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Abstract: Most investigations into the large-scale patterns of protein evolution are based on

gene annotations that have been compiled in reference databases. The use of these resources

for quantitative comparisons, however, is complicated by sometimes vast differences in

coverage. More importantly, however, we also observe substantial ascertainment biases that

cannot be removed by simple normalization procedures. A striking example is provided by

the correlations between protein domains. We observe that statistics derived from different

computational gene annotation procedure show dramatic discrepancies, and even qualitative
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changes from negative to positive correlation, when compared to statistics obtained from

annotation databases.

Keywords: protein domains; HMM models; GO classification; functional genome

annotation; Eukarya

1. Introduction

Most proteins are composed of smaller building blocks. These protein domains typically form

compact three-dimensional structures that are stable and foldable on their own. Domains convey a

specific molecular function such as a particular catalytic activity or binding specificity. Protein function

can indeed be inferred from domain content [1]. Protein domains are not only functional units but

also constitute fundamental building blocks for protein evolution. They can be readily recombined

in different arrangements leading to proteins that utilize different combinations of the same (types of)

molecular interactions to fulfill different higher-level functions [2–4]. Over very large evolutionarily time

scales, such as those of interest in a comparative analysis of the eukaryotic kingdom, protein domains

are rearranged by fusions, fissions, and terminal loss so that larger proteins are a composite of domains

deriving from several ancestral sources [5,6]. The reshuffling of domains is indeed much more frequent

than the innovation of novel protein domains [7,8].

It becomes impossible at large time-scales to identify orthologous proteins [9]. One reason is that

sequence similarity can degrade beyond recognition. More fundamentally, however, the re-shuffling of

protein domains breaks the very concept of orthology as novel proteins arise through fusion and fission

from multiple ancestors. The abundance and co-occurrence of protein domains thus becomes the most

natural and promising framework to understand patterns of protein evolution, see e.g. [10–12]. In [8],

for instance, it is shown that frequent gains and losses of domains lead to significant differences in

functional profiles of major eukaryotic clades. Their results argue for a complex last eukaryotic common

ancestor and reveal that animals are gaining increased regulatory complexity at the expense of their

metabolic capabilities. Similarly, the rise of chromatin-based regulation mechanisms in crown-group

eukaryotes can be traced by considering abundances and co-occurrences of the relevant protein domains

[11]. A growing core of combinations in multicellular organisms was demonstrated by network analysis

of domain co-occurrences [13]. The fundamental role of domains is also emphasized by the emergence

of “supra-repeats”, i.e., complex and multi-domain repetitive patterns, which is of importance e.g. in

nucleic acid-binding and protein-protein interaction and hence plays a key role in gene regulation [14].

The diversification of such regulatory proteins, thus translates primarily into statistically unexpected

co-occurences of protein domains of the same functional type or structural family. A case in point is e.g.

the rapid expansion of KRAB/zincfinger transcription factors in primates [15].

Protein domains are characterized by local amino-acid patterns and hence can be annotated

computationally in protein sequences. Several databases, most notably the SUPERFAMILY [16] compile

domain annotations for the known and predicted proteins of a wide variety of species. As we shall
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Figure 1. Work flows for the estimation of domain abundance data from annotation data

(l.h.s.) and starting with a de novo gene annotation (r.h.s). In both scenarios, protein domains

compiled in databases such as Pfam or SUPERFAMILY are mapped to the known or predicted

proteins and form the basis for subsequent statistical analysis.

demonstrate in this contribution, quantitative comparisons between distant species one the basis of this

data, however, are plagued by large differences and biases in coverage. In principle, the most complete

information about the protein complement can be inferred from the genome sequence. We therefore

suggest a workflow centered around de novo gene predictions to obtain quantitatively comparable

estimates, see Fig. 1. We observe, however, that different gene predictors still lead to qualitatively

different results.

This contribution is organized as follows: In the following section we briefly outline the methods and

data employed for gene prediction, protein domain annotation, and statistical evaluation. In section 3.1

we discuss differences in coverage and outline other potential sources of biases. We then proceed to

show that the discrepancies between curated annotation and two distinct gene prediction tools can be

large and vary substantially between genomes. In section 3.4 we investigate correlations of functionally

defined classes of domains. Here the various sources of biases conspire to produce even qualitatively

different results. We finally discuss the resulting limitations of the accuracy of the domain distribution

data and the reliability of conclusions drawn from them.

