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ABSTRACT: Structural characteristics are essential for the
functioning of many noncoding RNAs and cis-regulatory ele-
ments of mRNAs. SNPs may disrupt these structures, interfere
with their molecular function, and hence cause a phenotypic ef-
fect. RNA folding algorithms can provide detailed insights into
structural effects of SNPs. The global measures employed so
far suffer from limited accuracy of folding programs on large
RNAs and are computationally too demanding for genome-
wide applications. Here, we present a strategy that focuses on
the local regions of maximal structural change between mu-
tant and wild-type. These local regions are approximated in
a “screening mode” that is intended for genome-wide appli-
cations. Furthermore, localized regions are identified as those
with maximal discrepancy. The mutation effects are quantified
in terms of empirical P values. To this end, the RNAsnp soft-
ware uses extensive precomputed tables of the distribution of
SNP effects as function of length and GC content. RNAsnp
thus achieves both a noise reduction and speed-up of several
orders of magnitude over shuffling-based approaches. On a data
set comprising 501 SNPs associated with human-inherited dis-
eases, we predict 54 to have significant local structural effect
in the untranslated region of mRNAs. RNAsnp is available at
http://rth.dk/resources/rnasnp.
Hum Mutat 34:546–556, 2013. C© 2013 Wiley Periodicals, Inc.
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Introduction
Distinctive structural features are a prerequisite for the proper

function of many noncoding RNAs and cis-acting regulatory ele-
ments. Prime examples are tRNAs and rRNAs, which are among
the structurally most highly conserved genes. The strong stabiliz-
ing structural selection [Piskol and Stephan, 2011] on those RNAs
becomes particularly evident when comparing sequences, as a large
number of the substitutions found in those RNAs are in fact com-
pensatory mutations [Meer et al., 2010; Wu et al., 2009]. A plethora
of different RNA families and classes [Gardner et al., 2011] shows
the same behavior. Several computational methods utilize this effect
very successfully to detect functional RNA structures by homology
[Menzel et al., 2009; Nawrocki et al., 2009] and de novo from com-
parative genomics data [Gesell and Washietl, 2008; Gorodkin et al.,
2010;Pedersen et al., 2006; Torarinsson et al., 2006; Washietl et al.,
2005].

SNPs can alter the structure and thereby the function of the RNA
molecules. Well-known pathogenic mutations render mitochon-
drial tRNA dysfunctional by disrupting their structures causing a
variety of severe diseases [Wittenhagen and Kelley, 2003; Yarham
et al., 2010]. Several SNPs in microRNAs (miRNAs) are known to
affect processing and or targeting [Gong et al., 2012], whereas SNPs
in and around miRNA binding sites and other small RNAs can
induce local structural changes that affect RNAi-mediated regula-
tory function [Hariharan et al., 2009; Thomas et al., 2011]. Sim-
ilarly, SNPs in both the coding [Bartoszewski et al., 2010; Duan
et al., 2003; Nackley et al., 2006; Shen et al., 1999] and noncoding
[Chatterjee and Pal, 2009; Meplan et al., 2008; Naslavsky et al., 2010]
regions of mRNAs have been shown to affect the mRNA secondary
structure in a way that causes aberrant gene regulation, see also Chen
et al. (2006) for an extensive review. Such SNPs can frequently alter
the global structure of the untranslated (UTR) [Halvorsen et al.,
2010; Martin et al., 2012]. Mutations that impair replication [You
et al., 2004], translation initiation [Tang et al., 1999], and splicing
[Abbink and Berkhout, 2008] have also been described in RNA
viruses that typically have a very high mutation tolerance. A meta-
analysis of SNPs associated with human disorders shows that many
of them are located in noncoding positions harboring small RNAs
[Glinskii et al., 2009], see also Mattick (2009).

The effect of (point-)mutations on RNA secondary structure
was studied in much detail already two decades ago, revealing
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two—seemingly conflicting—principles: (1) the existence of ex-
tensive neutral networks along which RNA sequences can evolve
without changing the structures, and (2) a high degree of fragility
so that a fraction of the possible mutations leads to very large struc-
tural changes [Fontana et al., 1993; Schuster et al., 1994]. With
the availability of large amounts of variation data there has been
an increasing interest in computational tools to quantify the ef-
fects of SNPs in more detail. Several tools use graph-theoretical
descriptors to evaluate the effect, for example, RNAmute [Barash,
2003; Churkin and Barash, 2006] and RDMAS [Shu et al., 2006].
SNPfold [Halvorsen et al., 2010] uses the Pearson correlation of
pairing probabilities of wild-type and mutant to quantify the struc-
tural effect of the SNP and to identify “RiboSNitches,” that is, SNPs
with particularly dramatic effects on the RNA structure. The cor-
Rna web server [Lam et al., 2011] adheres to the same strategy
but uses RNAmutants [Waldispühl et al., 2008] to compute the
structural ensembles for the entire k-neighborhood of the reference
sequence. Rchange [Kiryu and Asai, 2012], differs from the above
approaches as it does not consider the base pair probabilities but
compares the energy difference between the structural ensembles of
the wild-type and mutant sequence. All these approaches employ
global predictions of secondary structures or ensemble of secondary
structures and hence require rather large computational resources.
The deluge of variation data generated, for example, in the HapMap
[The International HapMap Consortium, 2010], the International
Cancer Sequencing Project (ICGC) [The International Cancer
Genome Consortium, 2010], or the 1001 genome project [Cao et al.,
2011], however, create a need for computationally more efficient
solutions.

In many cases, structural effects are limited to local domain. For
example, the mutations found in the Internal Ribosome Entry Sites
(IRES) of the human p53 mRNA cause mostly local changes within
the IRES, inhibiting the binding of trans-acting factors essential for
translation [Grover et al., 2011]. Some disease-associated SNPs also
have been reported to cause local structural changes affecting gene
expression [Hill and Reynolds, 2011; Siala et al., 2010]. Such lo-
calized changes, however, are not detectable with global measures
of structural difference, in particular when long RNA sequences
are under consideration. Here, we investigate different ways of ob-
taining localized measures of structural dissimilarity and describe
RNAsnp, a tool geared toward evaluating SNP effects on large data
sets that is more sensitive to local structural change than the available
methods.

Materials and Methods
We introduce and compare several quantities that measure the ef-

fect of a small change in RNA sequence on the secondary structures.
Rather than quantifying the explicit difference between predicted
minimum free energy (MFE) structures, we consider the difference
of the distribution of structures. These (dis)similarity can be applied
either globally or restricted to a particular local context.

