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Abstract

Background: Modeling molecules as undirected graphs and chemical reactions as graph rewriting operations is a
natural and convenient approach to modeling chemistry. Graph grammar rules are most naturally employed to model
elementary reactions like merging, splitting, and isomerisation of molecules. It is often convenient, in particular in the
analysis of larger systems, to summarize several subsequent reactions into a single composite chemical reaction.

Results: We introduce a generic approach for composing graph grammar rules to define a chemically useful rule
compositions. We iteratively apply these rule compositions to elementary transformations in order to automatically
infer complex transformation patterns. As an application we automatically derive the overall reaction pattern of the
Formose cycle, namely two carbonyl groups that can react with a bound glycolaldehyde to a second glycolaldehyde.
Rule composition also can be used to study polymerization reactions as well as more complicated iterative reaction
schemes. Terpenes and the polyketides, for instance, form two naturally occurring classes of compounds of utmost
pharmaceutical interest that can be understood as “generalized polymers” consisting of five-carbon (isoprene) and
two-carbon units, respectively.

Conclusion: The framework of graph transformations provides a valuable set of tools to generate and investigate
large networks of chemical networks. Within this formalism, rule composition is a canonical technique to obtain
coarse-grained representations that reflect, in a natural way, “effective” reactions that are obtained by lumping
together specific combinations of elementary reactions.

Background
Directed hypergraphs [1] are a suitable topological rep-
resentation of (bio)chemical reaction networks where
(catalytic) reactions are hyperedges connecting substrate
nodes to product nodes. Such networks require an
underlying Artificial Chemistry [2] that describes how
molecules and reactions are modeled. If molecules are
treated as edge and vertex labeled graphs, where the
vertex labels correspond to atom types and the edge
labels denote bond types, then structural change of
molecules during chemical reactions can be modeled
as graph rewriting rules [3]. In contrast to many other
Artificial Chemistries this approach allows for respecting
fundamental rules of chemical transformations like mass
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conservation, atomic types, and cyclic shifts of electron
pairs in reactions. In general, a graph rewriting(rule)
transforms a set of substrate graphs into a set of product
graphs. Hence the graph rewriting formalism allows not
only to delimit an entire chemical universe in an abstract
but compact form but also provides a methodology for its
explicit construction.

Most methods for the analysis of this network structure
are directed towards this graph (or hypergraph) structure
[1,4], which is described by the stoichiometric matrix S of
the chemical system. Since S is essentially the incidence
matrix of the directed hypergraph, algebraic approaches
such as Metabolic Flux Analysis and Flux Balance Analysis
[5] have a natural interpretation in terms of the hyper-
graph. Indeed typical results are sets of possibly weighted
reactions (i.e., hyperedges) such as elementary flux modes
[6], extreme pathways [7], minimal metabolic behaviors
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[8] or a collection of reactions that maximize the pro-
duction of a desired product in metabolic engineering.
The net reaction of a given pathway is simply the linear
combination of the participating hyperedges.

In the setting of generative models of chemistry, each
concrete reaction is not only associated with its stoi-
chiometry but also with the transformation rule operating
on the molecules that are involved in a particular reac-
tion. Importantly, these rules are formulated in terms of
reaction mechanisms that readily generalize to large sets
of structurally related molecules. It is thus of interest to
derive not only the stoichiometric net reaction of a path-
way but also the corresponding “effective transformation
rule”. Instead of attempting to address this issue a pos-
teriori, we focus here on the possibility of composing
the elementary rules of chemical transformations to new
effective rules that encapsulate entire pathways.

The motivation comes from the observation that string
grammars are meaningfully characterized and understood
by investigating the transformation rules. Consider, as
a trivial example, the context-free grammar G with the
starting symbol S and the rules S → aS′a, S′ → aS′a | B
and B → ε |bB, where ε denotes the empty string. Inspect-
ing this grammar we see that we can summarize the effect
of the productions as B → bk , k ≥ 0, and S → anBan,
n ≥ 1. The language generated from G is thus {anbkan|n ≥
1, k ≥ 0}. Here we explore whether a similar reason-
ing, namely the systematic combination of transformation
rules, can help to characterize the language of molecules
that is generated by a particular graph rewriting chem-
istry. Similar to the example from term rewriting above,
we should at the very least be able to recognize the reg-
ularities in polymerization reactions. We shall see below,
however, that the rule based approach holds much higher
promises.

