T1).

Proof. Suppose (T2) holds. Then ({x}, U) ∈ S and (S3) implies x /∈ U and hence
x ∈ V . Similarly, y ∈ U . From ({y}, V ) ∈ S and heredity (S2) we conclude
({y}, {x}) ∈ S. Symmetry (S1) now implies (T1). �

Fact 7.3. Let (X,S) be a Wallace separation space satisfying (T1) or (T2), re-
spectively. Then the corresponding closure space (X,w) satisfies the well-known
Fréchet (T1) or Hausdorff (T2) separation axioms, respectively.

Proof. Axiom (T1) implies that y /∈ w({x}) for y 6= x, i.e., w({x}) = {x} for
all x ∈ X . This is one of the many equivalent versions of the Fréchet separation
axiom.
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Now suppose (T2) holds. Set N := X \U and M := X \V . Since U ∪V = X
we have N∩M = ∅. Furthermore, ({x}, X \M) ∈ S is equivalent to x /∈ w(X \M),
i.e., x ∈ X \w(X \M) = iw(M), the interior of M , hence M is a neighborhood of
x. One shows analogously that N is a neighborhood of y, i.e., any pair of disjoint
points x and y has disjoint neighborhoods in (X,w). This is the usual phrasing for
the Hausdorff separation axiom. �

7.3. Haralick’s Axiom

In [67] Haralick investigated symmetric separations that satisfy the axiom

(SH) ({x}, {y}) ∈ S for all x ∈ A and y ∈ B implies (A,B) ∈ S.

As noted in [26], (SH) implies (SR1) and (SR2) in the disjunctive setting. This
remains true in general. Since a separation is by definition hereditary, we have

Fact 7.4. A symmetric separation satisfies (SH) if and only if it satisfies the fol-
lowing, stronger, version of Haralick’s axiom:

({x}, {y}) ∈ S holds for all x ∈ A and y ∈ B if and only if (A,B) ∈ S.

Lemma 7.5. Suppose S is a symmetric separation. Then (SH) implies (SX), (SR0),
(SR1), (SR2), and (S4).

Proof. (SX). Suppose ({x}, B) ∈ S for all x ∈ A and (A, {y}) ∈ S for all y ∈ B.
By heredity ({x}, {y}) ∈ S for all x ∈ A and y ∈ B and therefore (SH) implies
(A,B) ∈ S.
(SR0-2). Assuming (SH) we observe that (A ∪ B ∪ C,A) ∈ S is equivalent to
(A,A) ∈ S, (A,B) ∈ S, and (A,C) ∈ S. On the other hand (A ∪ B,A ∪ C) ∈ S

is equivalent to (A,A) ∈ S, (A,B) ∈ S, (A,C) ∈ S, and (B,C) ∈ S. Thus
(A ∪ B ∪ C) ∈ S and (B,C) ∈ S holds, as postulated by (SR0-2), if and only if
(A ∪B,A ∪C) ∈ S.
(SR1). (A,B) ∈ S and (A ∪ B,C) ∈ S implies ({x}, {y}) ∈ S for all x ∈ A and
y ∈ B and all x ∈ A and y ∈ C, and therefore also for x ∈ A and all y ∈ B ∪ C.
By (SH) this implies (A,B ∪C) ∈ S.
(SR2). Consider a family (Ai, Bi) ∈ S, i ∈ I. If x ∈

⋂
i∈I Ai then ({x}, Bi)

for all i ∈ I and thus ({x}, {y}) ∈ S for all y ∈
⋃

i∈I Bi. (SH) now implies
(
⋂

i∈I Ai,
⋃

i∈I Bi) ∈ S.
(SR2) implies (SR0-1), which together with (SR0-2) is equivalent to (SR0) by
Lemma 3.17.
(S4). (A,B) ∈ S and (A,C) ∈ S implies ({x}, {y}) ∈ S for all x ∈ A and
y ∈ B ∪ C. Now (SH) implies (A,B ∪ C) ∈ S. �

As (SH) implies (SX), we can equivalently express (SH) and (S2) in terms of
the Wallace function. Using equ.(4.1) we can recast Fact 7.4 in the form “y /∈ w(A)
if and only if y /∈ w({x}) for all x ∈ A”. This is in turn equivalent to “y ∈ w(A)
iff y ∈ w({x}) for all x ∈ A”, and hence w(A) =

⋃
x∈Aw({x}). The axiom

(K5) c(A) =
⋃

x∈A

c({x})
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is known as total additivity in the context of closure spaces. In the topological
literature such spaces are often called Alexandroff spaces. Obviously (K5) implies
(K0), (K1), and (K3). It is shown e.g. in [68, 69] that Alexandroff closure spaces
are equivalent to binary relations. A related result is Prop. 4.2 of [26], which
characterizes Haralick separations as exactly those that are generated from a set
Q of pairs of points that are considered as connected. This class, in particular,
includes graphs.

Alexandroff topologies, i.e., closure spaces that satisfy (K0) through (K5),
are equivalent to binary dominance (transitive and reflexive) relations [70].