2. Material and Methods

2.1. Sequence Data

We consider the following 18 species with sequenced genomes covering the entire phyloge-

netic range of the eukaryotes: H.sa: Homo sapiens hg19, D.me: Drosophila melanogaster

BDGP5.13, C.el: Caenorhabditis elegans WS200, S.po: Schizosaccharomyces pombe EF1, A.ni:

Aspergillus niger CADRE, D.di: Arabidopsis thaliana TAIR9.55, C.re: Clamydomonas Chlre4,

T.th: Tetrahymena thermophila tta1 oct2008, P.fa: Plasmodium falciparum PlasmoDB-7.0, L.ma:
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Leishmania major Lmj 20070731 V5.2, G.la: Giardia lamblia WBC6, T.va: Trichomonas vagi-

nalis TrichDB-1.2, T.br: Trypanosoma brucei Tb927 May08 v4, N.gr: Naegleria gruberi Naegr1,

T.ps: Thalassiosira pseudonana Thaps3, P.ra: Phytophthora ramorum Phyra1 1, O.sa: Oryza

sativa OSV6.1, D.di: Dictyostelium discoideum DDB. Sources are listed in the Supplement

http://www.bioinf.uni-leipzig.de/supplements/12-007.

2.2. Gene Prediction

Gene prediction tools come in two flavors: homology-based and de novo approaches. Since

homology-based methods necessarily transfer any biases from the source annotation to the newly

annotated target, only de novo methods are applicable for our purposes. A software package that was

widely used in early genome projects is GENSCAN [17,18]. It is mostly geared towards vertebrate

genomic sequences. Despite the shortcomings of such a “first generation” gene predictor, good

performance has been observed in the literture for a diverse set of only distantly related organism (teleost,

nematodes,amphioxus, and fungi) without the need for specific training [19] and it has hence served as

the most popular tool until a few years ago [20]. Furthermore, it is much less demanding computational

resources. Assuming that is samples in an unbiased manner, a moderate loss in sensitivity would be

acceptable for the task at hand: after all we are more interested here in statistical associations than a

complete annotation. Moreover, GENSCAN it has been used extensively in the ENSMBL genome database

project [21] and the fugu genome annotations are still largely based on this tool [22].

Following [23] we split long chromosomes into overlapping fragments of about 500 kb to

accommodate the tool’s restriction on input length. Protein sequences were extracted directly from

the GENSCAN predictions. Duplicate predictions in the overlaps between fragments were removed. A

potential shortcoming is that the prediction accuracy may vary substantially with differences in gene

architecture.

We therefore employed a trainable gene prediction as an alternative. In this class of tools, the

statistical model is trained with a set of known genes from the organism that is to be annotated. We

chose AUGUSTUS [24–26] as a representative of trainable tools because it has gained popularity in

recent genome annotation projects. Both “Specific” (local) and “Default” (web-based) trained models

are used here. We used the tools as described in the AUGUSTUS tutorial [27]. Where available, we

made use of the default training sets provided at the AUGUSTUS website. For the remaining species,

we used the cDNAs available in GenBank. Redundancies were removed with a dedicated perl script.

The FASTA sequences and their headers were cleaned from meta-characters and gaps. Models were

trained in “Specific” mode with the pipeline downloaded from the the AUGUSTUS website. For our

applications, AUGUSTUS was configured to generate only non-overlapping protein-coding genes. The

predicted protein sequences are part of the AUGUSTUS output. We verified with bed-tools that no

overlapping sequences were contained in the output [28].

