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Abstract

Convex cycles play a role e.g. in the context of product gsapive introduce con-
vex cycle bases and describe a polynomial-time algoritrahrécognizes whether a given
graph has a convex cycle basis and provides an explicit wanigtn in the positive case.
Relations between convex cycles bases and other types lefsdyases are discussed. In
particular we show that iz has a unique minimal cycle bases, this basis is convex. Fur-
thermore, we characterize a class of graphs with convexesymses that includes partial
cubes and hence median graphs.
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1 Introduction and Basics

The cycle spacé(G) of a simple, unweighted, undirected gra@h= (V, E') consists of all
its Eulerian subgraphs (or generalized cycles), i.e. hallsubgraphs af for which every
vertex has even degree. It is convenient in this contexttarjpmet subgraphs a¥ as edge
sets. The generalized cycles form a vector space over GRf2yector additionX &Y :=
(XUY)\ (XNY) and scalar multiplication- X = X,0- X = (), for X, Y € C(G). This
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vector space is generated by the elementary cyclés ak., the connected subgraphs of
G for which every vertex has even degree. A ba&isf the cycle spacé€ is called acycle
basisof G = (V, E) [9]. The dimension of the cycle space is thy&lomatic numbep(G)
(orfirst Betti numbey. For connected graph we hanéG) = |E|—|V |+ 1. Notice that the
cycle space of a graph is the direct sum of the cycle spacés #fdonnected components.

Cycle bases of graphs have diverse applications in sciantergineering. Examples
include structural flexibility analysis [27], electricagtworks [11], chemical structure stor-
age and retrieval systems [15], scheduling problems [3&hlgdrawing [33], and biopoly-
mer structures [34, 35]. Surveys and extensive refereramebe found in [19, 22, 28, 37].

A convexity spacdV, €) [6] consists of a ground séf and a set of subsets of/
satisfying

(Cl) pee,Vec and
(C2) K',K" € CimpliesK' N K" € €.

For a simple, undirected gragh with vertex setl’, every sef3 of paths onz defines
a convexity spac¢V, €(3)) whereK € ¢() if and only if for every pathP € 8 with
both end vertices ik’ holds thatK’ contains all vertices oP, see e.g. [14]. Several special
sets of path§3 have been studied in this context, e.g., the set of all p&fhsHe set of all
triangle paths [8], the set of all induced paths [13], andsiteof all shortest paths [39].

We will be concerned here only with the latter definition oheexity, usually known
as geodetic convexity. Geodetically convex cycles playnaportant role in the theory of
Cartesian graphs products and their isometric subgraphs. absence of convex cycles
longer thant, for example, characterizes semi-median graphs [3]. Sualdonvex cycles
furthermore play a role e.g. in Euler-type inequalitiesgartial cubes [31].

It appears natural, hence, to investigate whether thereaam@ection between the cycle
space and the (geodetic) convexity space of a g@pk (V, E). Note that the cycle
space is defined on the edge set, while the convexity spacefireed on the vertex set.
Intuitively, this connection is made possible by the faetttinduced elementary cycles in
G are characterized by either their vertex sets or their edtge s

Definition 1.1. A convex cycle basif a graphG is a cycle basi# that consists of convex
elementary cycles.

We briefly consider a generalized definition of convex cyasds relaxing the require-
ment for elementary basis cycles in the final section.

Cycles bases with special properties have been invediigatauch detail in the liter-
ature. Examples include minimum cycle bases [2, 17, 19, 2], (dtrictly) fundamental
cycle bases [20, 32, 38], or (quasi) robust cycle bases [@6,Here, we consideronvex
cycle bases. We show that convex cycle bases are not retatelder types of cycle bases,
we introduce a polynomial-time algorithm to compute a coneygcle basis for an arbi-
trary input graph, and we construct a class of graphs witk@onycles bases by means of
Cartesian products that in particular includes partiakesub

2 Geodetic Convexity and Characterization of Convex Cycles

For a graphG we denote the vertex set and edge setdfy V' (G) andE(G), respectively.
Similarly, we writeC(G) for the cycle space aff. An edge that joins vertices andy is
denoted by the unordered pdir, y}. The lengthgP| and|C| of a pathP and a cycleC



in G, respectively, is the number of their edges. For simplieity will refer to a path with
end vertices: andv asuv-path. The distancéistq (u, v) between two vertices andv of
G is length of a shortestv-path. It is well known that this distance forms a metricion
The set of all shortestv-paths will be denoted b [, v]. The cardinality of this set, i.e.,
the number of shortest-paths, will be denoted by, = [Pg[u, v]|.

A subgraphH of G is isometricif distz(u,v) = distg(u,v) holds for allu,v €
V(H). We say thatd is a(geodetically) convegubgraph ofG if for all u,v € V(H),
all shortestuv-pathsP € Pgu,v] are contained ind. In the following, convex will
always mean geodetically convex. The empty subgraph witldmsidered as convex. The
intersection of convex subgraphs@fis again a convex subgraph Gf[42].