The Haralick axiom (SH) suggests the consider also a stronger condition for
the self-separated points:

(SH0) ({x}, {x}) ∈ S implies ({x}, {y}) ∈ S for all y ∈ X .

(SH0) obviously implies (SR0). The following example shows that (SH) and (SR0)
are not sufficient to imply (SH0):
Example. Let X = {a, b, c} and S consist of ({a}, {a}), ({b}, {c}) and ({c}, {b}) as
well (A, ∅) and (∅, A) for all A ⊆ X . (SH) and (S2) are clearly satisfied. We have
{a, b, c}◦ = ∅, {a, b}◦ = ∅, {a, c}◦ = ∅, {b, c}◦ = ∅, hence (SR0) is satisfied trivally.

On the other hand, we have X̊ = {a}. Hence (SH0) implies that we should also
have e.g. ({a, b}, {a, c}) ∈ S.

If (SH) and (SH0) holds we obtain a particularly simple representation for

Y̊ = {y ∈ Y |({y}, {y}) ∈ S} = Y ∩ X̊ . (7.1)

Hhere X̊ is the set of points that do not belong to a connected component of the

entire space. Equivalently, in such a space X̊ can be seen as the set of points not
connected to themselves.

7.4. Efremovič’s Axiom

Proximity is the complement of separation, i.e., two sets A,B ∈ 2X are interpreted
as “near” each other iff (A,B) /∈ S. A proximity space in the sense of Efremovič
[71] is equivalent to an additive Wallace separation that in addition satisfies the
separation property (T1) and the axiom

(S6) (A,B) ∈ S implies that there is U ⊆ X such that (A,U) ∈ S and (X\U,B) ∈
S.

Instead of Efremovič’s axiom (S6) the following condition of normality is often
used in the literature:

(S6’) (A,B) ∈ S implies that there are sets U, V ∈ 2X such that U ∪ V = X ,
(A,U) ∈ S and (B, V ) ∈ S.

Fact 7.6. If (X,S) is a Wallace separation space then (S6) and (S6’) are equivalent.

Proof. (S6’) is obtained from (S6) by setting V := X \ U , i.e., (S6) implies (S6’).
Now suppose (S6’) and pick U ′ ⊆ U and V ′ ⊆ V with U ′∩V ′ = ∅ and U ′∪V ′ = X ,
i.e., V ′ = X \U ′. By heredity we have (A,U ′) ∈ S and (B, V ′) ∈ S as desired. �
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In an Efremovič proximity space, the Wallace function is idempotent (and
hence defines a topology). Furthermore, it is well known that in a topological space,
i.e., when S satisfies (S0) through (S5) as well as (SX), then (S6) is equivalent
to complete regularity [53]. In general, the Wallace function of a proximity space,
which satisfies (S0) through (S4) and (S6) is completely regular. The implication
(S6) ⇒ (LO) in additive Wallace separations is proved e.g. in [72, Thm. 2.7].

8. Catenous Functions

Let f : (X,CX) → (Y,CY ) be a function between two connectivity spaces. Follow-
ing [19] we say that f is catenous if A ∈ CX implies f(A) ∈ CY for all A ∈ 2X . It
follows directly from the definition that the concatenation of catenous functions is
again catenous.

Denote by 2 the totally disconnected space on two points, i.e., the space
{0, 1} in which only ∅, {0}, and {1} are connected. Note that we may regard 2

also as neighborhood space since w(∅) = ∅, w({0}) = {0}, w({1}) = {1}, and
w({1, 2}) = {1, 2}.

A classical theorem in point set topology asserts that X is connected if and
only if every continuous function X → 2 is constant. In the realm of connectivity
space we have the obvious analog:

Fact 8.1. An integral connectivity space (X,C) is connected if and only if every
catenous function f : (X,C) → 2 is constant.

If A ⊆ X is a connected set and f is not constant on A, then f(A) = {0, 1},
i.e., not connected, contradicting that f is catenous. Thus f must be constant
on every connected set. Any function f : (X,CX) → (Y,CY ) that is constant on
connected components of X is obviously catenous as long as (Y,CY ) is an integral
connectivity space.

The restriction of a catenous function to a subspace remains catenous. In-
terestingly, continous functions between topological spaces are catenous, but the
converse is not true in general [19].

9. Summary and Concluding Remarks

In this contribution we have summarized a variety of independent approaches to
axiomatizing connectedness in point set topology. We have focussed in particu-
lar on the close relationship between separation spaces sensu Wallace and direct
axiom systems for connected sets. Extending prior work by Christian Ronse we
characterize the subclass of separation spaces that are equivalent to connectivity
spaces. These separations satisfy quite restrictive conditions that encapsulate that
connected components are properly separated from each other. Generalized closure
spaces form an important special subclass, characterized by a single axiom (SX).
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Table 1. Summary of axiom systems. Properties of (X,S) and
(X,C) are equivalent if (X,S) satisfies in addition (SR0), (SR1),
and (SR2). Likewise, properties of (X,S) and (X, c) are equiv-
alent, if (X,S) satisfies (SX). Equivalence of (S4) and (c4) in
addition requires (c0) to (c2) or (S0) to (S3).