The results of the AUGUSTUS and GENSCAN predictions are compiled in Table 1 and compared

with the RefSeq (release 53) genes for each of the 18 species. In order to compare the two training

modes of AUGUSTUSwith each other and with the RefSeq annotation we computed their overlaps with

http://www.bioinf.uni-leipzig.de/supplements/12-007
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Figure 2. Comparison of gene predictions for 8 of the 18 species. (See online supplement for

additional data). For each species we show a Venn diagram, drawn to scale, for both the raw

output of the gene predictions and for the subset of proteins with at least one matching Pfam

model. RefSeq is shown in red AUGUSTUS prediction with Default and Specific trained

models are shown in blue and green, respectively. The numbers refer to the overlapping

genes.

gene prediction genes with domain gene prediction genes with domain

28410 20799
15399

9458

Homo sapiens Naegleria gruberi

47108 24599
7189

2800

Oryza sativa Trypanosoma brucei

24756

5467
4115

2411

Trichomonas vaginalis Giardia lamblia

8472
2750 5360 1657

Leishmania major Plasmodium falciparum

bed-tools and used lucidchart to compute Venn diagrams so that the displayed overlaps in Fig. 2

are drawn to scale [30].

2.3. Domain Annotation
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We used the entire Pfam version 26.0 database, comprising 33672 domain models as well as the entire

collection of 9821 Hidden Markov Models (HMMs) provided by the SUPERFAMILY database (version

1.75). In both cases we used HMMER3.0rc1 [31] with an E-value threshold of E ≤ 10−3 to map the

HMMs to the predicted amino acid sequences as well as the RefSeq proteins.

In order to test the quality of gene predictions we compared the sub-collections of protein sequences

with at least one mapped Pfam domain between the gene prediction methods and RefSeq database.

A representative selection of these results is shown in Fig. 2. Overall, the specific-trained AUGUSTUS

predictions have the best coverage of the manually curated RefSeq and are hence used as data basis for

subsequent quantitative analysis.

2.4. Functional Classification

The domain databases contain thousands of distinct domain models. Few domains thus appear with

sufficient frequency in a single genome to allow a quantitative statistical analysis. Thus we pooled

the occurrence data by larger functional categories. The SUPERFAMILY database offers a “Structural

Domain Functional Ontology” providing functional and phenotypic annotations of protein domains at

the superfamily and family levels [16]. The Pfam annotation is already integrated into GO database,

providing a mapping from Pfam domains to GO ontology terms [32,33].

As example we use here the same high-level functional categories as in previous work [23].

bN binding of nucleic acids: GO:0003676 at superfamily level.

bP binding of proteins with potential nuclear localization: GO:0005515 superfamily level.

rC regulation of chromatin GO:0016568 at superfamily level.

rB regulation of binding: GO:0051098 at superfamily level.

rE regulators of enzymatic activity: GO:0050790 at superfamily level.

mS metabolism of saccharides: GO:0005976 at superfamily level.

The four functional groups bN, bP, rC, and rB encapsulate major modes of regulation. Both bN and

bP play an important role for gene regulation by transcription factors and are among the most abundant

GO classes, while rC focuses on chromatin-based epigenetic regulation. We have shown in [23] that rC

group correlates well with the hand-picked collection of domain models that can act as readers, writers,

and erasers of histone modification [11]. The domain groups rE and mS were intended as a form of

controls that a priori we did not expect to correlate in a particular way with either nucleic acid or protein

binding domains (bN, bP).

From the co-occurrences of domains in predicted proteins and the map of domains to functional (GO-

)classes it is straightforward to obtain the number n(C,D) of co-occurrences of the C and D functional

classes. As in [23] we correct n(C,D) for the fact that the same domain x can be a member of both C

and D by counting these cases with a weight of 1/2.

2.5. Co-occurrence Analysis

For each of the 18 species, we separately evaluated the number of domain co-occurrences and the

number of genes in which the domain x and y co-occur. Here x and y can be either individual
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domains, sets of domains belonging to the same superfamily, or the collections of domains compiled

into functional classes according to their GO annotations. Denote by nx the total number of annotated

domains belonging to group x. The simplest estimate for the expected number of domain co-occurrences

is E(x, y) = nxny/ng, where ng is the number genes of the genome under consideration. As discussed

in [23] this estimate does not account for biases arising from the non-uniform distribution of domains

over genes. Let nd(i) be the number of domains predicted for protein i, and let nd =
∑

i nd(i) be the

total number of domains. Then the number of x-domains that occur in genes that also contain a y-domain

can be estimated as

E(x|y) = (nx/nd)
∑

i:y∈i

(nd(i)− 1) (1)

where the sum runs over all genes i that contain a domain belonging to group y. We obtain an alternative

estimate by exchanging x and y in equ.(1).