Since H is an isometric subgraph @¥ if and only if H contains at least on® <
Pgu, v] for every pairu,v € V(H), we see that convex implies isometric. Furthermore,
if H is an isometric subgraph @, it is in particular an induced subgraph@f Finally,
the connectedness 6f implies that all its isometric subgraphs are connected.

Our first result characterizes elementary convex cycles.

Lemma 2.1. LetC' be an elementary cycle.

If |C|is odd, therC' is convex if and only if for every edge= {z, y} in C there is a unique
vertexz in C such thatistg (x, z) = distg(y, 2) = (|C| —1)/2and S, = Sy, = 1.

If |C| is even, therC' is convex if and only if for every edge= {z,y} in C there is a
unique edgér = {u,v} in C such that (i)distg(x,u) = distg(y,v) = |C]/2 — 1, (i)
distg(z,v) = distq(y, u) = |C]/2, (iii) Sgu = Syo = 1, and (iV) Sz = Syu = 2.

Proof. Suppos& is convex. Consider two verticegsandg in C with dista (p, ¢) < |C|/2.
If C is convex, then the unique shortest path betweandq must run along”, so that
Spq = 1. Clearly, this condition characterizes convex cycles ghedC is odd.

The situation is more complicated for even cycles. Let us $inppose that’ is con-
vex and fix an arbitrary edggr, y}. In an even elementary cycle there is a unique edge
h = {u,v} satisfying (i) distc(z,u) = diste(y,v) = |C|/2 — 1, (i) distc(z,v) =
diste(y,u) = |C|/2. Isometry ofC implies that properties (i) and (ii) are satisfied. The
argument of the preceding paragraph shows that (iii) héidsz, the only pointinC' at dis-
tance|C|/2 is v. Thus there are two pathi¥ andP” in C of lengthdistg(z,v) = |C|/2.

By the convexity ofC, these paths are contained@n(so thatC = P’ U P”) and must be
the only shortest paths connectingandv; hence consequently,, = 2. An analogous
argument shows thét,, = 2.

In order to prove the converse, consider an even elemenyatg € satisfying (i)
through (iv). Again we fix an arbitrary edger,y} of C. SinceC is even, there is a
unique antipodal point of x and a unique antipodal point of y with distc(z,v) =
diste(y, u) = |C|/2. We claim that{u, v} is the required edge. If this were not the case,
then there would be some other edge with both endpointsrdosealongC thanwv that
satisfies condition (ii). This is impossible, however, girfor such a vertex’ we would
have|C|/2 = distg(z,v") < disto(z,v) < diste(z,v) = |C|/2. We easily check that
diste(z,u) = |C|/2 —1anddist¢(y,v) = |C|/2— 1. By property (i), therefore, the paths
from z to « and fromy to v alongC are shortest paths i¥. Furthermore, the two paths
from x to v alongC' via eitheru or y are also shortest paths @& by property (ii). Thus
diste(z, q) = distg(z, ¢) for all verticesq in C. Repeating this argument for allin C
shows thatC is isometric. By property (iii), the shortest path framo « is unique. Since
all sub-paths of shortest paths are again shortest pastistaiso true for all verticegin C'



along the shortest path fromto ». The same is true for aflin C' along the unique shortest
path fromwv to y. By property (iv), finally, there are exactly two shortesthgafromz to v.
We have already seen that two of these run along either héifeo€ycleC. The same is
true for the two paths connectingwith «. Thus all shortest path connecting a vergar

C with eitherx or y are contained ir©”. Repeating the argument for all edges y} in C
shows that”' is convex. O

A direct consequence of Lemma 2.1 is that a cyClén G can be efficiently tested
for convexity provided both the distance matrix and the mafrcontaining the number of
shortest paths have been pre-computed: it suffices to yerifpnstant time, the conditions
of the lemma for each antipodal pair of edges or pair of edgeverntex, respectively. The
test thus require®(|C|) time provided that” is given as ordered list of its vertices.

As a simple corollary of Lemma 2.1 we have

Corollary 2.2. LetC be an elementary convex cycle. Then, for every{z, y} € C there
is avertexz in C suchthatC = P’ U P" U {x,y}, P’ € Pglx, 2], andP” € Pgly, 2.

A closely related, but much weaker, condition appears irtieery of minimal cycles
bases [22]:

Definition 2.3. A cycle C is edge-shorif it contains an edge = {z,y} and a vertex
such thaC = Cyy . = {z,y} U P,. U P, whereP,, andP,, are shortest paths.

Corollary 2.4. If C'is an elementary convex cycle then it is edge-short.

3 Convex Cycle Bases

Corollary 2.2 sets the stage for enumerating all elemerttanyex cycles in a graph. The
following result establishes an upper bound and providesdynpmial time algorithm for
this purpose.

Theorem 3.1. The graphG = (V, E) contains at mostE||V| elementary convex cycles.
These can be constructed and listedI] E||V|?) time.