RNA Folding

We recall that for each RNA sequence x, there is a well-defined
set of secondary structures �(x) that obey the base pairing rules.
For each of the secondary structures ψ ∈ �(x), a folding energy
E(ψ , x) can be computed from the so-called Turner energy model
[Mathews et al., 2004]. The structure ψ occurs with probability

px(ψ) = exp(–E(ψ ,x)/RT)/Zx in the Boltzmann ensemble. The nor-
malization constant Zx =

∑
ψ ∈�(x) exp(–E(ψ ,x)/RT) is the partition

function of the ensemble. The ensemble of secondary structures
is well described by the base pairing probability matrix P, whose
entries

Pi j =
∑

ψ�(i, j )

exp(–E (ψ, x)/RT)/Zx (1)

are the probabilities that the nucleotides at sequence positions i
and j form a base pair in thermodynamic equilibrium. In practice,
these quantities do not need to be computed by summing over all
structures as in Eq. (1). Instead, the entire matrix P can be computed
efficiently with McCaskill’s algorithm [McCaskill, 1990]. To this end,
we use RNAfold as well as RNAplfold [Bernhart et al., 2006], a local
variant that averages the base pair probabilities over overlapping
sequence windows. Both tools are components of the Vienna RNA
Package [Hofacker et al., 1994; Lorenz et al., 2011].

Structural (Dis)Similarities

The differences in the structural ensembles of a reference sequence
and a mutant can be measured as a (dis)similarity of their respective
base pairing probability matrices P = (Pij) and P ∗ = (P ∗

i j ). We focus
here on SNPs, so that the correspondence of sequences positions
between the two sequences is obvious a priori. We remark that this
is not necessarily the case for insertions, deletions, or other types
of variation that change sequence length and hence require the
computation of an alignment to compare the structural ensembles
[Hofacker et al., 2004]. A wide variety of (dis)similarity measures
has been discussed in the literature. Probably the most simple one
is the Euclidean base pairing distance d(.,.) defined by

d2(P , P ∗) =
∑
i < j

(Pi j – P ∗
i j )

2

=
(

n
2

) [
var(P ) + var(P ∗) + ( p̄ – p̄∗)2 – 2cov(P , P ∗)

]
,

(2)

where p̄ and p̄∗ are the average base pairing probabilities of reference
and mutant, respectively, and cov(P,P∗) is the covariance of the
distributions P and P∗. It is closely related to the Pearson correlation
coefficient

r (P , P ∗) = cov(P , P ∗)/
√

var(P )var(P ∗). (3)

The normalization of r removes the dependence of the overall
strength of the pairing and thus tends to overemphasize the effect of
structural changes in flexible RNAs without well-defined secondary
structures.

Instead of comparing the base pairing matrices directly, Halvorsen
et al. (2010) consider the vectors π and π∗ of position-wise pair-
ing probabilities π i =

∑
jPij. A Euclidean distance d2(π ,π∗) and a

correlation coefficient r(π ,π∗) is defined as in Eq. (3). Alternatively,
one might want to distinguish the probabilities that a base is paired
upstream (ξ <), downstream (ξ >), or remains unpaired (ξ 0)

ξ
<

i =
∑

j <i

Pi j , ξ
>

i =
∑

j >i

Pi j , ξ 0 = πi – ξ
>

i – ξ
<

i (4)

Distance measures derived from these three quantities have been
used in particular in specialized structure-aware sequence alignment
algorithms for structured RNAs [Bonhoeffer et al., 1993; Dalli et al.,
2006; Kruspe and Stadler, 2007].
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An appealing alternative is to compute the Euclidean distance δ

between the two distributions of structures directly, thus avoiding
the detour via base pairing probability matrices. Although the defi-
nition of δ calls for a sum over the exponential number of possible
secondary structures, it can be computed in polynomial time:

δ2 =
∑

ψ∈�(x)∪�(x∗)

( px (ψ) – px∗ (ψ))2

=
∑

ψ∈�(x)∪�(x∗)

(
1

Zx
e–E (ψ, x)/RT –

1

Zx∗
e–E (ψ, x∗)/RT

)2

=
Zx ( 1

2
)

Z2
x

+
Zx∗ ( 1

2
)

Z2
x∗

– 2
Zxx∗ ( 1

2
)

Zx Zx∗
(5)

The symbols Zx ( 1
2
) and Zx∗ ( 1

2
) denote the partition functions for

wild-type and mutant computed with a value of the Boltzmann
constant artificially reduced by a factor 1/2. The last term can be
rewritten as

Zxx∗ ( 1
2
) =

∑
ψ∈�(x)∩�( x∗)

e
–2

(
E (ψ, x)+E (ψ, x∗)

2

)
/RT

(6)

This is the modified partition function over the alignment of x
and x∗ admitting only those base pairs that can be formed by both
structures. The energy of each structureψ is computed as the average
over the two sequences. This is the same as averaging over the energy
contributions for the structural elements of the two input structures,
that is, the energy model used in alignment folding algorithms such
as RNAalifold [Hofacker et al., 2002]. In fact, the partition function
variant of RNAalifold computes Zxx∗ ( 1

2
) when both the bonus term

for sequence covariation and the tolerance for nonstandard base
pairs are set to 0. A local version can be made if we only consider
partition functions on respective subsequences, but is beyond the
scope of this work.

Local Structural (Dis)Similarities

It is well known that the accuracy of RNA secondary structure
predictions is far from perfect. In particular long-range base pairs
have limited accuracy [Churkin and Barash, 2006]. In a cell, further-
more, most RNA molecules, in particular messenger RNAs, interact
with a wide variety of proteins, further limiting the predictability
of long-range effects. It appears reasonable, therefore, to concen-
trate on the local RNA structure in the neighborhood of the SNP.
Fixing a sequence interval [k,l], it is straightforward to modify the
definitions above to restricted quantities such as

πi [k, l] =

l∑
j =k

Pi j , ξ
<

i [k, l] =

i –1∑
j =k

Pi j . (7)

Similarly, we can define a ξ >
i [k, l]. The corresponding distances

d[k,l](.,.) and correlation coefficients r[k,l](.,.) are then computed by
summing only over sequence positions in the interval [k,l].

It is less trivial, however, to determine which sequence interval
[k,l] should be selected. Conceptually, it appears to be most useful
to focus on the interval that exhibits the largest structural impact of
the SNP, for example,

[k, l] = arg min
u,v

r[u,v](π[u, v], π∗[u, v]). (8)

The sequence interval that maximized the effect for one of the
other (dis)similarity measures introduced above is determined anal-
ogously.

At face value, this minimization is rather expensive because for
each index pair u,v, the values of π i[u,v] need to be determined. The
naı̈ve evaluation of Eq. (7) can be replaced by a recursive scheme
(Supp. Fig. S1). Consider sequence positions k < i < l and denote
by Mik and Nil, the probabilities that i has a pairing partner in the
interval [k,i – 1] and the interval [i + 1,l], respectively. Clearly, these
auxiliary variables satisfy Mik = Mi(k – 1) + Pki and Nil = Ni(l + 1) + Pil.
Obviously, for all k < i < l, we have π i[k,l] = Mik + Nil, ξ <

i [k, l] =

Mik , and ξ >
i [k, l] = Nil . Precomputing M and N thus allows the

evaluation of distances and correlation coefficients in linear time
for each sequence interval.