Chemical reactions can be readily composed to “over-
all reactions” such as the net transformation of metabolic
pathways. This observation is used implicitly in flux bal-
ance analysis at the level of the stoichiometric matrix.
Recently, [9] considered the composition of concrete
chemical reactions, i.e., transformations of complete
molecules, as a means of reconstructing metabolic path-
ways. In this contribution we take a different point of view:
instead of asking for concrete overall reactions, we are
concerned with the composition of the underlying reac-
tion mechanisms themselves. As we will see, these can
be applied to arbitrary molecule contexts. We therefore
address two issues: First we establish the formal condi-
tions under which chemical transformation rules can be
meaningfully composed. To this end, we discuss rule com-
position within the framework of concurrency theory in
the following section. We then investigate the specific
restrictions that apply to chemical systems, leading to a
constructive approach for inferring composite rules.

The basic computational task we envision starts from
an unordered set R of reactions such as those forming a
particular metabolic reaction pathway. To derive the effec-
tive transformation rule describing the pathway we need
to find the correct ordering π in which the transforma-
tion rules pi, underlying the individual chemical reactions
ρi, have to be composed. We illustrate this approach in
some detail using the Formose reaction as an example in
the Results section.

Graph grammars and rule composition
Graph grammars, or graph rewriting systems, are proper
generalizations of term rewriting systems. A wide vari-
ety of formal frameworks have been explored, including
several different algebraic ones rooted in category the-
ory. We base our conceptual developments on the double
pushout (DPO) formulation of graph transformations. For
the comprehensive treatise of this framework we refer to
[10]. In the following sections we first outline the basic
setup and then introduce full and partial rule compo-
sition. Alternative approaches to graph rewriting in the
context of (artificial) chemistry have been based on the
single pushout (SPO) model of graph transformations,
see e.g. [11,12]. We briefly discuss the rather techni-
cal difference between the DPO and SPO framework in
Appendix A, where we also briefly outline our reasons for
choosing DPO.

Double pushout and concurrency
The DPO formulation of graph transformations considers
transformation rules of form p = (L l← K r→ R) where L,
R, and K are called the left graph, right graph, and context
graph, respectively. The maps l and r are graph mor-
phisms. The rule p transforms G to H, in symbols G p,m==⇒H
if there is a pushout graph D and a “matching morphism”
m : L → G such that following diagram is valid:

(1)

The existence of D is equivalent to the so-called gluing
condition, which determines whether the rule p is appli-
cable to a match in G. In the following we will also write
G p⇒ H and G ⇒ H for derivations, if the specific match
or transformation rule is unimportant or clear from the
context.

Concurrency theory provides a canonical framework
for the composition of two graph transformations. Given
two rules pi = (Li

li← Ki
ri→ Ri), i = 1, 2, a composi-

tion (L
ql← K

qr→ R) = p1 ∗E p2 can be defined whenever
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a dependency graph E exists so that in the following
diagram:

(2)

the cycles (1) and (2) are pushouts, and (3) is a pullback,
see e.g., [13]. We then have ql = s1 ◦ w1 and
qr = t2 ◦ w2. The concurrency theorem [14] ensures
that for any sequence of consecutive direct transforma-
tions G p1,m1===⇒H p2,m2===⇒G′ a graph E, a corresponding E-
concurrent rule p1 ∗E p2, and a morphism m can be found
such that G p1∗Ep2,m=====⇒G′.

In order to use graph transformation as a model
for chemical reactions additional conditions must be
enforced. Most importantly, atoms are neither created,
nor destroyed, nor transformed to other types. Thus only
graph morphisms whose restriction to the vertex sets
are bijective are valid in our context. In particular, the
matching morphism m always corresponds to a subgraph
isomorphism in our context. The context graph K thus is
(isomorphic to) a subgraph of both L and R, describing
the part of L that remains unchanged in R. Conserva-
tion of atoms means that the vertex sets of L, K, and
R are linked by bijections known as the atom-mapping.
When the atom mapping is clear, thus, we do not need to
represent the context explicitly.

It is important to note that the existence of the match-
ing morphism m : L → G alone is not sufficient to
guarantee the applicability of the transformation. In our
context, we require in addition that the transformation
rule does not attempt to introduce an edge in R that has
been present already before the transformation is applied.
Formally, the gluing condition requires that (l(x), l(y)) /∈ L
and (r(x), r(y)) ∈ R implies (m(l(x)), m(r(y))) /∈ G.