Proof. Every pair of an edge = {z,y} and a vertex specifies at most one elementary
convex cycle in the following way: Wistc (z, z) = diste(y, z) andS,. = Sy. = 1 we set
Ce, =P, UP,, U{z,y}. If distg(z, z) = dista(y, 2) + 1, Sz. = 2andS,, = 1, then
we choose a neighbarof z such thadistg (z, ) = distg(y, 2), Suz = 1 andS,, = 2,
and setC,, := P,, U {u,z}U P, U{z,y}. Note that the choice af is unique ifC' is
convex. The selection of thesB| | V| candidates thus requiré¥| E| |V|?) time.

In order to efficiently retrieve each candidate cycle(|C|) time given{z,y} and
z we need the to know the predecessgf of v on the shortest path fromto ». Note
that this information is needed only #,, = 1. The modified Dijkstra algorithm in the
Appendix computes this array without changing the asynmptmmplexity of the shortest
path algorithm. Since each candidate cycle can then be etidok convexity inO(|C|)
time, the total effort to extract all elementary convex egds inO(|E||V |?). O

This algorithm outlined in the proof of Theorem 3.1 can beardgd as a variant of
Vismara’s construction of prototypes of candidates foevaht cycles [44]. The fact that
the number of elementary convex cyclegiris bounded byV| |E| immediately implies
that a convex cycle basis can also be found in polynomial:time



Corollary 3.2. For each graphG = (V, E) it can be decided wheth&r has a convex
cycle basis, and if so, a convex cycle bases can be congdrict®(|E|? |V | u(G)?) time.

Proof. Since the cycles of a graph form a matroid, the canonicaldyra&gorithm can be
applied to find a maximum set of linearly independent elemmsntonvex cycles, see e.g.
[21]. G has a convex cycle basis if and only if this set has gi@) = |E| — [V]| + 1.
For each of the at mos$V' | | E| candidate cycles, this requires a test of linear indeperelen
with a partial basis that is not larger thatG) = |E| — |V| + 1, i.e.,, O(|E|). Apply-
ing Gaussian elimination for this purpose, the total effsrbounded byO(|E| |V |?) +
O(E? VIG)?) = O(|E]? |V|i(G)?) time. O

There are graphs that do not have a convex cycle basis. Thele@bipartite graph
K> 3 is the simplest counter example (see Fig. 1). None of itethyeles (all have length
4) is convex.

Figure 1: None of the cycles iff; 3 is convex.

4 Relation of Convex Cycle Bases to Other Types of Cycle Bases

Although we have an efficient algorithm to test whether a Qré@phas a convex cycle
basis, it will be interesting to characterize the class apdss that admit convex cycle bases.
However, we first investigate the relation between convetechases and other types of
cycle bases.

A procedure analogous to Corollary 3.2 was introduced i} f{82the purpose of re-
trieving minimal cycle bases from a candidate set of edgetslycles. One would expect,
therefore, that convex cycle bases and minimal cycles lmsedosely related.

Convex cycle bases of a graghneed not have the same length. Consider the graph
that is obtained from the culig; where one edge is contracted. Then the four quadrangles
and two triangles are convex and five of these form a convebledyasis. Thus convex
bases contain either exactly one or two triangles and thyshaee different lengths.

The length?(B) of a cycle basid3 is the sum of the lengths of its generalized cycles:
(B) = > cerlCl. A minimum cycle basig is a cycle basis with minimum length.
The generalized cycles iM are chord-less cycles (see [22]). Hence, we may consider
elementary cycles instead of generalized cycles in the iréngapart of this section. For
the sake of completeness we note that a minimum cycle baaisyisle basis in which the
longest cycle has the minimum possible length [10].

The setR of relevant cycles of a grap& is the union of its minimum cycle bases
[41, 44]. In analogy to convex cycle bases one may want toidenisometric cycle bases
i.e., cycle bases consisting of isometric cycles.

Lemma 4.1. All relevant cycles of a graph are isometric. Thus every malicycle basis
is an isometric cycle basis.



Proof. We start from Lemma 2 of [44]: IP is a subpath of a relevant cydle such that
|P| < 1|C|, thenP is a shortest path. It follows that every relevant cycledsistric, and
hence every minimal cycle basis @fconsists of elementary isometric cycles. O

Theorem 4.2. If G has a uniquely defined minimal cycle basis, then this minoyele
basis is convex.

Proof. Assume thatz has a unique minimal cycle bads By Lemma 4.1 the cycles of
B are necessarily isometric. Now suppose that B is not convex. Then there exist
two verticesu, v € C and (at least) three edge disjoint-pathsP, P’ and P” such that
|P| > |P'| = |P”"| andC = P U P’. Hence there are two cycl€s; = P U P” and
Cy = P'U P" with |C] = |Cy]| > |C2|. My constructionC, Cy, andC are linearly
dependent and thus one 6f or C; cannot be represented as sum of cycleBin{C'}.
Hence we get a new cycle ba®§ = (B\ {C}) U {C'} whereC"’ is eitherC; or Cs. In
either case we find(B’) < ¢(B) a contradiction to our assumption thatis the unique
minimal cycle basis. O

As a consequence, we can conclude that Halin graphs thabareeoklaces [43] and
outerplanar graphs [35] have a convex cycle basis.