We compared these expectations with the number of empirically observed co-occurrences n(x, y). We

speak of co-occurrence of domain families or groups x and y if n(x, y) ≫ max{E(x|y), E(y|x)} and

of avoidance if n(x, y) ≪ min{E(x|y), E(y|x)} The statistical significance of an observed difference

between n(x, y) and the values of min{E(x|y), E(y|x)} and max{E(x|y), E(y|x)}, respectively, is

determined observing the fact that the count data n(x, y) follow a Poisson distribution.

Note that the use of the min and max here ensures that the tests for avoidance and co-occurrence are

conservative. In order to verify that this test is indeed not prone to detecting false positive associations but

rather fails on the side of false negatives, we simulated 30 random data sets by repeatedly permuting the

functional annotation of the individual domains using the linux command shuf. No result significant

at the 10% level was returned for both the SUPERFAMILY and Pfam annotations (compared to an

expected 3 false positives), reassuring us that the test statistic works conservatively as designed.

3. Results and Discussion

We compare the annotation data and de novo gene prediction at different levels: (1) w.r.t. the set of

predicted transcript, w.r.t. the collection of predicted proteins that contain recognizable domains, and (3)

w.r.t. to the statistics of co-occurring domains in the same annotated protein. We will see in the following,

that at each level we observe large discrepancies between the data sets.

3.1. Ascertainment biases in protein annotations

In order to get an impression of the differences in coverage of protein annotation we compared the

number of transcripts annotated in the genomes of Euarchontoglires, the mammalian clade comprising

primates and rodents. These genomes are organized in a very similar way and are expected to have

very similar or even nearly identical complements of protein coding genes. Figure 3 shows these data

for RefSeq (version 42) subdivided as numbers of transcripts containing a particular SUPERFAMILY

domain.

Closely related species, such as the mammals, do not differ much in their gene content. Even if they

do, differences tend to be confined to a few gene families with large copy numbers that evolve very

quickly, such as olfactory receptors [34]. Even in gene families with rapid losses and gains, the total
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Figure 3. Differences in RefSeq coverage of primate and rodent genomes. Each line

corresponds to number of annotated protein-coding transcripts that contain a particular class

of protein domains.
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numbers of family members do not change dramatically at moderate time scales. In contrast to biological

wisdom, the numbers of annotated transcript, Fig. 3 vary by nearly an order of magnitude between closely

related species. Instead of biological differences we clearly observe here only variations in annotation

coverage. Indeed, the best-studied model species (Homo sapiens, Macaca mulatta, Mus musculus, and

Rattus norvegicus) show much larger transcript numbers than the other, less well studied genomes. The

lines are approximately parallel in the logarithmic plot, indicating that the relative abundances of the

domains are similar and a simple difference in the completeness of the annotation can account for much

of the variation.

The annotation of RefSeq genomes is complex composite of of experimental transcript and protein

information and computational procedures including alignments as well as HMM-based ab initio

predictions [35] complemented by manual curations. Since an independent gold standard is absent,

it cannot be rigorously checked to what extent these annotations are biased. The focus on known

protein-coding genes, however, that are used a starting point for the homology-based annotation steps,

at least suggests the well-studied protein families are overrepresented. Differences in coverage, thus,

may not be the only artefacts that need to accounted for when RefSeq annotation is used for statistical

purposes.

As shown in [36] the use of a de novo gene predictor such as GENSCAN can alleviate the differences

in coverage and provide quantitatively comparable domain annotations in closely related species. The

situation is more complex, however, when a comparison of gene or protein complements for organisms

from different kingdoms is required. Additional biases may arise from both the protein and the domain
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annotation. Homology-based annotation may be confounded by differences in sequence conservation

between proteins of different functional classes. Such differences affect not only the overall rate of

subsitution but also the substitution patterns [37]. The sensitivity of annotation procedure thus may show

systematic dependencies on functional classes or the size of gene families. Our knowledge of protein

domains is by far not complete. Although most protein domains in well-studied model organisms are

evolutionarily very old and rather well conserved, the characteristic patterns of the domains slowly evolve

and domain innovation is a relatively infrequent but well-documented phenomenon [7,8]. Thus, the

sensitivity of the domain annotation procedure must be expected to decrease with increasing evolutionary

distance from the examples that have been used to create the domain models. An important technical

issue plagues in particular transmembrane regions and signal peptides. These have a hydrophobic bias

leading to problematic domain models and subsequently to incorrect function assignments inherited from

these domain models [38].