Full rule composition
In the following we will be concerned only with special,
chemically motivated, types of rule compositions. In the
simplest case the dependency graph E is isomorphic to
R1, later we will also consider a more general setting in
which E is isomorphic to the disjoint union of R1 and
some connected components of L2. For the ease of nota-
tion from now on we only refer to a rule composition,
and not to a composition of morphisms as in the Graph
Grammar section, i.e., p1 ∗E p2 will be denoted as p2 ◦ p1
(note the order of the arguments changes). If E ∼= R1, then

L2 ∼= e2(L2) is a subgraph of R1. Omitting the explicit
references to the subgraph matching morphism e2 we
can simply view L2 as subgraph of R1 as illustrated in
Figure 1b.

The rule composition thus amounts to a rewriting
R1

p2,e2==⇒R, while the left side L1 is preserved. We will use
the notation p2◦p1 and G p2◦p1===⇒H for this restricted type of
rule composition, and call it full composition as the com-
plete left side of p2 is a subgraph of R1. Note that L2 may
fit into R1 in more than one way so that there may be more
than one composite rule. Formally, the alternative compo-
sitions are distinguished by different matching morphisms
e2 in the diagram in Figure 1a; we will return to this point
below.

An example of a full rule composition is shown in
Figure 1c. The two rules in the example, which in this
case are also chemical reactions, are part of the Formose
grammar. The Formose grammar consists of two pairs of
rules. The first pair of rules, (from now on denoted as p0

and p1), implements both directions of the keto-enol tau-
tomerism. One direction, p1, is visualized in Figure 1c.
The second pair (from now on denoted as p2, p3) is the
aldol-addition and its reverse respectively. The reverse
(p3) is also visualized in Figure 1c. We see that the left side
of p1 is isomorphic to a subgraph of one of the compo-
nents of the right side of p3. Composing the two rules by
subgraph matching yields a third rule, p1 ◦ p3.

Partial rule composition
An important issue for the application to chemical reac-
tions is that the graphs involved in the rules are in gen-
eral not connected. Typical chemical reactions combine
molecules, split molecules or transfer groups of atoms
from one molecule to another. The transformation rules
for all these reactions therefore require multiple con-
nected components. For the purpose of dealing with these
rules, we introduce the following notation for graphs and
derivations.

Let Q be a graph with #Q connected components Qi, i =
1, . . . , #Q. It will be convenient to treat Q as the multiset
of its components. A typical chemical graph derivation,
corresponding to a bi-molecular reaction can be written
in the form {G1, G2} p,m==⇒{H1, H2, H3}, where we take the
notation to imply that all graphs Gi and Hj are connected.

The conditions for the ◦ composition of rules are a bit
too strict for our applications. We thus relax them respect
the component structure of left and right graphs. More
precisely, we consider a partition of the components of L2
into two parts L2 and L′

2 (cmp. Figure 2a), and we require
that E is isomorphic to a disjoint union of a copy of R1
and L′

2, while L2 must be isomorphic to a subgraph of R1.
As a consequence, every connected component Li

2 of L2
satisfies either e2(Li

2) ⊆ e1(R1) or e2(Li
2) is a connected
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Figure 1 Full rule composition. (a) Commutative diagram of the composition (L, K , R) = (L2, K2, R2) ◦ (L1, K1, R1), with arrows denoting subgraph
isomorphisms. The morphisms u1, v1 and e1 are isomorphisms. (b) Illustration of the subgraph relations of a full composition: L2 is a subgraph of R1,
R2 is a subgraph of the resulting right side R, and L1 is isomorphic to the resulting left side L. (c) Concrete example of full composition of two rules
from the Formose reaction; backward aldol addition (p3) and backward keto-enol tautomerism (p1). The atom mapping and matching morphism
are implicitly given in these drawings by corresponding positions of atoms. The bonds in the matching morphism is further coloured blue, and the
bonds in the subgraph relation R1 → R is coloured purple. The contexts, K3, K1 and K, thus consists of all the atoms as well as the chemical bonds
(edges) shown in black in both the left and the right graph of each rule. Besides p1 and p3, the Formose reaction uses two additional rules; p0

keto-enol tautomerism and p2 aldol addition. These rules are the inverse rules of their “backwards” version visualized above.

component of E isomorphic to Li
2. For a rule composition

of this type to be well defined we need that ∃i such that
e2(Li

2) ⊆ e1(R1) holds, i.e., L2 must be non-empty. We
remark that the latter condition could be relaxed further
to lead to additional compositions for which left and right
sides are disjoint unions. If L′

2 is empty, then the partial
composition is also a full composition.

