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Abstract

Convex cycles play a role e.g. in the context of product graphs. We introduce con-
vex cycle bases and describe a polynomial-time algorithm that recognizes whether a given
graph has a convex cycle basis and provides an explicit construction in the positive case.
Relations between convex cycles bases and other types of cycles bases are discussed. In
particular we show that ifG has a unique minimal cycle bases, this basis is convex. Fur-
thermore, we characterize a class of graphs with convex cycles bases that includes partial
cubes and hence median graphs.
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1 Introduction and Basics

The cycle spaceC(G) of a simple, unweighted, undirected graphG = (V, E) consists of all
its Eulerian subgraphs (or generalized cycles), i.e., all the subgraphs ofG for which every
vertex has even degree. It is convenient in this context to interpret subgraphs ofG as edge
sets. The generalized cycles form a vector space over GF(2) with vector additionX⊕Y :=
(X ∪Y )\ (X ∩Y ) and scalar multiplication1 ·X = X , 0 ·X = ∅, for X, Y ∈ C(G). This
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vector space is generated by the elementary cycles ofG, i.e., the connected subgraphs of
G for which every vertex has even degree. A basisB of the cycle spaceC is called acycle
basisof G = (V, E) [9]. The dimension of the cycle space is thecyclomatic numberµ(G)
(or first Betti number). For connected graph we haveµ(G) = |E|−|V |+1. Notice that the
cycle space of a graph is the direct sum of the cycle spaces of its 2-connected components.

Cycle bases of graphs have diverse applications in science and engineering. Examples
include structural flexibility analysis [27], electrical networks [11], chemical structure stor-
age and retrieval systems [15], scheduling problems [36], graph drawing [33], and biopoly-
mer structures [34, 35]. Surveys and extensive references can be found in [19, 22, 28, 37].

A convexity space(V, C) [6] consists of a ground setV and a setC of subsets ofV
satisfying

(C1) ∅ ∈ C, V ∈ C, and

(C2) K ′, K ′′ ∈ C impliesK ′ ∩K ′′ ∈ C.

For a simple, undirected graphG with vertex setV , every setP of paths onG defines
a convexity space(V, C(P)) whereK ∈ C(P) if and only if for every pathP ∈ P with
both end vertices inK holds thatK contains all vertices ofP , see e.g. [14]. Several special
sets of pathsP have been studied in this context, e.g., the set of all paths [5], the set of all
triangle paths [8], the set of all induced paths [13], and theset of all shortest paths [39].

We will be concerned here only with the latter definition of convexity, usually known
as geodetic convexity. Geodetically convex cycles play an important role in the theory of
Cartesian graphs products and their isometric subgraphs. The absence of convex cycles
longer than4, for example, characterizes semi-median graphs [3]. Such long convex cycles
furthermore play a role e.g. in Euler-type inequalities forpartial cubes [31].

It appears natural, hence, to investigate whether there is aconnection between the cycle
space and the (geodetic) convexity space of a graphG = (V, E). Note that the cycle
space is defined on the edge set, while the convexity space is defined on the vertex set.
Intuitively, this connection is made possible by the fact that induced elementary cycles in
G are characterized by either their vertex sets or their edge sets.

Definition 1.1. A convex cycle basisof a graphG is a cycle basisB that consists of convex
elementary cycles.

We briefly consider a generalized definition of convex cycle bases relaxing the require-
ment for elementary basis cycles in the final section.

Cycles bases with special properties have been investigated in much detail in the liter-
ature. Examples include minimum cycle bases [2, 17, 19, 29, 44], (strictly) fundamental
cycle bases [20, 32, 38], or (quasi) robust cycle bases [26, 40]. Here, we considerconvex
cycle bases. We show that convex cycle bases are not related to other types of cycle bases,
we introduce a polynomial-time algorithm to compute a convex cycle basis for an arbi-
trary input graph, and we construct a class of graphs with convex cycles bases by means of
Cartesian products that in particular includes partial cubes.

2 Geodetic Convexity and Characterization of Convex Cycles

For a graphG we denote the vertex set and edge set ofG by V (G) andE(G), respectively.
Similarly, we writeC(G) for the cycle space ofG. An edge that joins verticesx andy is
denoted by the unordered pair{x, y}. The lengths|P | and|C| of a pathP and a cycleC



in G, respectively, is the number of their edges. For simplicity, we will refer to a path with
end verticesu andv asuv-path. The distancedistG(u, v) between two verticesu andv of
G is length of a shortestuv-path. It is well known that this distance forms a metric onV .
The set of all shortestuv-paths will be denoted byPG[u, v]. The cardinality of this set, i.e.,
the number of shortestuv-paths, will be denoted bySuv = |PG[u, v]|.

A subgraphH of G is isometric if distH(u, v) = distG(u, v) holds for all u, v ∈
V (H). We say thatH is a (geodetically) convexsubgraph ofG if for all u, v ∈ V (H),
all shortestuv-pathsP ∈ PG[u, v] are contained inH . In the following, convex will
always mean geodetically convex. The empty subgraph will beconsidered as convex. The
intersection of convex subgraphs ofG is again a convex subgraph ofG [42].

SinceH is an isometric subgraph ofG if and only if H contains at least oneP ∈
PG[u, v] for every pairu, v ∈ V (H), we see that convex implies isometric. Furthermore,
if H is an isometric subgraph ofG, it is in particular an induced subgraph ofG. Finally,
the connectedness ofG implies that all its isometric subgraphs are connected.