3.2. Biases in gene predictions

GENSCAN is a general purpose gene prediction tool that does not admit species specific training.

Its internal model implicitly assumes a gene organization similar to that of higher plants and animals.

Several lineages of the Eukarya, however, feature gene structures and a genomic organization that is

very different from the situation in animals, fungi, or plants. Both Giardia lamblia and Trichomonas

vaginalis are extremely intron-poor; Trichomonas vaginalis in addition features very large numbers

of paralogs. Kinetoplastids (Trypanosoma and Leishmania) produce large polycistronic transcripts

from which individual mature mRNAs are produced by trans-splicing, cis-splicing, and polyadenylation

[39,40]. Trans-splicing is also prevalent in the nematodes, but absent from most other animal genomes.

GENSCAN in particular has problems to detect the gene boundaries in the polycistronic transcripts.

Intron-sizes differ dramatically between invertebrates and vertebrates, where intron-sizes of more than

10 kb are not at all uncommon. Another problem is posed by the extreme sequence composition as in

the AT-rich genome of Plasmodium falciparum [41].

We therefore employed AUGUSTUS as a trainable gene predictor to test whether differences in

sensitivity between species due to differences in gene structure might play a large role. A comparison of

AUGUSTUS and GENSCAN predictions in Table 1 confirms our suspicion that gene predictors are also a

source of biases since the numbers are not only significantly different but also deviate substantially from

proportionality. While GENSCAN predicts more twice as many transcripts than AUGUSTUS in Giardia,

Homo, and Drosophila, we find the opposite picture in Caenorhabditis, Dictyostellium, Tetrahymena,

Plasmodium, Leishmania and Trichomonas.

A comparison of AUGUSTUS predictions with the RefSeq gene inventories agrees rather well in

some species, while in others there are substantial differences, Fig. 2. Large discrepancies seem to be

related to the degree of completeness of the gene annotation. Table 1 shows that GENSCAN predicts

more than twice as many genes than RefSeq in human and Drosophila, while RefSeq has the more

inclusive annotation in those species where AUGUSTUS is more sensitive than GENSCAN. Overall,

AUGUSTUS conforms better to the RefSeq annotation than GENSCAN. The similarity of the results

obtained with RefSeq and AUGUSTUS might be explained in part be the use of similar HMM-based
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Figure 4. Discrepancies between de novo gene predictions and RefSeq annotations.
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annotation methods in RefSeq [35]. Strictly speaking, therefore, one cannot conclude that AUGUSTUS

performs “better” than GENSCAN because its output is more similar to RefSeq, although this is a

plausible hypothesis.

3.3. Gene predictions with domains annotations

Since we are interested primarily in the distributions of protein domains we also compared RefSeq

data with gene predictions restricted to only those genes in which at least one SUPERFAMILY or Pfam

domain was annotated. For most species this improves the congruence between the gene sets. In a

few cases, however, the differences persist, as in the case of Trypanosoma and human, Fig. 2. In

Trypanosoma, most of the difference is explained by annotated RefSeq proteins without recognizable

domains. In human, the discrepancy is in part explained by RefSeq isoforms and in part by AUGUSTUS

prediction without domains.

Figure 4 shows that significant differences between gene predictions and RefSeq persist even when

the data are restricted to predicted transcript with annotated domains. Note, furthermore, that annotation

of the same gene predictions with domains from SUPERFAMILY and Pfam also yield substantially

different results: in fact, the point clouds show very little correlation.