As an abstract example (Figure 2a), the partial composi-
tion of p1 = (L1, K1, R1) and p2 = ({L2

2, L2
2}, K2, R2), with

L2 = L1
2 and L′

2 = L2
2 yields p2 ◦ p1 = ({L1, L2

2}, K , R).
Note that right graph R cannot no longer be regarded
simply as a rewritten version of R1 because rule p2 now
adds additional vertices to both the left and the right
graph. The composite context K contains only subsets

Figure 2 Partial rule composition. (a) Commutative diagram of the composition (L, K , R) = (L2, K2, R2) ◦ (L1, K1, R1), with arrows denoting
subgraph isomorphisms. Not shown is that L2 is the disjoint union of L2 and L′

2, i.e., L2 = {L2, L′
2}). Additionally, L = {L1, L′

2}, C1 = {K1, L′
2} and

E = {R1, L′
2}. (b) Illustration of the subgraph relations of a partial composition: L2

2 is a subgraph of R1, R2 is a subgraph of the resulting right side R.
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of K1 and K2, but it is expanded by the vertices of
L2

2 and the edges of L2
2 that remain unchanged under

rule p2.
In general, we thus require here that the connected com-

ponents of R1 and L2 satisfy either e2(Li
2) ⊆ e1(R

j
1) or

e1(R
j
1) ∩ e2(Li

2) = ∅. We furthermore exclude the trivial
case of parallel rules in which only the second alternative
is realized. In other extreme, if all components Li

2 satisfy
e1(Li

2) ⊆ e2(R1), the partial composition becomes a full
composition. Formally, these alternatives are described
by different dependency graphs E and/or different mor-
phisms e1 and e2. Pragmatically we can understand this as
a matching μ of L2 and R1 as in Figure 3. Specifying μ of
course removes the ambiguity from the definition of the
rule composition; hence we write p2 ◦μ p1 to emphasize
the matching μ.

Constructing rule compositions
Given two rules, p1 and p2, it is not only interesting to
know if a partial composition is defined, but also to create
the set of all possible compositions

{
p2 ◦μ1 p1, p2 ◦μ2 p1, . . . , p2 ◦μk p1

}

explicitly. This set in particular contains also all full
compositions. The following describes an algorithm for
enumerating all partial compositions.

Figure 3 The (partial) composition of two rules is mediated by
the dependency graph E and the two matching morphisms e1

and e2. Since these are subgraph isomorphisms in our case, E i simply
the union e1(R1) ∪ e2(L2). The (partial) match e1(R1) ∩ e2(L2) can be
understood as a matching μ between R1 and L2, i.e., as a 1-1 relation
of the matching nodes and edges. Whenever an edge is matched,
then so are its incident vertices.

Enumerating the matchings μ

The key to finding all compositions is the enumeration
of all matchings μ that respect our restrictions on over-
laps between connected components. We thus start from
the sets

{
R1

1, R2
1, . . . , R#R1

1

}
and

{
L1

2, L2
2, . . . , L#L2

2

}
of con-

nected components of R1 and L2, resp. In the first set we
find all subgraph matches Li

2 ⊆ R j
1 (represented as the

corresponding matchings μij) and arrange the result in a
matrix of lists of subgraph matches, Figure 4.

The matching matrix is extended by a virtual column
to account for the possibility that Li

2 is not matched with
any component of R1. Every partial (and full) composi-
tion is now defined by a selection of one submatch from
each row of the matrix, see Appendix C for an example.
The converse is not true, however: Not every selection
of matches correspond to a partial composition. In par-
ticular, we exclude the case that only entries from the
virtual column are selected. In addition, the submatches
must be disjoint to ensure that the combined match is
injective. The latter conditions needs to be checked only
when more than one submatch is selected from the same
column.