It appears natural to apply one or more filters to reduce the noise
in the data. The simplest one is to ignore all base pairs that are less
likely than a user-defined threshold Pij < pthr.

Local regions of interest, furthermore, should be reasonably self-
contained, that is, the base pairs should predominantly connect
nucleotides that are located inside of the region of interest. We
therefore restrict the optimization to sequence intervals [k,l] with the
property that base pairs rarely cross the boundaries of the interval.
A similar approach is taken by Dotú et al. (2010) to identify locally
folded regions or modules. To quantify the self-containedness of a
region, we compare the expected number

Jkl =
1

2

l∑
i =k

πi [k, l] =
1

2

∑
i

Mik + Nil (9)

of base pairs inside [k,l] with the expected number of nucleotide
within [k,l] that are paired with nucleotides outside of [k,l]

E kl =

l∑
i =k

(Mi1 + Nin) – Jkl (10)

where 1 and n are the start and end of the sequence. An interval [k,l]
is included only if the pairing within outweighs the pairing across
the boundary, that is, if

Jkl > αE kl , (11)

holds for either the reference or the mutant structure. Extensive
testing (Supp. Fig. S2) showed that α = 1 is a good default value for
the threshold parameter.

A considerable amount of computational resources can be saved
by replacing the exact optimization over all intervals [u,v] by a
simpler procedure when large sequences are considered for com-
parison. To this end, we furthermore modify the distance measure
to consider only base pairs with limited span. For instance, we set

d2
(k)(P , P ∗) =

k+h′∑
i =k

i +h′′∑
j =i

(Pi j – P ∗
i j )

2. (12)

This expression contains two user defined parameters. The first one,
h′, is the length of the local structural element that we expect to have
an impact on the function. The effect of the mutation is integrated
over the short interval [k,k + h′] only. We use a small value h′ = 20,
motivated by the size of miRNA binding sites or protein binding
motifs [Bahadur et al., 2008]. The second parameter, h′′, is the
length of the interval over which the local structural changes are
evaluated, that is, the maximal span of a base pair. Guided by our
previous work on computing accessibilities for siRNA design [Tafer
et al., unpublished ], we use h′′ = 120. A similar window length was
reported by Lange et al. (2012), who showed that most of the base
pairs in the structured RNAs (in particular cis-regulatory elements
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Table 1. Summary of the Notation for (Dis)Similarity Measures
Between Base Pair Probabilities of Wild-Type and Mutant

Probability distribution
P Full base pairing probabilities
π Position-wise pairing probabilities
ξ < Position-wise, upstream
ξ > Position-wise, downstream
ξ <> Position wise, distinguishing up- and downstream

Similarity measure
r Pearson correlation
d Euclidean distance (L2 norm)

Optimization
r, d Global
rmin, dmax Best local interval
r#, d# Approximate optimization for scanning

in mRNAs) have base pair span not larger than 100 nts. We note
that d2

(k)(P , P ∗) can also be computed recursively:

d2
(k+1) = d2

(k) +

k+h′+h′′+1∑
j =k+h′+1

(Pi j – P ∗
i j )

2 –

k+h′∑
j =k

(Pi j – P ∗
i j )

2. (13)

The restriction of the local base pairs with a maximal span h′′ allows
us to use RNAplfold [Bernhart et al., 2006], a scanning version of the
partition function folding algorithm that is geared toward genome
or transcript-wide applications. The use of RNAplfold also provides
an additional benefit: this algorithm computes average base pairing
probabilities over all sequence windows of limited size that contain
the base pairs. Hence, it emphasizes, for each individual sequence,
those structures that are consistently predicted and that are more
likely to be functional.

We first determine the position k∗ that maximizes d2
(k)(P , P ∗).

Then, we compute the maximal dissimilarity starting at k∗, that is,

d#(P , P ∗) = max
v∈[k∗+h′ ,k∗+h′+h′′]

d2
[k∗ ,v](P , P ∗)

= max
v∈[k∗+h′ ,k∗+h′+h′′]

v∑
i =k∗

v∑
j =i

(Pi j – P ∗
i j )

2
(14)

As shown in Supp. Figure S3, this drastically reduced the number of
intervals that need to be considered.

Before proceeding, let us summarize the plethora of different
measures that are based on the base pairing probability matrix P
introduced above. These can be classified in several ways: (1) in ad-
dition to P itself, we consider several marginal distributions such as
the probabilities π of individual bases being paired. (2) These dis-
tributions are compared either by a Pearson correlation coefficient
r(.,.) or a Euclidean distance d(.,.). (3) Each of these measure can
be computed either globally (r or d), locally on the optimal interval
(rmin or dmax), or approximated with restricted base pair spans in
the “scanning version” (r# or d#). The symbols are summarized in
Table 1.

Comparison of Local (Dis)Similarity Measures

To determine to what extent these (dis)similarity measures are
correlated, we used a set of 7,000 sequences of length 400 that are
generated randomly with different G+C contents ranging from 20%
to 80% in steps of 10%. For each sequence, we computed the base
pairing probability matrices P using RNAfold, for all three possible
substitutions at position 200. From P, the marginal distributions
π and ξ <> (see Table 1) were computed. The difference between
the wild-type and mutant was calculated using the different local
(dis)similarity measures dmax and rmin based on P and its marginal
distributions π and ξ <>. The results obtained for each measure were

Figure 1. The scatter plot shows the rank correlation between various
(dis)similarity measures, which were tested on 7,000 random sequences
of length 400 nts with G+C contents between 20% and 80% and a SNP
introduced at position 200. The local measures dmax and rmin based on
the base pairing probability matrix P and its marginal distributions π
and ξ <> (see Table 1) correlate well with each other. The distance δ of
the Boltzmann distribution, on the other hand, behaves quite differently
from the above P-derived measures.

ranked. The different local (dis)similarity measures based on base-
pairing probabilities, with the exception of rmin(P,P∗), correlate with
each other (see Fig. 1). The corresponding global version including
r(P,P∗) also correlate with each other (see Supp. Fig. S4).

In addition, we investigated the Euclidean distance δ, Eq. 5, be-
tween the distributions of wild-type and mutant structures. Sur-
prisingly, it correlates poorly with the distances of the distributions
derived from P (last column in Fig. 1). A possible explanation is
that the measures based on P identifies structural differences at the
nucleotide level, whereas the Euclidean distance δ identifies differ-
ences in the distribution of structural ensembles between wild-type
and mutant.

Empirical P Values

A distance measure d between P and P∗ provides information
on the significance of a structural change only when compared
with some background distribution. In principle, this background
distribution can be generated by shuffling the input sequences and
computing the SNP effects for every shuffled copy. Because the
RNA folding algorithms have cubic runtime complexity, this is a
computationally very demanding task.