Our first result characterizes elementary convex cycles.

Lemma 2.1. LetC be an elementary cycle.
If |C| is odd, thenC is convex if and only if for every edgee = {x, y} in C there is a unique
vertexz in C such thatdistG(x, z) = distG(y, z) = (|C| − 1)/2 andSxz = Syz = 1.
If |C| is even, thenC is convex if and only if for every edgee = {x, y} in C there is a
unique edgeh = {u, v} in C such that (i)distG(x, u) = distG(y, v) = |C|/2 − 1, (ii)
distG(x, v) = distG(y, u) = |C|/2, (iii) Sxu = Syv = 1, and (iv)Sxv = Syu = 2.

Proof. SupposeC is convex. Consider two verticesp andq in C with distG(p, q) < |C|/2.
If C is convex, then the unique shortest path betweenp andq must run alongC, so that
Spq = 1. Clearly, this condition characterizes convex cycles providedC is odd.

The situation is more complicated for even cycles. Let us first suppose thatC is con-
vex and fix an arbitrary edge{x, y}. In an even elementary cycle there is a unique edge
h = {u, v} satisfying (i) distC(x, u) = distC(y, v) = |C|/2 − 1, (ii) distC(x, v) =
distC(y, u) = |C|/2. Isometry ofC implies that properties (i) and (ii) are satisfied. The
argument of the preceding paragraph shows that (iii) holds.Forx, the only point inC at dis-
tance|C|/2 is v. Thus there are two pathsP ′ andP ′′ in C of lengthdistG(x, v) = |C|/2.
By the convexity ofC, these paths are contained inC (so thatC = P ′ ∪ P ′′) and must be
the only shortest paths connectingx andv; hence consequentlySxv = 2. An analogous
argument shows thatSyu = 2.

In order to prove the converse, consider an even elementary cycle C satisfying (i)
through (iv). Again we fix an arbitrary edge{x, y} of C. SinceC is even, there is a
unique antipodal pointv of x and a unique antipodal pointu of y with distC(x, v) =
distC(y, u) = |C|/2. We claim that{u, v} is the required edge. If this were not the case,
then there would be some other edge with both endpoints closer to x alongC thanv that
satisfies condition (ii). This is impossible, however, since for such a vertexv′ we would
have|C|/2 = distG(x, v′) ≤ distC(x, v′) < distC(x, v) = |C|/2. We easily check that
distC(x, u) = |C|/2−1 anddistC(y, v) = |C|/2−1. By property (i), therefore, the paths
from x to u and fromy to v alongC are shortest paths inG. Furthermore, the two paths
from x to v alongC via eitheru or y are also shortest paths inG by property (ii). Thus
distC(x, q) = distG(x, q) for all verticesq in C. Repeating this argument for allx in C
shows thatC is isometric. By property (iii), the shortest path fromx to u is unique. Since
all sub-paths of shortest paths are again shortest path, this is also true for all verticesq in C



along the shortest path fromx to u. The same is true for allq in C along the unique shortest
path fromv to y. By property (iv), finally, there are exactly two shortest paths fromx to v.
We have already seen that two of these run along either half ofthe cycleC. The same is
true for the two paths connectingy with u. Thus all shortest path connecting a vertexq in
C with eitherx or y are contained inC. Repeating the argument for all edges{x, y} in C
shows thatC is convex.

A direct consequence of Lemma 2.1 is that a cycleC in G can be efficiently tested
for convexity provided both the distance matrix and the matrix S containing the number of
shortest paths have been pre-computed: it suffices to verify, in constant time, the conditions
of the lemma for each antipodal pair of edges or pair of edge and vertex, respectively. The
test thus requiresO(|C|) time provided thatC is given as ordered list of its vertices.

As a simple corollary of Lemma 2.1 we have

Corollary 2.2. LetC be an elementary convex cycle. Then, for everye = {x, y} ∈ C there
is a vertexz in C such thatC = P ′ ∪ P ′′ ∪ {x, y}, P ′ ∈ PG[x, z], andP ′′ ∈ PG[y, z].

A closely related, but much weaker, condition appears in thetheory of minimal cycles
bases [22]:

Definition 2.3. A cycle C is edge-shortif it contains an edgee = {x, y} and a vertexz
such thatC = Cxy,z := {x, y} ∪ Pxz ∪ Pyz wherePxz andPyz are shortest paths.

Corollary 2.4. If C is an elementary convex cycle then it is edge-short.

3 Convex Cycle Bases

Corollary 2.2 sets the stage for enumerating all elementaryconvex cycles in a graph. The
following result establishes an upper bound and provides a polynomial time algorithm for
this purpose.

Theorem 3.1. The graphG = (V, E) contains at most|E||V | elementary convex cycles.
These can be constructed and listed inO(|E||V |2) time.

Proof. Every pair of an edgee = {x, y} and a vertexz specifies at most one elementary
convex cycle in the following way: IfdistG(x, z) = distG(y, z) andSxz = Syz = 1 we set
Cez := Pxz ∪ Pyz ∪ {x, y}. If distG(x, z) = distG(y, z) + 1, Sxz = 2 andSyz = 1, then
we choose a neighboru of z such thatdistG(x, u) = distG(y, z), Sux = 1 andSuy = 2,
and setCez := Pxu ∪ {u, z} ∪ Pyz ∪ {x, y}. Note that the choice ofu is unique ifC is
convex. The selection of these|E| |V | candidates thus requiresO(|E| |V |2) time.