Composing the rules
The construction of the composition p2 ◦μ p1 of two rules
p1 and p2 does not explicitly depend on the component
structure of R2 and L1 because it is uniquely defined by
the matching μ and the bijections of the nodes of Li, Ki,
and Ri for each of the two rules. We obtain L by extending
L1 with unmatched components of L2 and R by extending
R2 by the unmatched components of R1. The correspond-
ing extension of μ to a bijection μ̂ of the vertex sets of L
and R is uniquely defined. The context K of the compos-
ite rule simply consists the common vertex set of L and R
and all edges (x, y) of L for which (μ̂(x), μ̂(y)) is an edge
in R. We note in passing that μ̂ defines the atom map-
ping of the composite transformation. The explicit con-
struction of (L, K , R) is summarized as the algorithm in
Figure 5.

The implementation of the algorithm naturally depends
heavily on the representation of transformation rules,
which in our implementation is the representation from
the Graph Grammar Library (GGL) [15-17]. The repre-
sentation is a single graph, with attached vertex and edge
properties defining membership of L, K and R, as well as
the needed labels.

Not all matchings define valid rule compositions. For
instance, consider an edge (u, v) that is present in R1 and
R2 but not in L2 and both u and v are in L2. This would
amount to creating the edge by means of rule p2 which was
already introduced by p1. Since we do not allow parallel
edges and thus regard such inconsistencies as undefined
cases we reject the matching. Note that a parallel edge
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Figure 4 Example of (a) a match matrix and the same matrix with (b) its virtual extension. The top row specifies 1 possibility for L1
2 ⊆ R1

1 and 2
for L1

2 ⊆ R3
1. The extended matrix further specifies that L1

2 can be unmatched. The bottom rows can be interpreted similarly. We display the number
of matchings instead of a representation of the matchings themselves.

does not correspond to a “double bond” (which essentially
is only an edge with a specific type).

Graph binding, unbinding, and identity
The composition of transformation rules, and thereby
chemical reactions, makes it possible to create abstract
meta-rules in a way that is similar to the combination of
multiple functions into more abstract functions in func-
tional programming. A related concept from (functional)
programming that seems useful in the context of graph
grammars is partial function application. Consider, for
example, the binding of the number 2 to the exponen-
tiation operator, yielding either the function f (x) = 2x

or f (x) = x2. In the framework of rule composition, we
define graph binding as a special case.

Let G be a graph and p2 = (L2, K2, R2) be a trans-
formation rule. The binding of G to p2 results in the
transformation rule p = (L, K , R) which implements the
partial application of p2 on G. This is accomplished simply
by regarding G as a rule p1 = (∅, ∅, G), and using partial
composition; p = p2 ◦ p1. Note that if p2 ◦ p1 is a full com-
position, then p can be regarded as a graph H and G p2⇒ H
holds.

Graph binding allows a simplified representation of
reactions. For instance, we can use this formal construc-
tion to omit uninteresting ubiquitously present molecules
such as water by binding the graph of the water molecule
to the transformation rule of a reaction that requires
water. Similarly, graph unbinding can be defined as a
transformation rule that destroys graphs. In a chemical
application it can be used to avoid the explicit represen-
tation of uninteresting ubiquitous molecules such as the
solvent.

As a direct consequence of graph binding and unbind-
ing the composed rules create or destroy vertices. The
atom map thus is not well-defined any more in such rules.
This can be rescued by a formally different construction.
We introduce the identity rule ıG = (G, G, G). Instead of
graph binding, we now consider the composed rules of
form p2 ◦ ıG = (L, K , R) for some chemical rule p2. Its
left graph must match G at least partially. This construc-
tion preserves a well-defined atom map and retains useful
properties of graph binding. In particular, it ensures that
G is a subgraph of the host graph in any derivations using
p2 ◦ıG. Semantically, however, G is not bound but the con-
straint of its presence is. Since p2 ◦ ıG admits an atom map

Figure 5 Algorithm for rule composition.
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and identifies G as a subgraph of L, there are two injective
maps V (L \ G) → V (R) and V (G) → V (R) with disjoint
images. The former identified the a partial atom map asso-
ciated with the partial rule, that latter identified as atoms
introduced by the bound molecules when p2 ◦ıG is applied
to a substrate graph.