To reduce the computational runtime of RNAsnp, extensive
background-distribution tables for a variety of score are provided to-
gether with RNAsnp. The background distributions were computed
based on a set of 7,000 random sequences with lengths ranging
from 400 to 1,600 nts in steps of 100 nts and G+C content varying
between 20% and 80% in steps of 10% (see Gruber et al., 2010 for
more details). We generated all possible substitutions at each nu-
cleotide position and computed the distance measures summarized
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Table 2. Summary of Structure Distance Measures Implemented
in RNAsnp

Measure Folding Distr. ρ

dmax RNAfold Gumbel 0.9982
dmax RNAplfold Gumbel 0.9999
d# RNAplfold Gumbel 0.9999
rmin RNAfold Beta 0.9986

The first column represents the distance measure, the second column lists the folding
program used to computing the base pair probabilities. The remaining columns give
the type of distribution used to fit the empirical P-value distribution and the correlation
coefficient ρ between the fitted P values and the rank-based P values computed for a
set of random sequences. The fitted P values are computed using the parameters from
fitted distribution.

in Table 2. About 156 CPU (core) years of computation time was re-
quired to compile the necessary simulation data. However, with the
help of massive parallel processing server (HP Bl280cG6) with 2,000
processors, the entire computation was accomplished in 1 month.

For a given distance measure, length, G+C content, and SNP po-
sition within the sequence, the dissimilarity scores d closely follow
an extreme value distribution. As an example, Figure 2 shows the
distribution of distance values that are calculated using random se-
quences of length 400, a G+C content between 50% and 60%, and a
SNP at position 200. Consequently, 1 – log(d) approximately follows
a Gumbel distribution. The gum.fit function of the ismev [Coles,
2001] package for the R statistics program [R Development Core
Team, 2012] was used to compute maximum-likelihood estimates
of the parameters μ and σ for every sequence length, G+C con-
tent, SNP position. Although the fitted distribution does not match
perfectly the empirical P values for RNAfold/dmax according to the
Kolmogorov–Smirnov test, the deviations only concern structures

with very high discrepancies where empirical P values cannot be
estimated accurately. The comparison of fitted P value (described
below) and rank-based P value shows a very high correlation (Supp.
Fig. S5). The P value of an observed dissimilarity value d can now
be computed efficiently as

P [S > d] = exp[–e (1–log d–μ)/σ ] (15)

using the tabulated values of μ and σ .
The distribution of the correlation coefficients r, Figure 2E, closely

follows a beta distribution after the transformation y = (r + 1)/2. The
transformed can then be fitted to a beta distribution (Fig. 2F) using
the R function fitdistr from MASS package [Venables and Ripley,
2002]. The comparison of the fitted P value (computed using the
parameters of the fitted beta distribution) and the rank P value
shows high correlation (see Supp. Fig. S5).

Implementation of RNAsnp

The program RNAsnp offers three different modes (Fig. 3). The
first mode is designed to compute the effect of SNPs by using global
folding. This option should be used only for short input sequences
as the base pairing probabilities are calculated here using the global
folding method RNAfold. Further, the structural difference between
the wild-type and the SNP allele is assessed by computing the cor-
relation coefficient [using Eq. (3) and Eq. (7)] and the Euclidean
distance [using Eq. (2)] for all sequence intervals with a minimum
length of 50 that have self-contained base pairs. The minimum
length was chosen after a careful analysis with different length cut-
offs (Supp. Fig. S6). Finally, the interval with maximum base pairing
distance or minimum correlation coefficient and the corresponding
P value are reported.

Figure 2. (A) Density plot showing the distribution of three distance values calculated using random sequences of length 400 nts, a G+C content
between 50% and 60% and the SNP position at 200 position. (B) Quantile–quantile plots of the transformed dmax computed from the base pair
probabilities returned by RNAplfold against the fitted gumbel distribution. (C) Same as (B) for d#. (D) Same as (B) but the dmax computed with the
base pair probabilities returned by RNAfold. (E) The density plot showing the distribution of rmin computed from the base pair probabilities returned
by RNAfold and (F) quantile–quantile plot showing the transformed rmin against the beta distribution.
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max

max

maxmax min

Figure 3. Flowchart of RNAsnp program. The options “Mode 1” and “Mode 2” help to detect the SNP induced local structural changes in a
given RNA sequence. The choice of the modes depends on the length of the input sequence. The option “Mode 3” helps to screen the putative
structure-disruptive SNPs in an RNA sequence. This is achieved by testing the effect of all three possible substitutions at each nucleotide position.
This mode facilitates an effective screening of putative structure-disruptive SNPs from transcripts or genome sequences.

The second mode is designed to compute the effect of SNPs on
large sequences. To this end, we first compute the local base pair
probability using RNAplfold with the parameters -W 200 and -L
120. In a second step, the base pairing distance [using Eq. (12)]
is computed for all sequence intervals of fixed length h′ and h′′.
The sequence interval with maximum base pair distance (dmax) is
considered for reestimation using the exact optimization within
the local window according to Eq. (14). The significance of the
dissimilarity measure is computed from the tabulated values of μ

and σ . A similar procedure for the correlation coefficients has not
been made available because they perform poorly on the available
test data, see Supp. Figure S7.

The third mode (or screening mode) is the combination of the
above two. It is intended to determine the positions of putative
structure-disruptive SNPs in a transcript or genomic sequence using
the brute-force search. First the d# distance is computed based on the
base pairing probabilities obtained from RNAplfold for all possible
substitutions at every nucleotide position. The corresponding P
values are computed from the tabulated values of μ and σ . For
candidate SNPs with sufficiently small P values, a local window is
extracted and passed to RNAfold to compute the global base pairing
probabilities of the subsequence, which is then rescored using the
more accurate dmax measure as in the first operating mode. We

further developed a PERL script that analyses the output of the
screening mode and plots the regions of highly occurrent low P-
value SNPs. Further, it also returns how many times a region was
reported to be structurally disrupted.

The RNAsnp software requires an RNA (or DNA) sequence as
input. Optionally, the SNP(s) to be analyzed and the mode of op-
eration can be specified. By default the program uses a window of
400 nts, ±200 nts around the SNP position, to compute the base-
pairing probability. This default value -winsizeFold = 200 can be
changed between 200 and 800 (inclusive) in multiples of 50. This
restriction is necessary to keep the size of parameter tables for the P
values calculations manageable.

Datasets

We use three data sets to assess the difference between global
versus local structure disruption, to evaluate different measures and
to search for disruptive SNPs in human UTR.

SNPs with reported structural effects

To evaluate the performance of RNAsnp, a set of SNPs with known
impact on the RNA structure is required. Unfortunately such data

HUMAN MUTATION, Vol. 34, No. 4, 546–556, 2013 551



Ta
bl

e
3.