(X,C) (X,S) (X, c)
(SR0), (SR1), (SR2) (SX)

(S0), (S2) (K0), (K1)
(S1) (R0)

(c0), (c1) (S0), (S1), (S2) (K0), (K1), (R0)

(c2) (S3) (K2)
(c4) (S4) (K3)

(c2), (c3), (c4) (S3), (S4), (SX) pretopology
– (S5) (K4)

graph-like (SH) (K5)
(T1) (T1) Fréchet
– (T2) Hausdorff
– (S6) completely regular

Separations (and the the equivalent proximities) are thus strictly more expressive
than either closure spaces or connectivities.

Key properties of the closure (Wallace function) track the most important
characteristics of separation functions, see Tab. 1. Although the axiom systems for
separations and closures have been devised in often quite different contexts, they
closely match and become equivalent in suitably restricted settings. In particular,
Wallace separations and integral connectivity spaces correspond to neighborhood
spaces, while additive Wallace separations and additive connectivity spaces gener-
alize pretopologies.

The present contribution primarily aims at collecting and integrating the
available basic results on generalized connectivity structures. Along the way, in-
teresting research questions have appeared. For instance, it seems worthwhile to
investigate generalizations of axioms of separations and regularity to connectivity
spaces and their separation relations in such a way that the Wallace function w
has prescribed separation or regularity properties [73, 74]. Ronse’s axioms (SR1)
and (SR2) do not seem to have been studied in any depth in the context of clo-
sure spaces. It is likely that more elegant characterizations of those neighborhood
spaces, pretopologies, and topologies can be found, whose closure functions are
completely determined by the connected sets. Furthermore, we have not discussed
important constructions such as product spaces. In many details and combinations
of axioms, finally, relationships between connectivity spaces, separation relations,
and Wallace functions remain to be elucidated.
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Originally, this work was motivated by the realization that connectedness –
rather than other topological constructions such as closure or separation – is the
key ingredient for understanding fitness landscapes. In this context, as in the case
of image processing, the special case of a finite set X is of most direct interest.
We therefore close this contribution with a brief discussion of finite integral con-
nectivity spaces: For finite X , (c4a) and (c4”) are obviously equivalent, and hence
every connected set Z is a union of finitely many disjoint singletons, whence we
can break it down into connected pairs. Note also that (S4) and (SH) become
equivalent as an immediate consequence of finiteness. A finite additive connectiv-
ity space therefore is a finite graph Γ with vertex set X and edges defined as the
two-element subsets of C. Property (cX) is also satisfied automatically. The Wal-
lace function of a singleton {x} is thus simply its graph theoretic neighborhood,
w({x}) = {y ∈ X |{x, y} ∈ C}. Additivity thus implies that w(A) =

⋃
x∈Aw({x}).

Since additive connectivity spaces are simply the finite undirected graphs, there is
little to be gained by starting with abstract connectedness.

As the example of recombination-based search spaces in [36] shows, however,
much less obvious structures arise when additivity cannot be assumed, see also
[44]. Such non-additive concepts of connectedness arise in particular in the context
of combinatorial optimization when population-based heuristics implicitly define
the structure of the search space, but also in the context of convexities, which in
general also lack additivity.

The current setting of connective spaces still feels too restricted at times and
not all concepts of “connectivity” that appear in the graph theory literature can
be accomodated in the present setting. Higher-order edge and vertex connectivity,
for instance, requires modification of axiom (c1). Instead of the intersection of two
sets, more sophisticated “overlap criteria” need to be defined. Explorations in this
direction can be found e.g. in work of Serra [75], Braga-Neto [33], and Wilkinson
[76]. The resulting structures generalize the connectivity openings of Section 2.3
and for instance define “hyperconnected components” that are non-overlapping but
not necessarily disjoint. Directed versions of reachability or accessibility also play
an important role in theoretical biology e.g., in models of phenotypic evolution [77].
Most mathematical work in this direction is based on generalized closure functions
without assuming (R0). This does not give rise to a non-symmetric notion of
connectedness, however. An axiomatic approach towards directed connectivity in
general, with a focus on possible application in image analysis is given in [78]. It
will be interesting to see if and how such generalized structures interrelate with
classical concepts of point set topology.
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[35] G. Benkö, F. Centler, P. Dittrich, C. Flamm, B. M. R. Stadler, and P. F. Stadler. A
topological approach to chemical organizations. Alife 15:71–88, 2009.

[36] C. Flamm, B. M. R. Stadler, and P. F. Stadler. Saddles and barriers in landscapes
of generalized search operators. Foundations of Genetic Algortithms IX, vol. 4436,
pp. 194–212. Springer, Lecture Notes Comp. Sci., 2007. 9th International Workshop,
FOGA 2007, Mexico City, Mexico, January 8-11, 2007.
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