A technical issue worth mentioning is that partial rule
composition as defined here can break the inherent sym-
metry of the DPO formalism in the sense that for p2 ◦ p1
we cannot conclude that p−1

2 satisfies the preconditions
to be partially composed with p−1

1 because their partial
match of L2 with R1 does not necessarily respect com-
ponent structure of R1 as required in our definition. The
chemistry remains unaffected since reverse reactions are
explicitly represented as different reactions.

Ordering rules
A wide variety of methods, including flux balance analy-
sis, can be used to identify pathways or other subsets of
reactions that are of interest. Adjacency of reactions in
the original networks as well as their directionality can
be used efficiently to prune the possible orders of rule
compositions. The fact that multiple reactions are instan-
tiations of the same transformation rule, as in the example
discussed in detail in the next section, further reduces the
search spaces.

Results and discussion
We illustrate the use of transformation rule composition
by deriving meta-rules from the graph grammar consist-
ing of the four rules necessary to represent the complete
Formose reaction. The transformation rules for this sys-
tem, pi, 0 ≤ i ≤ 3, are described in Figure 1 and in section
“Full rule composition”. The influx and outflux molecules
of the reaction is formaldehyde (g0) and glycolaldehyde
(g1), and the reaction network for the complete reaction is
depicted in 6.

Each reaction ρi in the network is labeled with i and
the instantiated transformation rule pj. That is, we have
four well-known chemical transformation pattern; for-
ward keto-enol tautomerism (p0: ρ2, ρ4, ρ6), backward
keto-enol tautomerism (p1: ρ7, ρ9), forward aldol addition
(p2: ρ3, ρ5), and backward aldol addition (p3: ρ8). Addi-
tionally label the influx of glycolaldehyde as a reaction,
ρ1.

The overall reaction of the Formose cycle is 2g0 + g1 →
2g1, amounting to the linear combination

∑9
i=2 ρi of the

eight inner reactions of the network.
In this section we will not explicitly distinguish between

partial composition and full composition, and we inter-
pret the composition operator ◦ as right-associative
to simplify the notation. Thus pi ◦ pj ◦ pk means
pi ◦ (pj ◦ pk).

The rules are used in the autocatalytic cycle in the fol-
lowing order (starting with an keto-enol tautomerisation
p0):

p0, p2, p0, p2, p0, p1, p3, p1

As it is not possible to compose this sequence of rules
directly, we start with the identity rule for glycolaldehyde
g1, as the before-mentioned keto-enol tautomerisation is
applied to molecule g1. That is, we define the rule ıg1 =
(g1, g1, g1) (see section “Graph binding, unbinding, and
identity”). This rule, ıg1 , is depicted in row 1 in the table in
Figure 6.

Following the reaction sequence of the Formose cycle
we subsequently compose with the transformation rules
pi, 0 ≤ i ≤ 3, thus obtaining meta-rules modeling the pre-
fixes of the overall reaction. These meta-rules are shown
in row 2 to 9 in the table in Figure 6, with the final rule
being a result of the composition p1 ◦p3 ◦ . . .◦p0 ◦ıg1 . This
rule precisely covers the reaction pattern of the Formose
reaction, namely how two formaldehyde molecules and
one glycolaldehyde are transformed to two glycolaldehyde
molecules. However note, that the rule is general enough
such that any pair of molecules with aldehyde groups can
be used, i.e., the inferred reaction pattern refers to a class
of overall reactions and the product does not necessarily
need to be glycolaldehyde.

The composition starts with the identity rule ıg1 , but a
similar composition can be made by binding glycolalde-
hyde, i.e., using the rule (∅, ∅, g1) as the starting rule. This
results in rules which have the creation of atoms corre-
sponding to glycolcaldehyde embedded. An example of
such a composition is shown in Appendix B.

The practical computation of these compositions takes
less than a second in the current implementation. Even
for substantially more general composition sequences the
running time remains manageable. For instance, it takes
less than 1 minute to compute all composition sequences
with a length k ≤ 10 of the form pi1 ◦pi2 ◦· · ·◦pik ◦ıgq with
ij ∈ {0, 1, 2, 3}, based on the composition with the iden-
tity rule of one of the influx molecules, i.e., formaldehyde
or glycolaldehyde. This results in 1875 different inferred
composite rules.