Th
e

Re
su

lts
of

RN
A

sn
p

an
d

SN
Pf

ol
d

fo
rt

he
Fo

ur
Ca

se
s

w
ith

Ex
pe

ri
m

en
ta

lly
Ve

ri
fie

d
St

ru
ct

ur
es

d m
ax

/R
N

A
pl

fo
ld

d#
/R

N
A

pl
fo

ld
d m

ax
/R

N
A

fo
ld

r m
in

/R
N

A
fo

ld
D

/R
N

A
fo

ld
r/

R
N

A
fo

ld
SN

P
fo

ld

R
ef

er
en

ce
sa

G
en

eb
SN

P
Lo

ca
lr

eg
.c

m
ax

k
P

va
lu

e
In

te
rv

al
P

va
lu

e
In

te
rv

al
P

va
lu

e
In

te
rv

al
P

va
lu

e
P

va
lu

e
P

va
lu

e
P

va
lu

e

1
p5

3
c.

[5
1A

>
G

;5
4A

>
C

;5
7T

>
C

]
25

7–
26

2
24

1
0.

00
9

24
1–

28
5

0.
00

4
24

1–
29

0
0.

01
5

23
1–

28
0

0.
14

2
0.

19
7

0.
24

5
0.

66
4

2
N

S5
B

n
.[

89
53

C
>

A
;8

95
5T

>
G

]
9,

27
1–

9,
29

4
9,

27
0

0.
06

2
92

70
–9

,2
98

0.
00

9
9,

26
1–

9,
31

0
0.

07
4

9,
26

8–
9,

31
7

0.
12

1
0.

41
2

0.
25

7
0.

35
9

3
A

A
R

S
c.

90
3T

>
C

98
0–

1,
03

2
99

4
0.

21
7

99
8–

1,
05

2
0.

12
3

97
5–

1,
02

5
0.

07
2

99
8–

1,
05

2
0.

09
3

0.
04

2
0.

06
5

0.
07

7
4

N
ef

n
.8

54
6G

>
A

8,
51

2–
8,

57
9

8,
51

7
0.

38
7

8,
51

7–
8,

55
5

0.
28

5
8,

51
8–

8,
57

6
0.

09
4

8,
51

8–
8,

56
7

0.
08

3
0.

11
6

0.
14

8
0.

29
3

T
h

e
SN

Ps
w

er
e

de
sc

ri
be

d
ac

co
rd

in
g

to
H

G
V

S
n

om
en

cl
at

u
re

.
a
(1

)
A

lt
er

at
io

n
of

R
N

A
re

pl
ic

at
io

n
in

H
C

V
[Y

ou
et

al
.,

20
04

],
(2

)
tu

m
or

fo
rm

at
io

n
[G

ro
ve

r
et

al
.,

20
11

],
(3

)
H

IV
-1

re
si

st
an

ce
ag

ai
n

st
R

N
A

i[
W

es
te

rh
ou

te
ta

l.,
20

05
],

an
d

(4
)

al
te

ra
ti

on
of

al
an

yl
-t

R
N

A
sy

n
th

et
as

e
ex

pr
es

si
on

in
hu

m
an

[S
h

en
et

al
.,

19
99

].
b
R

ef
se

q/
A

cc
es

si
on

id
s:

N
S5

B
–

A
J2

38
79

9.
1,

p5
3

–
N

M
_0

01
12

61
14

.2
,N

ef
–

K
02

01
3.

1,
A

A
R

S
–

D
32

05
0.

1.
c Po

si
ti

on
of

th
e

lo
ca

lr
eg

io
n

s
re

po
rt

ed
in

lit
er

at
u

re
.T

h
e

st
ar

t
an

d
en

d
va

lu
es

ar
e

re
pr

es
en

te
d

w
it

h
re

sp
ec

t
to

th
e

se
qu

en
ce

po
si

ti
on

of
fu

ll
le

n
gt

h
m

R
N

A
se

qu
en

ce
.

are still very scarce. We compiled a list 30 known SNPs (Supp. Table
S1) for which an effect on the RNA structures has been discussed.
Of these 30 SNPs, 25 SNPs are from human mRNAs, one is from
a rat mRNA, and the remaining four are from viral sequences. The
structural changes were verified experimentally in only four of them
using chemical or enzymatic structure probing methods [Grover
et al., 2011; Shen et al., 1999; Westerhout et al., 2005; You et al.,
2004]. In the remaining cases, only a careful computational analysis
has been reported.

SNPs associated with human heritable diseases

A comprehensive dataset of 514 disease-associated SNPs was
extracted from Halvorsen et al. (2010). These SNPs are a sub-
set of the Human Gene Mutation Database (HGMD), which
contains the collection of mutations and polymorphisms associ-
ated with human-inherited diseases [Stenson et al., 2009]. These
514 SNPs were mapped to 292 Refseq (mRNA and noncoding
RNA) sequences downloaded from the UCSC genome browser site
(http://genome.ucsc.edu) [Karolchik et al. 2008]. In mRNAs, the
SNPs are located either in 5′ or 3′ UTRs. Of these 514 SNPs, 13 were
removed as they are already included in the collection of SNPs with
reported structural effects in the previous paragraph.

Known UTRs SNPs in human mRNAs

For each of the 21,081 human protein coding genes available
in Ensembl 66 [Kinsella et al., 2011], the longest transcript was
selected. A total of 263,248 UTR SNPs from the NCBI dbSNP Build
132 were mapped to these transcripts variants, resulting in 195,916
SNPs mapping to 15,257 genes. Because more than two alleles are
reported for some SNPs and some SNPs map to more than one
transcript, this amounts 201,213 distinct mutants, of which 27,687
were located in the 5′ UTR and 173,526 were located in the 3′

UTR. From the 1,686 disease-associated UTR variants collected in
GWASdb [Li et al., 2012], 1,422 SNPs were mapped to our set
of transcripts, 152 and 1,270 being located in the 5′ and 3′ UTR,
respectively.

For each data set, the SNPs were formatted to HGVS nomencla-
ture. Thus, for mRNA sequences, the nucleotide numbering reflects
cDNA numbering with +1 corresponding to the A of the ATG trans-
lation initiation codon in the reference sequence. In addition, the
nucleotide numbering of 5′ and 3′ UTR regions were preceded with
“-” and “∗” symbols, respectively. For noncoding RNAs, the nu-
cleotide positions numbered relative to transcription start site.