The converse of Theorem 4.2 is not true, however, as Figuh®®s This graph has
a convex cycle basis but its minimal cycle basis is not urligdefined. Even worse, none
of its minimal cycle bases is convex.

Figure 2: The cyclomatic number of the graph is 7. All mininagitle bases consist of
the two triangle, all quadrangles that do not contain thesuplpashed edge and two of the
three quadrangles that contain the upper dashed edge (alb@includes the outer cycle).
However, two of these three quadrangles that contain thenggshed edge are not convex.
Hence none of the minimal cycle bases is a convex cycle basis.

On the other hand there is a unique convex cycle basis thaisterof all triangles, all
guadrangles that do not contain the upper dashed edge, tifrequadrangle and the cycle
of length 5 at the bottom.

A cycle basisB = {C1,...,C\q)} of G is calledfundamenta[20, 46] if there is an
orderingr such that foR < k < u(G):

k-1
Crry \ U Crijy | #90. (4.1)

J=1



Fundamental cycle bases are obtain from ear decompostiggesting that there could be
a relation between convex and fundamental cycles bases@ieer's graph [4], however,
has a cycle basis consisting entirely of triangles, whictialsly is convex. On the other
hand, this basis is not fundamental [1]. Conversely, furetzal cycle bases need not be
convex, as shown, e.g., by the planar basi&ef.

5 Convexity in Subgraphs and Intersections

This section contains some auxiliary results which will chéer our investigation of iso-
metric subgraphs in Section 6 below.

Lemma 5.1. Let M be an isometric (convex) subgraph@fand ' C M be a subgraph
of M. ThenF' is isometric (convex) id/ if and only if it is isometric (convex) it

Proof. If F'is an isometric subgraph d@f, then for each pair of verticag v € V(F), F’
contains a shortestv-path. Sincef” C M, this path is also a shortest-path inM and
henceF’ is isometric inM. If F'is a convex subgraph a¥, then it contains all shortest
uv-paths which are also shortest pathginand thus?' is convexini/.

Now assume thak' is not isometric inz. Then there exists two distinct verticesv €
V(F) C V(M) such that there are shortest-pathsP in G with |P| < distp(u,v). At
least one of these paths must be containetl/isince M is an isometric subgraph @f.
Thus F' cannot be an isometric subgraph/df, either. If F' is not convex inG then there
exists two distinct vertices,v € V(F') C V(M) such that there is at least one shortest
uwv-path P which is not contained if'. SinceM is convex,P must be contained in/ and
thusF' cannot be convex i/, either. O

Lemma 5.2. Let M be an isometric subgraph @ and F' be a convex subgraph @f.
ThenF' N M is convex inM .

Proof. For each pair of vertices,y € V(F) NV (M), F contains all shortesty-path in
G. SinceM is an isometric subgraph 6f it must contain at least one of these and thus the
proposition follows. O

Lemma 5.3. Assume thafr has a convex cycle basis. Lef be a convex subgraph 6f
that has a convex cycle badis,;. Then,, can be extended to a convex cycle bdsig
of G.

Proof. By Lemma 5.1 the cycles iffy; are convex subgraphs 6f. By assumption there
exists a convex cycle bast, of G. By the Austauschsatwe can replace appropriate
cycles in;, by the cycles in3;,. Thus we obtain a convex cycle ba#is of G which
such that3,; C Bg as claimed. O

Figure 3 shows that the converse of this lemma is not truernieigd: a convex subgraph
of a graph that has a convex cycle basis need not necessaréyahconvex cycle basis.

6 Isometric Subgraphs of Cartesian Products

In this section, we will be concerned with the Cartesian pmd@JH and its isometric and
convex subgraphs. The Cartesian product has verntéX@&f1H) = V(G) x V(H); two
vertices(zq, vy ) and(yq, yu) are adjacent izOH if {z¢,yc} € E(G) anday = yu,



Figure 3: The cyclomatic number of this graphis — |V|+1 =16 -9+ 1= 8. The
three triangles and the five quadrangles that do not entiaigist of dashed edges form a
convex cycle basis. The subgraph that consists of the dastgesb is convex but does not
have a convex cycle basis (see Fig. 1).

or{zy,yn} € E(H) andzg = yg. For detailed information about product graphs we
refer the interested reader to [18, 24].

For the Cartesian produ@H the subgraplz¥ induced by all vertice$z, v) with
z € V(G) and a fixed vertew € V(H) is called alayer of G (or G-layer) in GUH.
The projectionng: GOH — G is the usual weak homomorphism defined(asy) <
V(GOH) — z € V(G). Note that edges id-layers are mapped into edgesGhand
edges inH -layers are mapped into vertices@h

There is a close relationship between (geodetic) convexityCartesian products, see
[7] for a general result. The fundamental result for thisgmse is the distance lemma.