In order to efficiently retrieve each candidate cycle inO(|C|) time given{x, y} and
z we need the to know the predecessorπsu of u on the shortest path froms to u. Note
that this information is needed only ifSsu = 1. The modified Dijkstra algorithm in the
Appendix computes this array without changing the asymptotic complexity of the shortest
path algorithm. Since each candidate cycle can then be checked for convexity inO(|C|)
time, the total effort to extract all elementary convex cycles is inO(|E||V |2).

This algorithm outlined in the proof of Theorem 3.1 can be regarded as a variant of
Vismara’s construction of prototypes of candidates for relevant cycles [44]. The fact that
the number of elementary convex cycles inG is bounded by|V | |E| immediately implies
that a convex cycle basis can also be found in polynomial time:



Corollary 3.2. For each graphG = (V, E) it can be decided whetherG has a convex
cycle basis, and if so, a convex cycle bases can be constructed, inO(|E|2 |V |µ(G)2) time.

Proof. Since the cycles of a graph form a matroid, the canonical greedy algorithm can be
applied to find a maximum set of linearly independent elementary convex cycles, see e.g.
[21]. G has a convex cycle basis if and only if this set has sizeµ(G) = |E| − |V | + 1.
For each of the at most|V | |E| candidate cycles, this requires a test of linear independence
with a partial basis that is not larger thanµ(G) = |E| − |V | + 1, i.e.,O(|E|). Apply-
ing Gaussian elimination for this purpose, the total effortis bounded byO(|E| |V |2) +
O(|E|2 |V |µ(G)2) = O(|E|2 |V |µ(G)2) time.

There are graphs that do not have a convex cycle basis. The complete bipartite graph
K2,3 is the simplest counter example (see Fig. 1). None of its three cycles (all have length
4) is convex.

Figure 1: None of the cycles inK2,3 is convex.

4 Relation of Convex Cycle Bases to Other Types of Cycle Bases

Although we have an efficient algorithm to test whether a graph G has a convex cycle
basis, it will be interesting to characterize the class of graphs that admit convex cycle bases.
However, we first investigate the relation between convex cycle bases and other types of
cycle bases.

A procedure analogous to Corollary 3.2 was introduced in [22] for the purpose of re-
trieving minimal cycle bases from a candidate set of edge-short cycles. One would expect,
therefore, that convex cycle bases and minimal cycles basesare closely related.

Convex cycle bases of a graphG need not have the same length. Consider the graph
that is obtained from the cubeQ3 where one edge is contracted. Then the four quadrangles
and two triangles are convex and five of these form a convex cycle basis. Thus convex
bases contain either exactly one or two triangles and thus may have different lengths.

The lengthℓ(B) of a cycle basisB is the sum of the lengths of its generalized cycles:
ℓ(B) =

∑

C∈B
|C|. A minimum cycle basisM is a cycle basis with minimum length.

The generalized cycles inM are chord-less cycles (see [22]). Hence, we may consider
elementary cycles instead of generalized cycles in the remaining part of this section. For
the sake of completeness we note that a minimum cycle basis isa cycle basis in which the
longest cycle has the minimum possible length [10].

The setR of relevant cycles of a graphG is the union of its minimum cycle bases
[41, 44]. In analogy to convex cycle bases one may want to consider isometric cycle bases,
i.e., cycle bases consisting of isometric cycles.

Lemma 4.1. All relevant cycles of a graph are isometric. Thus every minimal cycle basis
is an isometric cycle basis.



Proof. We start from Lemma 2 of [44]: IfP is a subpath of a relevant cycleC such that
|P | ≤ 1

2 |C|, thenP is a shortest path. It follows that every relevant cycle is isometric, and
hence every minimal cycle basis ofG consists of elementary isometric cycles.

Theorem 4.2. If G has a uniquely defined minimal cycle basis, then this minimalcycle
basis is convex.

Proof. Assume thatG has a unique minimal cycle basisB. By Lemma 4.1 the cycles of
B are necessarily isometric. Now suppose thatC ∈ B is not convex. Then there exist
two verticesu, v ∈ C and (at least) three edge disjointuv-pathsP , P ′ andP ′′ such that
|P | ≥ |P ′| = |P ′′| andC = P ∪ P ′. Hence there are two cyclesC1 = P ∪ P ′′ and
C2 = P ′ ∪ P ′′ with |C| = |C1| ≥ |C2|. My constructionC, C1, andC2 are linearly
dependent and thus one ofC1 or C2 cannot be represented as sum of cycles inB \ {C}.
Hence we get a new cycle basisB′ = (B \ {C}) ∪ {C′} whereC′ is eitherC1 or C2. In
either case we findℓ(B′) ≤ ℓ(B) a contradiction to our assumption thatB is the unique
minimal cycle basis.

As a consequence, we can conclude that Halin graphs that are not necklaces [43] and
outerplanar graphs [35] have a convex cycle basis.

The converse of Theorem 4.2 is not true, however, as Figure 2 shows. This graph has
a convex cycle basis but its minimal cycle basis is not uniquely defined. Even worse, none
of its minimal cycle bases is convex.