Polymerization can also be viewed as a pathway in a
chemical reaction network, albeit one of potentially
infinite size. The same methods applied to the auto-
matic inference of the overall reaction pattern of the
Formose cycle can be directly applied to detecting
composition rules for polymerization reactions. Impor-
tantly, even if a chemical reaction network is not given,
the approaches presented in this paper can be used to
automatically find sequences of reactions that will lead
to polymerization. This can be realized by a straight-
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Figure 6 Top: Chemical reaction network for the Formose reaction; hyperedges are labeled with (i, pj) where i is the i-th reaction ρi ,
where ρ1 denotes the influx reaction of glycolaldehyde. pj, 0 ≤ j ≤ 3 refers to a specific rule from the Formose reaction (see Figure 1). Bottom:
Resulting composed rule after the composition of the first i rules along the Formose cycle, context shown in black.
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forward post-processing step: all that needs to be
done is to check whether an inferred composite rule
exhibits a replicated functional unit. Such polymeriza-
tion meta-rules also enable the analysis of chemical
systems with highly complex carbon skeletons such as
the natural compound classes of the terpenes or the
polyketides.

Conclusions
Graph grammars provide a convenient framework for
modeling chemistries on different levels of abstraction. A
chemically valid approach is to see any chemical reaction
as a bi-molecular reaction. This requires graph grammar
rules that cover changes of molecules in an rather explicit
and detailed way. Understanding chemical reaction
patterns usually requires spanning the chemical reaction
networks based on such rules. Obviously, this approach
suffers the inherent potential of an immense combinato-
rial explosion. In this paper we introduced the automatic
inference of such higher-level chemical reaction pattern
based on a formal approach for graph grammar rule
combination. We analyzed the autocatalytic cycle of the
Formose reaction and inferred its overall reaction pat-
tern as a rule composition of nine rules. Rule composition
is also naturally applicable to inferring patterns of poly-
merization reactions. Future work will include e.g. the
analysis of terpene-based and hydrogen cyanide-based
polymerization chemistry. Many of the enzyme reac-
tions collected in metabolism databases such as KEGG
[18] or MetaCyc [19] are in fact overall reactions of
multi-step mechanisms. The enzyme D-alanine transam-
inase (EC 2.6.1.21), for instance, achieves its chemical
transformation in 12 elementary steps. Generating chem-
ically correct atom-mappings of such overall reactions, a
very important step e.g. in the interpretation of isotope
tracer experiments, is infeasible with the currently avail-
able methods. In contrast a composite rule constructed
from the individual enzymatic steps, as found for instance
in the MACiE database [20], is guaranteed to yield the
chemically correct atom mapping for the overall enzyme
reaction.

Appendix A: SPO and DPO in artificial chemistry
models
In the double pushout (DPO) framework a production
L l← K r→ R is defined by three graphs (the left graph L,
the right graph R, and the context graph K) and two
graph morphisms l : K → L and r : K → R. In the
single pushout (SPO) formalism, L

p
� R is specified by

only two graphs L and R and a partial graph morphism
p. In other words, the production is specified by a total
graph morphism dom(p) → R, where dom(p) is a sub-
graph of L. While DPO lives on the category of graphs

and graph morphisms, SPO is built upon the category
of graphs and partial graph morphisms, see [21] for a
detailed comparison of the two approaches.

There is no real difference between the rules themselves
since DPO and SPO productions can be translated into
each other: L

p
� R translates to L l← dom(p)

r→ R where
l is the inclusion of dom(p) in L and r is the domain
restriction of p to dom(p). Conversely, L l← K r→ R trans-
lates to L

p
� R where the partial morphism p = r ◦

l−1 is well-defined provided l is injective and dom(p) =
l(K) [22].

The main difference between the two frameworks lies
in the application of the productions, i.e., in the resulting
(direct) graph derivations. SPO derivations are complete,
that is, for each production L

p
� R and each match m :

L m→ G there is a derivation G p,m==⇒H . In contrast, in DPO
the corresponding derivation exists if and only if the gluing
condition is satisfied:

(I) There are not distinct elements x, y of L with
m(x) = m(y) and y /∈ l(K).

(D) No edge e of G \ m(L) is incident to a node in
m(L \ l(K)).

SPO is therefore more powerful than DPO in the sense
that more general transformations can be implemented.
On the other hand, the gluing condition ensures that there
are no “side effects” such as dangling edges (which have to
be eliminated by construction in SPO). These side effects
make SPO transformation more difficult to understand
and control in practical applications.