Proposition 6.1 (Distance Lemma, [23])Letz = (xq,xzy) andy = (yg, yx) be arbi-
trary vertices of the Cartesian product G11H. Then

distgog (z,y) = distg(za, ya) + disty (zm, ym) -
Moreover, if P is a shortestry-path inGOH, thenng(P) is a shortestaya-path inG.

It seems natural that convexity properties of products atdd for layers and projec-
tions.

Lemma 6.2([24]). The layersz¥ and H* are convex subgraphs of the Cartesian product
GUH. Moreover, ifF is an isometric (convex) subgraph@flH, then for allv € V(H)
andw € V(G) holds: F N G* and F' N HY are isometric (convex) subgraphs Bf G
and H", respectively.

Corollary 6.3. Let M be an isometric subgraph ¢fC0H. If (z¢,zy) and (yg, yu) are
two vertices inM with z¢ = yg, then there exists a shortest;yy-path in M N H*S,
Moreover, all shortestz, v )(ya, ym)-paths inM are contained inf <.

Another consequence of the distance lemma is the followinxgiary result.

Lemma 6.4. Let P be a shortesty-path inGOH. Thenng(P) is a path withjzg (P)| =
distg(za,ya) = D ,en [P NGY|, where the last term is the total number of edges af
G-layers. The result holds analogously fo (P).



Proof. If (w,zy) and(w,ygy ) are two distinct points of, then by Corollary 6.3 all short-
estx yy path are contained in layéf*. Consequently, there cannot be two distinct edges
e1 andes in G with g (e1) = mg(e2) that belong taP since otherwisé also must contain
two shortest paths in differeiif-layers that connect corresponding vertices of these edges
that is, P would contains a cycle. Hence all verticesmf(P) have degre@ except its

end vertices which have degré€or 0 in the case where (P) is a single vertex). Thus
nq(P) is path of lengthrg (P)| = dista(ra,ya) = D ,cpy [P NGY|, as claimed. O

Lemma 6.5. For every isometric (convex) subgraghof GOH, ng(F) is an isometric
(convex) subgraph af.

Proof. Let x = (z¢,zn) andy = (yg,yn) be two vertices inF'. If F' is isometric in
GUH, then there exists a shortesj-path P in F'. By the distance lemmas;(P) is a
shortestzgya-path inG and contained i (F'). Thusng (F) is an isometric subgraph of
G. Now if 7 (F') is not convex iniG, then there exists a shortestys-path Pg in G that
is not contained inr (F'). Let Py be a shortest yy-path inH. ThenP = PeO{x)} U
Py{yc} is a shortesty-path as its length iEP| = dist¢(zq, ya) + distg (x g, yg) =
disteoy (z,y). However, by constructio# cannot be contained i and hencé" is not
convex inGOH. Consequently, i is convex inGOH, thenng(F') is convex inG, as
claimed. O

On the other hand convexity and isometry properties of facioe also propagated to
their Cartesian product. The following result is well-knmowand holds for more general
notions of convexity.

Lemma 6.6([7]). If Fand M are convex subgraphs &f and H, respectively, thed’T1M
is a convex subgraph ¢fJH.

The last lemma also holds for isometric subgraphs.

Lemma 6.7. If F'and M are isometric subgraphs ¢f and H, respectively, thed' DM is
an isometric subgraph afCJH.

Proof. Immediate corollary of the distance lemma. O

We now want to extend convex cycle bases of two gra@tend H to a cycle basis
of their Cartesian produdtJH. Let T andTy denote spanning trees 6f and H,
respectively. Let

Bo={eOf:ec E(G), feTug}U{eOf:ecTq, f € E(H)}. (6.1)
Then for fixed vertices € V(H) andw € V(G) and respective cycle badi%; andBy
{C?: CeBg}U{C¥: CeBy}UBg (6.2)
is a cycle basis o1 H [25].

Theorem 6.8. Let G and H be two graphs that have convex cycle baSgsand By,
respectively. Then their Cartesian produ€]H has a convex cycle basis that can be
constructed using Eq. (6.2).



Proof. Notice that all quadrangles i85 are convex subgraphs @ H. By Lemma 5.1
C" is a convex cycle ilGOH. Thus we get a convex cycle basis@f]1H by means of
basis (6.2) when botBs; andBy are convex cycle basis. O

Remark 6.9. An analogous statement for the strong product is not trughasstrong
product of an elementary cycle and an edgeshows.

We have seen in Figure 3 that a convex subgraph of a graph disad lbonvex cycle
basis does not necessarily have a convex cycle basis. Hoveewvmre restrictive property
appears to propagate under the formation of Cartesion ptedwe consider the class of
graphs for which every convex subgraph has a convex cycks.ba

Theorem 6.10. Let G be a graph that has a convex cycle basis. Then every isometric
subgraphM of GOK, with 7 (M) = G has a convex cycle basis.