Results

Prediction of Structural Disruption

All distance and correlation measures were evaluated in terms
of P values assigned to the 30 SNPs with reported structural effect.
Figure 4 shows that dmax and rmin assign similar P values to each SNP,
whereas the significance values returned by the Euclidean distance
δ between the distributions of structures show no such correlation.
This might be explained by the fact that these significant local struc-
tural changes share large parts of the structure distribution between
wild-type and mutant. Conversely, δ does not depend on the base
pair distances between the dominating structure in the two ensem-
bles but only on whether the dominating structures are identical or
distinct.
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Figure 4. Significance of structural effects as predicted by the local
(dis)similarity measures (dmax and rmin using different probability prob-
abilities: P, π , and ξ <>) and distance (δ) between the distribution of
structures for the 30 SNPs with reported secondary structure changes.
See Table 1 for more details about the symbols. The P values are shown
as bars and the dashed line represents the selected threshold value 0.1.
The four experimentally validated examples are indicated in green/gray.
The SNPs were described according to HGVS nomenclature.

Despite the substantial correlation between the different dissim-
ilarity measures based on the base pairing probabilities there ap-
pears to be a difference in the sensitivity. Using a P-value threshold
of P ≤ 0.1, the localized distance dmax computed from the global
base pairing matrix, that is, with RNAfold, recognized all four ex-
perimentally validated SNPs, whereas the most reliable alternatives
identified only two of them, see Table 3. On the other hand, all mea-
sures identify essentially the same local region of structural change
and match to the local region reported in literature. The P values of
the local measures, furthermore, are smaller than the P values of the
global measures d, r, and SNPfold, see Table 3. Note that the P value
of the global measures d and r are still smaller than those of SNPfold.
The higher P values for SNPfold may in part be explained by the
different approaches used to generate the background distribution
in RNAsnp and SNPfold for the P-value calculation. Figure 5 shows
that on the remaining 26 SNPs with only putative structural effects
another three SNPs reach P < 0.1 when dmax is used with either
global or local folding, whereas five candidates pass the threshold
for d# with local folding and rmin with global folding. Consistent
predictions are obtained only for the SNPs c.∗1330C>G, c.-867G>T,
and c.-764G>A. An additional indication for structural disruption
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Figure 5. Significance of structural effects using RNAsnp (Modes 1
and 2) for the data set of 30 SNPs with reported secondary structure
changes. The P values are shown as bars and the dashed line represents
the selected threshold value 0.1. The four experimentally validated ex-
amples are indicated in green/gray. The SNPs were described according
to HGVS nomenclature.

of these SNPs is the report by Teresi et al. (2007) that c.-867G>T and
c.-764G>A are associated with the Cowden Syndrome.

Furthermore, the MFE and structural-ensemble based predic-
tions of SNP effects were studied with the same data set of 30 SNPs
with reported structural effect (Supp. Fig. S8). It shows that the P
values from the local measures based on the structural ensemble are
in general smaller than the P values derived from the MFE struc-
ture. The comparison of two P-value distributions using Wilcoxon
rank sum test, however, shows no significant difference (P > 0.2),
probably due to the small number of available data. In addition, the
measures of RNAsnp based on based pairing probability of struc-
tural ensemble were compared with the measures of Rchange [Kiryu
and Asai, 2012], using the four known SNPs with experimentally
validated structural effect. Because Rchange can handle either single
or double mutations, only three out of four SNPs could be studied.
The empirical P values were calculated for the results of Rchange
to compare with RNAsnp P values (see Supp. Table S2). At a sig-
nificance level of 0.1, Rchange predicted one out of three SNPs to
have significant structural effect, whereas the measures of RNAsnp,
dmax/RNAfold predicted all three cases and rmin/RNAfold predicted
two cases (see Supp. Table S2).

Structural Effects of Disease-Associated SNPs

The structural effect of disease-associated SNPs was studied by
looking at the 501 disease-associated SNPs compiled by Halvorsen
et al. (2010). Using a significance threshold of 0.1, 34 disruptive SNPs
were found with dmax/RNAfold and 40 SNPs with rmin/RNAfold, see
Supp. Table S3. The 20 candidates listed in Table 4 are shared between
the lists. Only three of these 20 SNPs are predicted by SNPfold
[Halvorsen et al., 2010] to have a significant global structural effect.

To check whether the disease-associated SNPs are more disrup-
tive than the neutral SNPs, 501 HapMap SNPs with minor allele
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Table 4. List of Disease-Associated SNPs that are Predicted to have Significant Local Structural Effect (P < 0.1) Based on RNAfold with
the Scores dmax and rmin

P value

Disease/phenotype Gene HGMD Accession GenBank Accession NTs SNP P(dmax) P(rmin)

Pseudohypoaldosteronism NR3C2 CR030126 NM 000901.4 5,898 c.-2C>G 0.017 0.022
Hypertension EDN2 CR994679 NM 001956.3 1,243 c.∗390G>A 0.036 0.021
Obesity CNR1 CR073542 NM 033181.3 5,373 c.∗2394A>G 0.032 0.036
Myocardial infarction GP1BA CR022116 NM 000173.5 2,463 c.-5T>C 0.040 0.037
Colorectal cancer INSR CR082021 NM 001079817.1 9,023 c.∗104A>G 0.042 0.030
Graves’ disease FCRL3 CR067134 NM 052939.3 3,019 c.-11G>C 0.011 0.042
Increased triglyceride levels ABCA1 CR025352 NM 005502.3 10,502 c.-279C>G 0.044 0.022
Insulin resistance and hypertension RETN CR032443 NM 020415.3 478 c.∗62G>A 0.045 0.043
Cartilage-hair hypoplasia RMRP CR063417 NR 003051.3 268 n.215A>G 0.048 0.027
Hypercholesterolemia LDLR CR971948 NM 000527.4 5,283 c.-14C>A 0.025 0.048
Glaucoma CYP1B1 CR032431 NM 000104.3 5,153 c.-286C>T 0.063 0.036
Reduced transcriptional activity NR3C1 CR016150 NM 001024094.1 6,787 c.-219C>A 0.044 0.063
HDL cholesterol levels LIPG CR032437 NM 006033.2 4,141 c.∗482A>G 0.051 0.065
Factor VII deficiency F7 CR090334 NM 019616.2 3,059 c.-44T>C 0.066 0.042
Hemophilia A F8 CR070421 NM 000132.3 9,035 c.-112G>A 0.074 0.010
Cartilage-hair hypoplasia RMRP CR064472 NR 003051.3 268 n.10T>C 0.076 0.024
Von Hippel–Lindau syndrome VHL CR011856 NM 000551.3 4560 c.∗7C>G 0.076 0.065
Obesity SLC6A14 CR035766 NM 007231.3 4,564 c.∗178C>G 0.078 0.062
Spastic paraplegia 31 REEP1 CR082030 NM 022912.2 3,853 c.∗14C>T 0.033 0.081
Hyperferritinemia-cataract syndrome FTL CR061334 NM 000146.3 871 c.-178T>G 0.052 0.097

The SNPs were described according to HGVS nomenclature. SNPs, which have been predicted to have significant global structural effect using SNPfold [Halvorsen et al., 2010],
are highlighted with gray background color.

frequency (MAF) greater than or equal to 40% and 501 dbSNP SNPs
with MAF less than 1% were tested with RNAsnp (first mode). No
significant difference could be found between the distribution of
RNAsnp P value of both groups and disease-associated SNPs (see
Supp. Fig. S9).