Among the predictions with annotated domains, we find e.g. for Leishmania, Tetrahymena, and

Plasmodium that both the default and the specific trained gene predictions have a much larger coverage

than the RefSeq data. For Trichomonas and Giardia, the situation is reversed. This can probably

be explained in part by the large number of paralogs and possible pseudogenes included in RefSeq

in Trichomonas, but also indicated as lack of sensitivity of the gene predictor for the two parabasalids

with their extremely intron-poor genomes. At the domain level, AUGUSTUS and RefSeq agree nearly

perfectly e.g. in human and Naegleria. In general, the RefSeq entries missed by the gene predictor are

frequently putative pseudogenes and ORFs lacking further annotation. Since the AUGUSTUS ‘specific’

predictions overall yield the most inclusive data set, these predictions are used in the following section

for all statistical analyses of domains compositions.
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Surprisingly, we observe very little variation in the number of domains per protein. A significant

increase is found in human and fruitfly only. It is unclear, however, whether this a true effect or an

artifact arising from a bias in Pfam database. In [42], a difference in the complexity of chromatin

proteins between Diplomonads and Dicristates on the one hand, and Alveolates and Stramenopiles on

the other hand does exist. Our data do not show such a systematic difference for proteins containing

domain classified as “rC: regulator of chromatin” according to GO.

3.4. Correlations in domain occurrences

In [36] we observed regularities in co-occurrences of domains in the same protein. For instance,

transcription factors often contain multiple DNA binding domains. In the human genome, these domains

predominantly belong to the same (very frequent) domain class such as zinc fingers or winged-helix

domains. Combinations of different domain classes, on the other hand, are observed much less frequently

than predicted from a random background model. Since most domain families have only a moderate

number of occurrences in most genomes this phenomenon of “domain avoidance” cannot be statistically

supported for most pairs of domain types even in the large mammalian genomes. In a subsequent

study [36] we therefore aggregated domain classes to groups defined by their biochemical function.

This aggregation, however, is susceptible to yet another source of biases: different domains types now

contribute to the functional classes in the vastly different organism studied here. There is no guarantee,

of course, that coverage and quality of functional domain annotations, as provided by the Pfam and

SUPERFAMILY databases are uniform across all classes of domains. The phylogenetic distribution of

the individual domain families, on the other hand, is of course far from uniform.

A comparison of the panels of Figure 5 shows that the qualitative results on the domain co-occurrence

are largely independent of the choice of SUPERFAMILY or Pfam as domain database. The main

difference is the number of distinct domains in the two databases. Since Pfam is much larger, the

absolute domain counts are larger and hence a larger number of the statistical tests reaches the required

levels of significance.

On the other hand, there are striking differences between the gene annotation. Based on GENSCANwe

predicted a general tendency towards domain co-ocurrences [23]. Using RefSeq annotation, it appears

that avoidance dominates (in particular in multicellular animals and plants), while co-ocurrences appear

be prevalent in unicellular protozoans. The AUGUSTUS-based gene predictions, however, point at a

generic trend towards domain avoidance, with exceptions only for a few pairs of functional classes. The

most prominent cases are bN-rB (’binding of nucleic acids’ and ’regulation of binding’), bP-rE (’protein

binding’ and ’regulation of enzymatic activity’), and rC-rB (’regulation of chromatin’ and ’regulation

of binding’). For bP and rE a positive correlation is not unexpected, since regulators of enzymatic

activity (rE) can be expected to act by protein-protein binding (bP). The positive correlations between

nucleic acid binding domains (bN) and chromatin associated domains (rC) with domains involved in the

regulation of binding deserved further investigation. It is consistent with intimate link of both DNA and

RNA binding with chromatin regulation reported in [11].

In AUGUSTUS annotation, the domain co-occurrences of Tetrahymena in SUPERFAMILY and Pfam

are scarce. This could be possibly due to the short scaffold in the Tetrahymena genome that could lead
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Figure 5. Summary of co-occurrences patterns of major functional classes of protein

domains across the Eukaryotes. The columns represent the gene prediction (GENSCAN

and AUGUSTUS) with the DB-based RefSeq annotations. The rows represents the

utilized protein domain databases (PFAM and SUPERFAMILY) for computing the domain

co-occurrences, while their global patterns were computed for counting the average co-

occurences. Blue rectangles indicate statistically significant avoidance between functional

classes of protein domains, red indicates co-occurrence. The saturation of the color denotes

the significance levels p < 0.001 (saturated color), 0.001 ≤ p < 0.01 (intermediate), and