For the proof of this theorem we need some intermediatetsesul

Lemma 6.11. LetC be an isometric elementary cycle@i]H. Then one of the following
holds:

(1) 7¢(C) = K4, i.e., a single vertex, or
(2) m7¢(C) = K», i.e., a single edge, or
(3) m¢(C) is an isometric elementary cycle (i

Proof. Notice thatr(C) = U,ev () 7 (CNGY). Lete = (zg, 2x) andy = (ya,yn)
be two vertices irC' with x¢ = yg andz gy # yu. Analogously to the proof of Lemma 6.4
no vertexv in 7 (C) can have degree greater tiaNow if C C H™ for somew € V(G),
thenws(C) = {w} = K, i.e., case (1). If there is a vertexwherer (x) has degreé,
then there exist two distinct verticasv € V (H) such thatr¢(C N G*) andrg(C N GY)
have a common edge However, this only can happenit; (C) = {e} = Ko, i.e., for
case (2). Otherwise, there would be two vertigeandy’ in C so thatrg (y') = 7 (y") is
adjacent torg (x) with vertex degree larger than 1 in the projection, contitay isometry
of C. If we have neither case (1) nor case (2), then all vertices.df”') have degre@
and hencer;(C) is an elementary cycle which is isometricGhby Lemma 6.5, i.e., case
(3). O

Now let C' be an elementary cycle and be an isometric subgraph 6f{CJK,. Let
Z(C, M) denote the set of elementary cycles C M that are convex in/ and satisfy
7q(C") = C. We setZ(C, M) = ( if no such cycle exists.

Lemma 6.12. Let M be an isometric subgraph ¢f(J K, and letC € G be a convex
elementary cycle witl’ C 7 (M). ThenZ(C, M) is non-empty.

Proof. First notice thatCOK> is a convex subgraph afCJK> by Lemma 6.6. M’ =
M N (COK») is isometric inCOK, by Lemma 5.1 and convex it/ by Lemma 5.2.
Let M and M? denote the respective intersectionsdf with the two K,-layers of
COK,. If M' = C (or M? = C) thenM* (M?) is a convex elementary cycle tiIK>
by Lemma 6.2, and thus also i’ by Lemma 5.2. Otherwise, both/! and A2 are
paths of length M| < L|C| fori = 1,2, sinceM’ is isometric. Asmc(M') = C,
no(M?1) U rme(M?) = C. Consequently, a8/’ is isometric, M’ is an elementary cy-
cle that is trivially convex inM”’. In all casesZ(C, M’) is non-empty. Since Lemma 5.1
implies thatz(C, M") C Z(C, M), the proposition follows. O



Remark 6.13. The arguments in the proof of Lemma 6.12 together with théadce
lemma also show that the elements®fC, M) is the set of all shortest cycl&s’ in M
with the propertyr«(C’) = C.

Proof of Theorem 6.10Let B¢ be a convex cycles basis 6f Let B be as in (6.1) and
defineBz be a set of cycles that contains exactly one cy¢les Z(C, M) for eachC €
Be. By Lemma 6.12 all these se®&C, M) are non-empty. Clearly, the cyclesfin U Bz
are linearly independent and thus form a cycle basi&@iff{,. Now let B, be the set
of all cycles inBh U Bz that are contained ifi/. By construction all cycles iy, are
convex subgraphs a¥/ andBz C Bj,. Thus it remains to show théaB,;| = u(M).
Let m¢g andmg, denote the numbers of edges(l@K,) \ M that lie in G-layers and
K-layers, respectively. Let be the number of vertices (O K2) \ M. Sincerg(M) =
G and M is an isometric subgraph @K, we find thatmg, = n. Thusu(M) =
(|E(GOKy)| — me — i) — (IV(GOK)| — i) + 1 = [E(GOK)| — [V(GOKy)| +
1 —mg = u(GOK3) — mg. On the other hand, there are exagtly; cycles inBg that
are not contained i/ and hencéBBy/| = u(GOKs) — ma = p(M), i.e.,Bys is a cycle
basis ofM . This finishes the proof of the theorem. O

We easily can generalize Theorem 6.10 to arbitrary isomstibgraphs o7 K.

Theorem 6.14. Let G be a graph such that every isometric subgraph has a convéa cyc
basis. Then every isometric subgraphil K also has a convex cycle basis.

Proof. By Lemma 6.5,G' = ng(H) is an isometric embedding int@ and thus has a
convex cycle basis by our assumptions. Hence by Theoreme&e isometric subgraph
M of G’OK, C GOK> has a convex cycle basis. O

Theorem 6.14 has quite strong implicationsdAlimensionahypercubas thed-fold
product of K, by itself, Q; = 0%, K. Partial cubesare isometric subgraphs &f; and
form a very rich graph class that contains hypercubes,,traedian graphs, tope graphs
of oriented matroids, benzenoid graphs, tiled partial subetlike partial cubes, and flip
graphs of point sets that have no empty pentagons, see [Ban8eferences therein. As
K has a convex cycle basis (namélywe immediately obtain the following results by a
recursive application of Theorem 6.14.