A useful feature of DPO derivations is that productions
are invertible [23]. As in chemical reactions, it suffices to
exchange the roles of the left and the right graph, i.e., of
products and educts. In contrast, the more general SPO
derivations are not invertible in general.

In applications of graph transformation systems to mod-
eling chemical reactions further restrictions are needed to
account for the peculiarities of chemical transformation
systems:

(i) Reaction rules specify subgraphs. Therefore, the
matching morphisms m and n are injective.

(ii) Since atoms are conserved in chemical reactions, the
restrictions lV and rV to the vertex set are bijections
and determine the atom mapping. Edges model
chemical bonds specified by electron pairs. These can
only be moved around in the molecules but not
collapsed onto the same bond with the same
type. The morphisms l and r therefore must be
injective.
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Lemma 1. Conditions (i) and (ii) imply the gluing
condition.

Proof. Since m is injective, i.e., m(x) = m(y) implies
x = y, condition (I) is satisfied. Condition (ii) implies that
lV (K) is the vertex set of L, i.e., L \ l(K) contains no ver-
tices. Thus m(L \ l(K)) is empty so that condition (D) is
trivially satisfied.

As far as models of chemistry are concerned, therefore,
SPO and DPO graph transformations are equivalent.

We prefer to work with the DPO framework for sev-
eral reasons. First, the explicit exposure of the context
graph K provides a convenient starting point for consider-
ing transition states e.g. in terms of the pair of subgraphs
(L \ l(K), R \ r(K)). In addition, in our experience it is
helpful to explicitly construct K in the process of design-
ing rule sets of particular types of chemistry such as Diels
Alder reactions or aldol condensations appearing in this
contribution. Maybe more importantly, the DPO frame-
work appears more convenient when building analysis
tools such as coarse graining operations into the rewriting

Figure 7 Resulting composed rules after the composition of the first i rules along the Formose cycle, context shown in black
(cmp. Figure 6).
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system. Finally, the framework of (injective) graph mor-
phisms, in our view, is a more convenient basis for math-
ematical investigations than the partial graph morphisms
on which SPO is built.

Appendix B: Composition of the Formose reaction
using graph binding
This Appendix illustrates the composition sequence from
Figure 6 with a different starting rule. In Figure 6, the
identity rule for glycolaldehyde ıg1 = (g1, g1, g1) is used,
while here, Figure 7 , we use the binding rule for the same
molecule; (∅, ∅, g1).

Appendix C: Example of enumeration of
compositions
In this Appendix we show the complete result of
the composition of two (artificial) rules, p1 and p2,
including the selection of submatches from the match
matrix. The two rules are depicted in Figure 8 with
the extended match matrix of the composition p2 ◦
p1, that corresponds to the example of an extended
match matrix as given in the paper. The rules in this
section are all depicted with vertices that have an addi-
tional index. The numbering of the components is in
increasing order wrt. to these indices, e.g., L1

2 denotes
the component connecting nodes A, 0 and B, 1 and
L2

2 denotes the component connecting nodes B, 2 and
C, 3.

In the following we will enumerate all valid selections of
submatches based on the extended match matrix and give
the corresponding resulting rule composition. The chosen
matches are depicted as • in the extended match matrix. If
several matches can be found (in our example this is true
for the component L1

2, that can be matched twice in R3
1),

the • has an index.

Composition 1

Submatch selection in match matrix and result of com-
position 1.

Composition 2

Submatch selection in match matrix and result of com-
position 2.

Composition 3

Submatch selection in match matrix and result of com-
position 3.

Composition 4

Submatch selection in match matrix and result of com-
position 4.
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Figure 8 (a)–(b) The two rules p1 and p2. (c) The extended match matrix of the composition p2 ◦ p1. The components of both R1 and L2 are
numbered in the same order as the vertex indices.

Composition 5

Submatch selection in match matrix and result of com-
position 5.

Composition 6

Submatch selection in match matrix and result of com-
position 6.

Invalid selection

This selection of submatches is invalid, as they are not
disjoint (node B, 9 would be matched twice).

Composition 7

Submatch selection in match matrix and result of com-
position 7.
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Composition 8

Submatch selection in match matrix and result of com-
position 8.

Composition 9

Submatch selection in match matrix and result of com-
position 9.

Composition 10

Submatch selection in match matrix and result of com-
position 10.
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