To assess the proportion of disruptive SNPs in the UTRs, RNAsnp
was applied to a set of about 201,213 known SNPs in human
UTRs sequences. As a pragmatic rule, we required a SNP to
satisfy P(dmax) < 0.4 in the initial assessment based on the RNAplfold
predictions and P(dmax) < 0.1 in the recomputation with RNAfold.

This was compared with the proportion of disruptive SNPs for all
possible variants in the UTRs of our transcript (105,933,543 vari-
ants). A total of 1,616,550 SNPs out of the 18,374,109 5′-UTR SNPs
(8.3%) and 8,207,993 out of the 87,559,434 3′-UTR SNPs (9.3%)
were reported by RNAsnp (third mode) to be disruptive, reasonably
close to the expected 10% at our chosen level of significance. We
further looked at the distance distribution between predicted dis-
ruptive SNPs. The average distance between disruptive SNPs is close
to 10 nts, whereas the median distance between two disruptive SNPs
is 1 nt, indicating that predicted disruptive SNPs tend to be clustered.
Among the reported known SNPs in dbSNP, structural disruption
is significantly reduced (P < 0.005) with 2088 out of the 27,687 5′

UTR SNPs and 13,107 out of the 173,526 3′ UTR SNPs, that is, 7.5%
in both samples. This is expected as structurally disrupting SNPs
are probably under selective pressure and hence should be observed
less frequently than neutral variants. This reduction in the number
of prediction thus demonstrates that RNAsnp might pick up a real
biological signal. Interestingly, the same ratio (109 of 1,422, 7.6%)
is found for the known disease-associated SNPs from GWASdb [Li
et al., 2012]. The details of these 109 disease-associated SNPs are
listed in Supp. Table S4.

Discussion
Genomic variation has long been known to cause a variety of

diseases Manolio (2010), probably the most profound are known

from nonsynonymous SNPs in protein coding sequence and tran-
scription factor binding sites. In this study, the effects of SNPs on the
local structures of non-coding and regulatory RNAs was addressed.

The impact of sequence variation on the Boltzmann ensemble
of secondary structures was compared using both global and lo-
cal folding approaches. This analysis showed that local measures of
structural variation based directly on a comparison of base pair-
ing probabilities are most informative. Euclidean distances of base
pairing patterns, furthermore, perform better than the correlation
coefficients used in earlier work as a measure of structural variation.
The latter effect is probably due to the invariance of the correlation
measures to the absolute strength of base pairing.

The beneficial effect of localizing the measures of structure dis-
crepancy are explained by the fact that small variations in the pairing
probabilities far away from the site of the SNP are added up and
hence form a major contribution to any global discrepancy mea-
sure in particular for long sequences. We expect that these dis-
tant variations will in general play little role for the molecule’s
function compared with structural changes relatively close to the
SNP. The restriction of the distance measurement to the local re-
gion with the largest structural change therefore serves as a means
of reducing the signal-to-noise ratio. We emphasize that this does
not imply that the base pairing of the SNP position itself is part of a
structural rearrangement. For instance, a change in the stability of
a loop in which the SNP resides can force a major refolding. Nec-
essarily, however, the base pairs that delimit the loops to which the
SNP position contributes must be strongly affected. Hence, large
structural changes also have a large local component.

On the basis of these observations, we developed RNAsnp as a
tool to assess the effect of SNPs on RNA secondary structures in
large data sets. RNAsnp makes use of the efficient scanning variants
of RNA folding algorithms provided by the Vienna RNA Package
and uses precomputed tables describing the score distributions as a
function of sequence length, G+C content, and SNP position, and
distance or correlation measure. Thus, P values can be computed
efficiently without the need to sample empirical score distribution
from shuffled sequences. As a consequence, RNAsnp is thus fast
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enough to screen large data sets and even to precompute maps of
SNP effects at transcriptome or even genome-wide scales, a feature
not found in other tools. Compared with SNPfold, RNAsnp is able
to predict the extent and exact location of the structural changes.

A general problem for the development and evaluation of tools
addressing the impact of SNPs on RNA secondary structure is the
limited amount of available cases of SNPs being experimentally
shown to actually disrupt an RNA structure. In spite of the deep lit-
erature survey, what remained was still a limited amount of example
(4) with direct experimental evidence, but an extension to some 30
examples could be made.

In Ritz et al. (2012), the capability of RNA folding algorithms to
predict the relative magnitude of structural changes was compared
with SHAPE reactivity data using different artificial mutations in
five highly structured RNAs. This analysis showed that the predic-
tive power of thermodynamics-based folding approaches is rather
poor. This is not surprising in this case, as the dataset used contained
Riboswitches known to have tertiary RNA structures that are not
predicted by the common RNA folding programs. Like RNAsnp,
SNPfold is based on thermodynamics structure prediction, and
therefore performs similarly poorly (data not shown). However,
the setting of this benchmark study is quite different from ours. We
are primarily interested in detecting mutations that have large ef-
fects in long mRNA sequences, as opposed to determining the ranks
of alternative, often close-by mutations.

RNAsnp assigned low P values to all four experimentally validated
cases. This is reassuring despite the small size of the test set. We
emphasize that RNAsnp does not include any machine learning or
other trained component, and hence does not use a training set. It
is entirely based on the “ab initio” thermodynamic model of RNA
folding. Interestingly, RNAsnp does not predict a strong structural
effect for many of the cases for which structural disruption has
been proposed in the literature but not validated experimentally.
In most of these studies only the minimum energy structure was
evaluated. This leads to an overestimation of the structural effects
since the MFE structures are much more sensitive to small changes
in the sequence than the Boltzmann ensemble. It is well known that
two distinct structures with similar energy can easily exchange their
rank order with respect to energy without substantially changing
their relative frequency in the ensemble.

At a significance level of P < 0.1, we find a significant depletion
of structurally disruptive SNPs among those that actually have been
observed in human populations. This is not unexpected since such
SNPs are likely to be selected against. On the other hand, no further
reduction was found when restricting to the set of disease-associated
SNPs. We suspect this to be a consequence of the small fraction of
disease-associated SNPs being causal, the rest of them being evolu-
tionary neutral but linked to the causal variation.

At present, the main limitation of the RNAsnp software is its re-
striction to substitution. Future extensions will include the predic-
tions of structural effects of indels. Although conceptually simple,
this requires a substantial extension of tables for the P-value com-
putations. In addition, we are planning to combine RNAsnp with
comparative structure prediction [Hofacker et al., 2002; Knudsen
and Hein, 2003; Seemann et al., 2008] to identify structurally disrup-
tive SNPs in regions in which secondary structure is under stabilizing
selection.
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Lorenz R, Bernhart SH, Höner zu Siederdissen C, Tafer H, Flamm C, Stadler PF,
Hofacker IL. 2011. ViennaRNA Package 2.0. Algorithms Mol Biol 6:26.