Theorem 6.15. Partial cubes have a convex cycle basis.

Theorem 6.16. Let G be a graph such that every isometric subgraph has a convéa cyc
basis and let) be any partial cube. Then every isometric subgrap&Faf has a convex
cycle basis.

Proof. Let G be as claimed. Theorem 6.14 implies that every isometrigsydh of
GOK,0O---0OK, = GOQ,, has a convex cycle basis. Lemma 6.7 implies tHak) is an
isometric subgraph a¥JQ,,. Moreover, Lemma 5.1 implies that every isometric subgraph
of GOQ is an isometric subgraph 61JQ,, and thus, has a convex cycles basis. [

Figure 4 shows that the class covered by Theorem 6.16 is namghrlthan the class
of partial cubes. Recall that partial cubes are charae@rizy the so-calledDjokovic-
Winkler-Relatior©: Two edges: = {u,v} andf = {x,y} are in relatior©, (ef) € O, if
dist(u, x) + dist(v, y) # dist(u, y) + dist(v, z). A graph is a partial cube if and only if it
is bipartite and the relatio® is an equivalence relation [47].



el €3

Figure 4: Observe thdkies) € O and(ezes) € O, but(ejes) € ©. Thus® is not an
equivalence relation. Therefore, this bipartite graphosanpartial cube. However it has a
convex cycle base consisting of the three planar faces.

It seems natural that Theorem 6.16 should remain true atsa fitcore general type of
Cartesian products. We state this as

Conjecture 6.17. Let G; and G2 be graphs such that each of their isometric subgraphs
have convex cycle bases. Then every isometric subgraph(atz, has a convex cycle
basis.

A further step towards a proof of this conjecture is givenhyfollowing special case:

Theorem 6.18. Let G be a graph such that every isometric subgraph has a convéa cyc
basis and leC,, be an elementary cycle. Then every isometric subgragklof’,, has a
convex cycle basis.

Notice that this theorem is an immediate corollary of Theo&16 if n is even since
cycles of even length are partial cubes [30, 45]. Hence asghatC is a cycle of odd
length, i.e.,C' = Cy;_; for some integek > 2. First fix three vertices, v, w € V(C)
with {u,v},{v,w} € E(Cat_1). Create a new cycl€’ = (Cy by splitting vertexv,
that is, replace by two verticesv’ andv” and the edge$u, v}, {v,w} by three edges
{u, v'}, {v/, 0"}, {v", w}.

This splitting operation can be generalized to subgraphsf GOC. In essence,
we replaceF N G by (F N GY)OK,. In more detail, we introduce the graph opera-
tions T and its convers&™* as follows: For a fixed vertex € C, and any subgraph
F C GOC, we obtain the subgraphi(F') C GOC’ by splitting all verticeqz,v) € F
with z € G in the following way: Replace vertelx, v) by (z, v’) and(z,v"”), and replace
the edgeq(z,u), (z,v)}, {(z,v), (x,w)}, and{(x,v), (y,v)}, when present, by the cor-
responding edges(z, u), (x,v')}, {(z,v"), (z.v")}, {(z,v"), (z,w)}, {(x.0). (y.v)}
and{(z,v"), (y,v”)}. Conversely, for a subgrapf’ C BOC’ we obtain the subgraph
T*(F’) C GOC by contracting all edge§(z, v'), (z,v")} € E(GOC”) and remove pos-
sible double edges. This construction in particular hagtbperty thafl (GOC) = GOC’
andY*(GOC") = GOC.

Lemma 6.19. Let C = Cy;_1 be an elementary cycle of odd length — 1. If Pis a
shortestry-path inGOC, thenY (P) contains a shortest’y’-path P’ in GOC’ wherez’
andy’ are vertices inY' (z) and Y (y), resp.

Proof. Let x = (zg,z¢) andy = (yg,yc) be two vertices inGOC and letz’ =
(zf, 2f,) andy’ = (y&, Yo ) be two vertices ifl' () and Y (y), resp. LetP’ be a shortest



2'y’-path inT(P). We have to show thaP’ is also a shortest’y’-path inGOC’. Ob-
serve that Lemma 6.4 implies that; (P)| = |7 (P’)| and|rc(P)| = |rc/ (P')| — §(P7)
whered(P’) = 1if mc/(P’) contains edggv’,v”} anddé(P’) = 0 otherwise. More-
over,distc(zc,yc) < k — 1 anddister (z¢, yor) < k. Now suppose thaP’ is not
a shortest’y/-path in GOC’. Then there exists a’y’-path P” that is strictly shorter
than P/, that is, |rc/ (P”)| < |mc/(P')] < k. As P is a shortestzy-path we have
[me (Y5 (P"))| = [mc(T*(P"))| = [mc(P)| < k- 1. Again|mc (T (P")| = [rc (P”)] -
§(P"). Consequentlyrc, (P") must contain edgév’, v’} while 7/ (P") must not. There-
foremc: (P") Nwe (P') =2 C'. Howeverlre: (P")| + |7 (P)| < k+ k =2k =|C"|,a
contradiction. This completes the proof. O