Figure 2: The cyclomatic number of the graph is 7. All minimalcycle bases consist of
the two triangle, all quadrangles that do not contain the upper dashed edge and two of the
three quadrangles that contain the upper dashed edge (whichalso includes the outer cycle).
However, two of these three quadrangles that contain the upper dashed edge are not convex.
Hence none of the minimal cycle bases is a convex cycle basis.
On the other hand there is a unique convex cycle basis that consists of all triangles, all
quadrangles that do not contain the upper dashed edge, the outer quadrangle and the cycle
of length 5 at the bottom.

A cycle basisB = {C1, . . . , Cµ(G)} of G is calledfundamental[20, 46] if there is an
orderingπ such that for2 ≤ k ≤ µ(G):

Cπ(k) \





k−1
⋃

j=1

Cπ(j)



 6= ∅ . (4.1)



Fundamental cycle bases are obtain from ear decomposition,suggesting that there could be
a relation between convex and fundamental cycles bases. Champetier’s graph [4], however,
has a cycle basis consisting entirely of triangles, which obviously is convex. On the other
hand, this basis is not fundamental [1]. Conversely, fundamental cycle bases need not be
convex, as shown, e.g., by the planar basis ofK2,3.

5 Convexity in Subgraphs and Intersections

This section contains some auxiliary results which will need for our investigation of iso-
metric subgraphs in Section 6 below.

Lemma 5.1. Let M be an isometric (convex) subgraph ofG andF ⊆ M be a subgraph
of M . ThenF is isometric (convex) inM if and only if it is isometric (convex) inG.

Proof. If F is an isometric subgraph ofG, then for each pair of verticesu, v ∈ V (F ), F
contains a shortestuv-path. SinceF ⊆ M , this path is also a shortestuv-path inM and
henceF is isometric inM . If F is a convex subgraph ofG, then it contains all shortest
uv-paths which are also shortest paths inM and thusF is convex inM .

Now assume thatF is not isometric inG. Then there exists two distinct verticesu, v ∈
V (F ) ⊆ V (M) such that there are shortestuv-pathsP in G with |P | < distF (u, v). At
least one of these paths must be contained inM sinceM is an isometric subgraph ofG.
ThusF cannot be an isometric subgraph ofM , either. IfF is not convex inG then there
exists two distinct verticesu, v ∈ V (F ) ⊆ V (M) such that there is at least one shortest
uv-pathP which is not contained inF . SinceM is convex,P must be contained inM and
thusF cannot be convex inM , either.

Lemma 5.2. Let M be an isometric subgraph ofG andF be a convex subgraph ofG.
ThenF ∩M is convex inM .

Proof. For each pair of verticesx, y ∈ V (F ) ∩ V (M), F contains all shortestxy-path in
G. SinceM is an isometric subgraph ofG it must contain at least one of these and thus the
proposition follows.

Lemma 5.3. Assume thatG has a convex cycle basis. LetM be a convex subgraph ofG
that has a convex cycle basisBM . ThenBM can be extended to a convex cycle basisBM

of G.

Proof. By Lemma 5.1 the cycles inBM are convex subgraphs ofG. By assumption there
exists a convex cycle basisB′

G of G. By the Austauschsatzwe can replace appropriate
cycles inB′

G by the cycles inBM . Thus we obtain a convex cycle basisBG of G which
such thatBM ⊆ BG as claimed.

Figure 3 shows that the converse of this lemma is not true in general: a convex subgraph
of a graph that has a convex cycle basis need not necessarily have a convex cycle basis.

6 Isometric Subgraphs of Cartesian Products

In this section, we will be concerned with the Cartesian productG�H and its isometric and
convex subgraphs. The Cartesian product has vertex setV (G�H) = V (G) × V (H); two
vertices(xG, xH) and(yG, yH) are adjacent inG�H if {xG, yG} ∈ E(G) andxH = yH ,



Figure 3: The cyclomatic number of this graph is|E| − |V | + 1 = 16 − 9 + 1 = 8. The
three triangles and the five quadrangles that do not entirelyconsist of dashed edges form a
convex cycle basis. The subgraph that consists of the dashededges is convex but does not
have a convex cycle basis (see Fig. 1).

or {xH , yH} ∈ E(H) andxG = yG. For detailed information about product graphs we
refer the interested reader to [18, 24].

For the Cartesian productG�H the subgraphGv induced by all vertices(x, v) with
x ∈ V (G) and a fixed vertexv ∈ V (H) is called alayer of G (or G-layer) in G�H .
The projectionπG : G�H → G is the usual weak homomorphism defined as(x, y) ∈
V (G�H) 7→ x ∈ V (G). Note that edges inG-layers are mapped into edges inG and
edges inH-layers are mapped into vertices inG.

There is a close relationship between (geodetic) convexityand Cartesian products, see
[7] for a general result. The fundamental result for this purpose is the distance lemma.

Proposition 6.1(Distance Lemma, [23]). Let x = (xG, xH) andy = (yG, yH) be arbi-
trary vertices of the Cartesian product ofG�H . Then

distG�H(x, y) = distG(xG, yG) + distH(xH , yH) .

Moreover, ifP is a shortestxy-path inG�H , thenπG(P ) is a shortestxGyG-path inG.