Manolio TA. 2010. Genome-wide association studies and assessment of the risk of
disease. N Engl J Med 363:166–176.

Martin JS, Halvorsen M, Davis-Neulander L, Ritz J, Gopinath C, Beauregard A, Laed-
erach A. 2012. Structural effects of linkage disequilibrium on the transcriptome.
RNA 18:77–87.

Mathews DH, Disney MD, Childs JL, Schroeder SJ, Zuker M, Turner DH. 2004. Incorpo-
rating chemical modification constraints into a dynamic programming algorithm
for prediction of RNA secondary structure. Proc Natl Acad Sci USA 101:7287–
7292.

Mattick JS. 2009. The genetic signatures of noncoding RNAs. PLoS Genet 5:e1000459.
McCaskill JS. 1990. The equilibrium partition function and base pair binding proba-

bilities for RNA secondary structure. Biopolymers 29:1105–1119.
Meer MV, Kondrashov AS, Artzy-Randrup Y, Kondrashov FA. 2010. Compensatory

evolution in mitochondrial tRNAs navigates valleys of low fitness. Nature 464:279–
282.

Menzel P, Gorodkin J, Stadler PF. 2009. The tedious task of finding homologous
noncoding RNA genes. RNA 15:2075–2082.

Meplan C, Crosley LK, Nicol F, Horgan GW, Mathers JC, Arthur JR, Hesketh JE. 2008.
Functional effects of a common single-nucleotide polymorphism (GPX4c718t) in
the glutathione peroxidase 4 gene: interaction with sex. Am J Clin Nutr 87:1019–
1027.

Nackley AG, Shabalina SA, Tchivileva IE, Satterfield K, Korchynskyi O, Makarov SS,
Maixner W, Diatchenko L. 2006. Human catechol-O-methyltransferase haplo-
types modulate protein expression by altering mRNA secondary structure. Science
314:1903–1933.

Naslavsky MS, Crovella S, Lima Filho JL, Rocha CR. 2010. The sound of silence: human
beta-defensin-1 gene untranslated SNPs change the predicted mRNA secondary
structure in a length-dependent manner. Immunol Lett 129:53–55.

Nawrocki EP, Kolbe DL, Eddy SR. 2009. Infernal 1.0: inference of RNA alignments.
Bioinformatics 25:1335–1337.

Pedersen JS, Bejerano G, Siepel A, Rosenbloom K, Lindblad-Toh K, Lander ES, Kent
J, Miller W, Haussler D. 2006. Identification and classification of conserved RNA
secondary structures in the human genome. PLoS Comput Biol 2:e33.

Piskol R, Stephan W. 2011. Selective constraints in conserved folded RNAs of
drosophilid and hominid genomes. Mol Biol Evol 28:1519–1529.

R Development Core Team. 2012. R: a language and environment for statistical com-
puting. Vienna, Austria: R Foundation for Statistical Computing. Accessed, at:
http://www.R-project.org/. Accessed 3 December 2012.

Ritz J, Martin J, Laederach A. 2012. Evaluating our ability to predict the structural
disruption of RNA by SNPs. BMC Genomics 13 Suppl. 4:S6.

Schuster P, Fontana W, Stadler PF, Hofacker IL. 1994. From sequences to shapes and
back: a case study in RNA secondary structures. Proc Biol Sci 255:279–284.

Seemann SE, Gorodkin J, Backofen R. 2008. Unifying evolutionary and thermodynamic
information for RNA folding of multiple alignments. Nucleic Acids Res 36:6355–
6362.

Shen LX, Basilion JP, Stanton VPJ. 1999. Single-nucleotide polymorphisms can cause
different structural folds of mRNA. Proc Natl Acad Sci USA 96:7871–7876.

Shu W, Bo X, Liu R, Zhao D, Zheng Z, Wang S. 2006. RDMAS: a web server for RNA
deleterious mutation analysis. BMC Bioinform 7:404.

Siala O, Salem IH, Tlili A, Ammar I, Belguith H, Fakhfakh F. 2010. Novel sequence
variations in LAMA2 and SGCG genes modulating cis-acting regulatory elements
and RNA secondary structure. Genet Mol Bio 33:190–197.

Stenson PD, Ball EV, Howells K, Phillips AD, Mort M, Cooper DN. 2009. The Human
Gene Mutation Database: providing a comprehensive central mutation database
for molecular diagnostics and personalized genomics. Hum Genomics 4:69–72.

Tafer H, Pedersen JT, Stadler PF, Gorodkin J. (Unpublished).
Tang S, Collier AJ, Elliott RM. 1999. Alterations to both the primary and predicted

secondary structure of stem-loop IIIc of the hepatitis C virus 1b 5′ untranslated
region (5′UTR) lead to mutants severely defective in translation which cannot be
complemented in trans by the wildtype 5′UTR sequence. J Virol 73:2359–2364.

Teresi RE, Zbuk KM, Pezzolesi MG, Waite KA, Eng C. 2007. Cowden syndrome-affected
patients with PTEN promoter mutations demonstrate abnormal protein transla-
tion. Am J Hum Genet 81:756–767.

The International Cancer Genome Consortium. 2010. International network of cancer
genome projects. Nature 464:993–998.

The International HapMap Consortium. 2010. Integrating common and rare genetic
variation in diverse human populations. Nature 467:52–58.

Thomas LF, Saito T, Sætrom P. 2011. Inferring causative variants in microRNA target
sites. Nucleic Acids Res 39:e109.

Torarinsson E, Sawera M, Havgaard JH, Fredholm M, Gorodkin J. 2006. Thousands
of corresponding human and mouse genomic regions unalignable in primary
sequence contain common RNA structure. Genome Res 16:885–889. (Erratum in:
Genome Res 2006 16:1439.)

Venables WN, Ripley BD. 2002. Modern applied statistics with S. Fourth edition. New
York: Springer. ISBN 0–387-95457–0.
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At face value, this minimization is rather expensive because for each index pair u,v, the values of π i[u,v] need to be determined. The naı̈ve
evaluation of Eq. (7) can be replaced by a recursive scheme (Supp. Fig. S1). Consider sequence positions k < i < l and denote by Mik and Nil,
the probabilities that i has a pairing partner in the interval [k,i – 1] and the interval [i + 1,l], respectively. Clearly, these auxiliary variables
satisfy Mik = Mi(k – 1) + Pki and Nil = Ni(l + 1) + Pil. Obviously, for all k < i < l, we have π i[k,l] = Mik + Nil, ξ <
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Precomputing M and N thus allows the evaluation of distances and correlation coefficients in linear time for each sequence interval.
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