Proof of Theorem 6.18Let C be an odd cycle. Thu§” is even and hence a partial cube.
Lemma 6.19 implies thal (M) is an isometric subgraph aéfCJC” if M is an isometric
subgraph inGOC. In this case, Y (M) has a convex cycle basl¥. Now consider a
convex cycleD’ € B’. Lemma 6.11 implies thaf'*(D’) is either an elementary cycle or
T*(D’) is a single edge in laye”. The latter happens if and only I’ contains edges
{(z,v"), (z,v")} and{(y,v"), (y,v")}. Inthis caseD’ must be a convex quadrangle. There
are|E(M N G")| quadrangles of this type, and they form an linearly independetQ of
convex cycles. Thus we can assume, w.l.0.g., that theyeai@mtained i3’. Lemma 6.19
implies thatY*(D’) is a convex subgraph @f. Thus let

B:={Y*(D')|D' € B'andY*(D’) is an elementary cycle.

The cycles in5 are linearly independent: Consider any linear combinatibthe form
>_: A7 (D;) = 0. Thenthere is a corresponding linear combinaliog\; D; = 3, £;Q;,
where(; € Q is a quadrangle that is contracteditby Y*. SinceB’ is linearly indepen-
dent by assumption, afl; and\; must bed, however.

It remains to show thai3| = u(M). Observe thatl (M) contains the subgraph in-
duced by verticegz, v') and (z,v"”) if (v,z) € V(M) for somexz € G. Otherwise
Y (M) contains none of these two vertices. Thus we find for the cyatec number
w(M) = p(Y(M)) — |E(M N G?)|. On the other han{3| = |B'| — |E(M N GY)| =
w(Y(M)) — |[E(M NG")| = u(M). This completes the proof. O

7 Convex Eulerian Graphs that are not Cycles

Convex cycles need not be elementary, even though they eesserily connected whén

is connected. Furthermore, the elementary cycles whosadioims convex Eulerian sub-
graph need not be convex themselves. An example i&the which can be decomposed
into two elementary but not convex squares. In fact, the sbicovex cycles typically is
not convex:

Lemma 7.1. Let C; andCs be two convex cycles i@d. If C; & C5 is 2-connected, then
Cy ® Cy is not convex.

Proof. If Cy @ Cs is 2-connected, then it contains at least two distinct gestic, v €
V(Cy) NV (Cs). SinceCy N Cs is also convey, it contains the set of all shortestpath
which cannot be empty as+# v. Consequenthy(; & Cy = (C; UCs) \ (C1 N Cs) cannot
contain any of these shortest path and is thus not convex. O



If C; @ Cs is convex for two convex cycleS; andCs, thenCy, & Co, = C; U Csy and
connected (but not 2-connected). THOE”; ) NV (C>) consists of a single vertex. Notice,
however, that even thefi; © C; need not be convex.

One may ask, therefore, whether the cycle space of a graptidka not have a convex
cycle basis nevertheless may have a basis consisting oExdfwierian subgraphs. The
example in Figure 5 shows that this is indeed possible.

Figure 5: The 6 triangles and the whole graph are all convelesyand form a cycle basis.
However, there is no convex cycle basis according to Defli. Aone of the elementary
cycle that pass through the square node is convex.
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Appendix A: Modified Dijkstra Algorithm

A shortest path algorithm that keeps track of the multipficf shortest paths and keeps
some backtracing information is required as a pre-proogsstiep in the computation of
convex cycle bases. We use a modified version of Dijkstragg@grh [12]. Let/(z,y)
denote the length of the edde, v} in G, d,, = distg(z,y) is the length and,,, is the
number of shortest paths in betweeandy, 7, is the predecessor afalong theunique
shortest path from to z, andr,, = ) otherwise Q denotes a priority queue sorted &y,
for fixed s.
Input: G = (V, E,{) /+ an edge-weighted graph x/

1: forall s € V do

2: /+ Modified Dijkstra algorithm =/

3. forall v € Vdo

4: dsu = 00; Ssv = 01 sy = @

5 dgs =0; 55 =0; 55 = s

6 Q<V;

7 while (Q # @) do
8 u ;= vertex with smallesty,, .
9 if (dsy, = 00) then

10: break/x G not connected x/

11: removeu from Q

12 for all neighbory € @ N N (u) of w do

13 t:=dgy + L(u,v)

14: if (ds, = t) then

15: Ssp := Ssy + 1; 5., = 0 /% more than one shortest path */
16: if (ds, > t) then

17: dep i =1, Ssp =1, Tsp = 1



The algorithm runs irO(|V|(|E| 4+ |V|log|V])) when the min-priority queu€) is
implemented by means of a Fibonacci heap [16]. The modifinatdo not change the
asymptotic complexity of the algorithm.