It seems natural that convexity properties of products alsohold for layers and projec-
tions.

Lemma 6.2([24]). The layersGv andHw are convex subgraphs of the Cartesian product
G�H . Moreover, ifF is an isometric (convex) subgraph ofG�H , then for allv ∈ V (H)
andw ∈ V (G) holds: F ∩ Gv andF ∩ Hw are isometric (convex) subgraphs ofF , Gv

andHw, respectively.

Corollary 6.3. Let M be an isometric subgraph ofG�H . If (xG, xH) and(yG, yH) are
two vertices inM with xG = yG, then there exists a shortestxHyH -path inM ∩ HxG .
Moreover, all shortest(xG, xH)(yG, yH)-paths inM are contained inHxG.

Another consequence of the distance lemma is the following auxiliary result.

Lemma 6.4. LetP be a shortestxy-path inG�H . ThenπG(P ) is a path with|πG(P )| =
distG(xG, yG) =

∑

v∈H |P ∩Gv|, where the last term is the total number of edges ofP in
G-layers. The result holds analogously forπH(P ).



Proof. If (w, xH) and(w, yH) are two distinct points ofP , then by Corollary 6.3 all short-
estxHyH path are contained in layerHw. Consequently, there cannot be two distinct edges
e1 ande2 in G with πG(e1) = πG(e2) that belong toP since otherwiseP also must contain
two shortest paths in differentH-layers that connect corresponding vertices of these edges,
that is,P would contains a cycle. Hence all vertices ofπG(P ) have degree2 except its
end vertices which have degree1 (or 0 in the case whereπG(P ) is a single vertex). Thus
πG(P ) is path of length|πG(P )| = distG(xG, yG) =

∑

v∈H |P ∩Gv|, as claimed.

Lemma 6.5. For every isometric (convex) subgraphF of G�H , πG(F ) is an isometric
(convex) subgraph ofG.

Proof. Let x = (xG, xH) andy = (yG, yH) be two vertices inF . If F is isometric in
G�H , then there exists a shortestxy-pathP in F . By the distance lemma,πG(P ) is a
shortestxGyG-path inG and contained inπG(F ). ThusπG(F ) is an isometric subgraph of
G. Now if πG(F ) is not convex inG, then there exists a shortestxGyG-pathPG in G that
is not contained inπG(F ). Let PH be a shortestxHyH -path inH . ThenP = PG�{xh}∪
PH�{yG} is a shortestxy-path as its length is|P | = distG(xG, yG) + distH(xH , yH) =
distG�H(x, y). However, by constructionP cannot be contained inF and henceF is not
convex inG�H . Consequently, ifF is convex inG�H , thenπG(F ) is convex inG, as
claimed.

On the other hand convexity and isometry properties of factors are also propagated to
their Cartesian product. The following result is well-known and holds for more general
notions of convexity.

Lemma 6.6([7]). If F andM are convex subgraphs ofG andH , respectively, thenF�M
is a convex subgraph ofG�H .

The last lemma also holds for isometric subgraphs.

Lemma 6.7. If F andM are isometric subgraphs ofG andH , respectively, thenF�M is
an isometric subgraph ofG�H .

Proof. Immediate corollary of the distance lemma.

We now want to extend convex cycle bases of two graphsG andH to a cycle basis
of their Cartesian productG�H . Let TG and TH denote spanning trees ofG and H ,
respectively. Let

B� = {e�f : e ∈ E(G), f ∈ TH} ∪ {e�f : e ∈ TG, f ∈ E(H)} . (6.1)

Then for fixed verticesv ∈ V (H) andw ∈ V (G) and respective cycle basisBG andBH

{Cv : C ∈ BG} ∪ {C
w : C ∈ BH} ∪ B� (6.2)

is a cycle basis ofG�H [25].

Theorem 6.8. Let G and H be two graphs that have convex cycle basesBG andBH ,
respectively. Then their Cartesian productG�H has a convex cycle basis that can be
constructed using Eq. (6.2).



Proof. Notice that all quadrangles inB� are convex subgraphs inG�H . By Lemma 5.1
Cv is a convex cycle inG�H . Thus we get a convex cycle basis ofG�H by means of
basis (6.2) when bothBG andBH are convex cycle basis.

Remark 6.9. An analogous statement for the strong product is not true, asthe strong
product of an elementary cycle and an edgeK2 shows.

We have seen in Figure 3 that a convex subgraph of a graph that has a convex cycle
basis does not necessarily have a convex cycle basis. However, a more restrictive property
appears to propagate under the formation of Cartesion products: we consider the class of
graphs for which every convex subgraph has a convex cycles basis.

Theorem 6.10. Let G be a graph that has a convex cycle basis. Then every isometric
subgraphM of G�K2 with πG(M) = G has a convex cycle basis.

For the proof of this theorem we need some intermediate results.

Lemma 6.11. LetC be an isometric elementary cycle inG�H . Then one of the following
holds:

(1) πG(C) ∼= K1, i.e., a single vertex, or

(2) πG(C) ∼= K2, i.e., a single edge, or

(3) πG(C) is an isometric elementary cycle inG.

Proof. Notice thatπG(C) =
⋃

v∈V (H) πG(C ∩Gv). Let x = (xG, xH) andy = (yG, yH)
be two vertices inC with xG = yG andxH 6= yH . Analogously to the proof of Lemma 6.4
no vertexv in πG(C) can have degree greater than2. Now if C ⊆ Hw for somew ∈ V (G),
thenπG(C) = {w} ∼= K1, i.e., case (1). If there is a vertexx whereπG(x) has degree1,
then there exist two distinct verticesu, v ∈ V (H) such thatπG(C ∩Gu) andπG(C ∩Gv)
have a common edgee. However, this only can happen ifπG(C) = {e} ∼= K2, i.e., for
case (2). Otherwise, there would be two verticesy′ andy′ in C so thatπG(y′) = πG(y′′) is
adjacent toπG(x) with vertex degree larger than 1 in the projection, contradicting isometry
of C. If we have neither case (1) nor case (2), then all vertices ofπG(C) have degree2
and henceπG(C) is an elementary cycle which is isometric inG by Lemma 6.5, i.e., case
(3).

Now let C be an elementary cycle andM be an isometric subgraph ofG�K2. Let
Z(C, M) denote the set of elementary cyclesC′ ⊆ M that are convex inM and satisfy
πG(C′) = C. We setZ(C, M) = ∅ if no such cycle exists.

Lemma 6.12. Let M be an isometric subgraph ofG�K2 and letC ∈ G be a convex
elementary cycle withC ⊆ πG(M). ThenZ(C, M) is non-empty.

Proof. First notice thatC�K2 is a convex subgraph ofG�K2 by Lemma 6.6.M ′ =
M ∩ (C�K2) is isometric inC�K2 by Lemma 5.1 and convex inM by Lemma 5.2.
Let M1 and M2 denote the respective intersections ofM ′ with the two K2-layers of
C�K2. If M1 ∼= C (or M2 ∼= C) thenM1 (M2) is a convex elementary cycle inC�K2

by Lemma 6.2, and thus also inM ′ by Lemma 5.2. Otherwise, bothM1 andM2 are
paths of length|M i| ≤ 1

2 |C| for i = 1, 2, sinceM ′ is isometric. AsπC(M ′) = C,
πC(M1) ∪ πC(M2) = C. Consequently, asM ′ is isometric,M ′ is an elementary cy-
cle that is trivially convex inM ′. In all casesZ(C, M ′) is non-empty. Since Lemma 5.1
implies thatZ(C, M ′) ⊆ Z(C, M), the proposition follows.



Remark 6.13. The arguments in the proof of Lemma 6.12 together with the distance
lemma also show that the elements ofZ(C, M) is the set of all shortest cyclesC′ in M
with the propertyπC(C′) = C.

Proof of Theorem 6.10.Let BG be a convex cycles basis ofG. Let B� be as in (6.1) and
defineBZ be a set of cycles that contains exactly one cycleC′ ∈ Z(C, M) for eachC ∈
BG. By Lemma 6.12 all these setsZ(C, M) are non-empty. Clearly, the cycles inB�∪BZ
are linearly independent and thus form a cycle basis ofG�K2. Now let BM be the set
of all cycles inB� ∪ BZ that are contained inM . By construction all cycles inBM are
convex subgraphs ofM andBZ ⊆ BM . Thus it remains to show that|BM | = µ(M).
Let m̄G andm̄K2

denote the numbers of edges in(G�K2) \M that lie inG-layers and
K2-layers, respectively. Let̄n be the number of vertices in(G�K2)\M . SinceπG(M) =
G andM is an isometric subgraph ofG�K2 we find thatm̄K2

= n̄. Thusµ(M) =
(|E(G�K2)| − m̄G − m̄K2

) − (|V (G�K2)| − n̄) + 1 = |E(G�K2)| − |V (G�K2)| +
1 − m̄G = µ(G�K2) − m̄G. On the other hand, there are exactlym̄G cycles inB� that
are not contained inM and hence|BM | = µ(G�K2)− m̄G = µ(M), i.e.,BM is a cycle
basis ofM . This finishes the proof of the theorem.

We easily can generalize Theorem 6.10 to arbitrary isometric subgraphs ofG�K2.

Theorem 6.14. Let G be a graph such that every isometric subgraph has a convex cycle
basis. Then every isometric subgraph ofG�K2 also has a convex cycle basis.

Proof. By Lemma 6.5,G′ = πG(H) is an isometric embedding intoG and thus has a
convex cycle basis by our assumptions. Hence by Theorem 6.10every isometric subgraph
M of G′

�K2 ⊆ G�K2 has a convex cycle basis.

Theorem 6.14 has quite strong implications. Ad-dimensionalhypercubeis thed-fold
product ofK2 by itself,Qd = �

d
i=1K2. Partial cubesare isometric subgraphs ofQd and

form a very rich graph class that contains hypercubes, trees, median graphs, tope graphs
of oriented matroids, benzenoid graphs, tiled partial cubes, netlike partial cubes, and flip
graphs of point sets that have no empty pentagons, see [30, 31] and references therein. As
K2 has a convex cycle basis (namely∅) we immediately obtain the following results by a
recursive application of Theorem 6.14.

Theorem 6.15.Partial cubes have a convex cycle basis.

Theorem 6.16. Let G be a graph such that every isometric subgraph has a convex cycle
basis and letQ be any partial cube. Then every isometric subgraph ofG�Q has a convex
cycle basis.

Proof. Let G be as claimed. Theorem 6.14 implies that every isometric subgraph of
G�K2� · · ·�K2 = G�Qn has a convex cycle basis. Lemma 6.7 implies thatG�Q is an
isometric subgraph ofG�Qn. Moreover, Lemma 5.1 implies that every isometric subgraph
of G�Q is an isometric subgraph ofG�Qn and thus, has a convex cycles basis.

Figure 4 shows that the class covered by Theorem 6.16 is much larger than the class
of partial cubes. Recall that partial cubes are characterized by the so-calledDjokovíc-
Winkler-RelationΘ: Two edgese = {u, v} andf = {x, y} are in relationΘ, (ef) ∈ Θ, if
dist(u, x) + dist(v, y) 6= dist(u, y) + dist(v, x). A graph is a partial cube if and only if it
is bipartite and the relationΘ is an equivalence relation [47].



e1

e2

e3

Figure 4: Observe that(e1e2) ∈ Θ and(e2e3) ∈ Θ, but (e1e3) 6∈ Θ. ThusΘ is not an
equivalence relation. Therefore, this bipartite graph is not a partial cube. However it has a
convex cycle base consisting of the three planar faces.

It seems natural that Theorem 6.16 should remain true also for a more general type of
Cartesian products. We state this as

Conjecture 6.17. Let G1 andG2 be graphs such that each of their isometric subgraphs
have convex cycle bases. Then every isometric subgraph ofG1�G2 has a convex cycle
basis.

A further step towards a proof of this conjecture is given by the following special case:

Theorem 6.18. Let G be a graph such that every isometric subgraph has a convex cycle
basis and letCn be an elementary cycle. Then every isometric subgraph ofG�Cn has a
convex cycle basis.

Notice that this theorem is an immediate corollary of Theorem 6.16 if n is even since
cycles of even length are partial cubes [30, 45]. Hence assume thatC is a cycle of odd
length, i.e.,C = C2k−1 for some integerk ≥ 2. First fix three verticesu, v, w ∈ V (C)
with {u, v}, {v, w} ∈ E(C2k−1). Create a new cycleC′ ∼= C2k by splitting vertexv,
that is, replacev by two verticesv′ andv′′ and the edges{u, v}, {v, w} by three edges
{u, v′}, {v′, v′′}, {v′′, w}.

This splitting operation can be generalized to subgraphsF of G�C. In essence,
we replaceF ∩ Gv by (F ∩ Gv)�K2. In more detail, we introduce the graph opera-
tions Υ and its converseΥ∗ as follows: For a fixed vertexv ∈ C, and any subgraph
F ⊆ G�C, we obtain the subgraphΥ(F ) ⊆ G�C′ by splitting all vertices(x, v) ∈ F
with x ∈ G in the following way: Replace vertex(x, v) by (x, v′) and(x, v′′), and replace
the edges{(x, u), (x, v)}, {(x, v), (x, w)}, and{(x, v), (y, v)}, when present, by the cor-
responding edges{(x, u), (x, v′)}, {(x, v′), (x, v′′)}, {(x, v′′), (x, w)}, {(x, v′), (y, v′)}
and{(x, v′′), (y, v′′)}. Conversely, for a subgraphF ′ ⊆ B�C′ we obtain the subgraph
Υ∗(F ′) ⊆ G�C by contracting all edges{(x, v′), (x, v′′)} ∈ E(G�C′) and remove pos-
sible double edges. This construction in particular has theproperty thatΥ(G�C) = G�C′

andΥ∗(G�C′) = G�C.

Lemma 6.19. Let C = C2k−1 be an elementary cycle of odd length2k − 1. If P is a
shortestxy-path inG�C, thenΥ(P ) contains a shortestx′y′-pathP ′ in G�C′ wherex′

andy′ are vertices inΥ(x) andΥ(y), resp.

Proof. Let x = (xG, xC) and y = (yG, yC) be two vertices inG�C and letx′ =
(x′

G, x′
C′) andy′ = (y′

G, y′
C′) be two vertices inΥ(x) andΥ(y), resp. LetP ′ be a shortest



x′y′-path inΥ(P ). We have to show thatP ′ is also a shortestx′y′-path inG�C′. Ob-
serve that Lemma 6.4 implies that|πG(P )| = |πG(P ′)| and|πC(P )| = |πC′(P ′)| − δ(P ′)
whereδ(P ′) = 1 if πC′(P ′) contains edge{v′, v′′} andδ(P ′) = 0 otherwise. More-
over, distC(xC , yC) ≤ k − 1 anddistC′(x′

C′ , y′
C′) ≤ k. Now suppose thatP ′ is not

a shortestx′y′-path in G�C′. Then there exists ax′y′-path P ′′ that is strictly shorter
than P ′, that is, |πC′(P ′′)| < |πC′(P ′)| ≤ k. As P is a shortestxy-path we have
|πC(Υ∗(P ′′))| = |πC(Υ∗(P ′))| = |πC(P )| ≤ k−1. Again|πC(Υ∗(P ′′)| = |πC′(P ′′)|−
δ(P ′′). ConsequentlyπC′(P ′′) must contain edge{v′, v′′}whileπC′(P ′) must not. There-
foreπC′(P ′′) ∩ πC′(P ′) ∼= C′. However|πC′(P ′′)|+ |πC′(P ′)| < k + k = 2k = |C′|, a
contradiction. This completes the proof.

Proof of Theorem 6.18.Let C be an odd cycle. ThusC′ is even and hence a partial cube.
Lemma 6.19 implies thatΥ(M) is an isometric subgraph ofG�C′ if M is an isometric
subgraph inG�C. In this case,Υ(M) has a convex cycle basisB′. Now consider a
convex cycleD′ ∈ B′. Lemma 6.11 implies thatΥ∗(D′) is either an elementary cycle or
Υ∗(D′) is a single edge in layerGv. The latter happens if and only ifD′ contains edges
{(x, v′), (x, v′′)} and{(y, v′), (y, v′′)}. In this caseD′ must be a convex quadrangle. There
are|E(M ∩Gv)| quadrangles of this type, and they form an linearly independent setQ of
convex cycles. Thus we can assume, w.l.o.g., that they all are contained inB′. Lemma 6.19
implies thatΥ∗(D′) is a convex subgraph ofM . Thus let

B :=
{

Υ∗(D′)
∣

∣D′ ∈ B′ andΥ∗(D′) is an elementary cycle
}

.

The cycles inB are linearly independent: Consider any linear combinationof the form
∑

i λiΥ
∗(D′

i) = 0. Then there is a corresponding linear combination
∑

i λiD
′
i =

∑

j ξjQj ,
whereQj ∈ Q is a quadrangle that is contracted to0 by Υ∗. SinceB′ is linearly indepen-
dent by assumption, allξj andλi must be0, however.

It remains to show that|B| = µ(M). Observe thatΥ(M) contains the subgraph in-
duced by vertices(x, v′) and (x, v′′) if (v, x) ∈ V (M) for somex ∈ G. Otherwise
Υ(M) contains none of these two vertices. Thus we find for the cyclomatic number
µ(M) = µ(Υ(M)) − |E(M ∩ Gv)|. On the other hand|B| = |B′| − |E(M ∩ Gv)| =
µ(Υ(M))− |E(M ∩Gv)| = µ(M). This completes the proof.

7 Convex Eulerian Graphs that are not Cycles

Convex cycles need not be elementary, even though they are necessarily connected whenG
is connected. Furthermore, the elementary cycles whose union forms convex Eulerian sub-
graph need not be convex themselves. An example is theK2,4, which can be decomposed
into two elementary but not convex squares. In fact, the sum of convex cycles typically is
not convex:

Lemma 7.1. Let C1 andC2 be two convex cycles inG. If C1 ⊕ C2 is 2-connected, then
C1 ⊕ C2 is not convex.

Proof. If C1 ⊕ C2 is 2-connected, then it contains at least two distinct verticesu, v ∈
V (C1) ∩ V (C2). SinceC1 ∩ C2 is also convex, it contains the set of all shortestuv-path
which cannot be empty asu 6= v. Consequently,C1⊕C2 = (C1 ∪C2) \ (C1 ∩C2) cannot
contain any of these shortest path and is thus not convex.



If C1 ⊕ C2 is convex for two convex cyclesC1 andC2, thenC1 ⊕ C2 = C1 ∪ C2 and
connected (but not 2-connected). ThusV (C1)∩ V (C2) consists of a single vertex. Notice,
however, that even thenC1 ⊕ C2 need not be convex.

One may ask, therefore, whether the cycle space of a graph that does not have a convex
cycle basis nevertheless may have a basis consisting of convex Eulerian subgraphs. The
example in Figure 5 shows that this is indeed possible.

Figure 5: The 6 triangles and the whole graph are all convex cycles and form a cycle basis.
However, there is no convex cycle basis according to Defn. 1.1: none of the elementary
cycle that pass through the square node is convex.
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Appendix A: Modified Dijkstra Algorithm

A shortest path algorithm that keeps track of the multiplicity of shortest paths and keeps
some backtracing information is required as a pre-processing step in the computation of
convex cycle bases. We use a modified version of Dijkstra’s approach [12]. Letℓ(x, y)
denote the length of the edge{x, y} in G, dxy = distG(x, y) is the length andSxy is the
number of shortest paths in betweenx andy, πsx is the predecessor ofx along theunique
shortest path froms to x, andπsx = ∅ otherwise.Q denotes a priority queue sorted bydsx

for fixeds.

Input: G = (V, E, ℓ) /∗ an edge-weighted graph ∗/

1: for all s ∈ V do
2: /∗ Modified Dijkstra algorithm ∗/

3: for all v ∈ V do
4: dsv =∞; Ssv = 0; πsv = ∅
5: dss = 0; Sss = 0; πss = s
6: Q← V ;
7: while (Q 6= ∅) do
8: u := vertex with smallestdsu.
9: if (dsu =∞) then

10: break/∗ G not connected ∗/

11: removeu from Q
12: for all neighborsv ∈ Q ∩N(u) of u do
13: t := dsu + ℓ(u, v)
14: if (dsv = t) then
15: Ssv := Ssv + 1; πs,v = ∅ /∗ more than one shortest path ∗/

16: if (dsv > t) then
17: dsv := t; Ssv := 1; πsv = u



The algorithm runs inO(|V |(|E| + |V | log |V |)) when the min-priority queueQ is
implemented by means of a Fibonacci heap [16]. The modifications do not change the
asymptotic complexity of the algorithm.