0.01 ≤ p < 0.1 (pale). Entries that show neither avoidance or co-occurrence at a significance

level of at least 10% remain white.
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into underestimates [43]. Interestingly, in AUGUSTUS annotation we also observe intersting pattern in

human genome. The strong co-occurrences of bN-rB, rC-rB, and bP-rE that exist in other genomes are

missing, and replaced with a strong tendecy of avoidance. The possible explanation for the emergence of

the avoidance pattern is the complex functionality diversification of the domains that tend not to co-occur

in complex organisms. One other noticable pattern in human that the mS-rB co-occurrence pattern exists

in SUPERFAMILY while it disappears completely in Pfam.

Figures 6 further aggregates these data and shows the overall tendency in the correlation between

domains of different functional classes. The figure emphasizes the large, qualitative mutual differences

between the gene prediction methods and the curated protein annotations. Nevertheless, some consistent

patterns emerge, such as the positive correlation between protein binding proteins (bP) and regulators
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Figure 6. Graphical summary of the correlations between the six functional domain classes

computed with different protein annotations and domain databases.
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of enzymatic activity (rE). This observation is not surprising although it does not derive from double

memberships of domains in both groups. A less obvious signicant co-occurrence is that of nucleic acid

binders (bN) with regulators of binding (rB), perhaps hinting a wide-spread involvement of transcription

factors in regulatory processes that involve large protein complexes.

In the multi-cellular organisms with large genomes and large gene families, however, there is a strong

signal of avoidance between several functional groups of protein domains. This may be a result of the

expansion and diversication of large families of paralogous genes and their use for specific tasks in the

regulation of cellular processes. In most cases, we have not been able to trace this effect to excessive

duplication events in one or a few gene families, however. The most extreme example in our data is

the expansion of the variant-specific surface protein (VSP) gene in Giardia lamblia [44], which fall into

the bP (binding of proteins) and rC (regulation of chromatin) categories and features more than 200

paralogs. Still, the signal for co-occurrence of rC and bP is not consistently observed in all combinations

gene finding and domain annotation. It appears, therefore, that the observed consistent patterns are not

the consequence of an extreme expansion of a single gene family but must be related to the collective

effect of gene families with the same functional domain classes.

The most rapidly expanding protein family in human, the KRAB/zinc finger proteins [15], one the

other hand, contain only domains annotated as nucleic acid binding, and hence do not contribute to

co-occurrence or avoidance patterns. This seems to be the case with many transcription factor families.
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It is worth noting in this context that in earlier work we observed that the is also a strong pattern of

avoidance among different SUPERFAMILY classes of nucleic acid binding domains [36].

4. Conclusion

Proteins embody a wide variety of functions in a cell, ranging from enzymatic activity to structural

scaffolding. The function of a protein is reflected in its domain composition. The range of an

organism’s biochemical capabilities, both metabolic and regulatory, is thus largely encoded in its

protein domain content. Even the presence of RNA-based modes of regulations such as the RNAi

pathway are reflected by the associated protein components [45]. Large-scale trends in evolution such

as an increased complexity of transcriptional regulation [46,47] or the diversification of chromatin

modification throughout the eukaryotic kingdoms [11] thus can be traced by a quantitative comparison

of protein and protein domain complements.

Present-day annotations for most genomes as well as the currently available collection of protein

models are far from complete. Quantitative cross-species comparisons thus implicitly rely on the

assumption that the available data are a fair, essentially unbiased sample. This is in general not the

case. We therefore investigated to what extent de novo gene prediction methods can be used to generate

comparable domain distribution data. The large differences between untrained (GENSCAN) and trained

(AUGUSTUS) indicates that this not a straightforward endevour. Using the trained models we obtain

results that in general are closer to annotation-based numbers. It is unclear, however, whether this speaks

for a better quality of the computational results, or whether this simply reflects that AUGUSTUS has

been trained with species-specific gene models using transcript data that also underlie the RefSeq

annotation. Furthermore, gene predictors are usually tested and benchmarked against curated annotation

such as RefSeq. Thus it may be the case that trained gene predictors and protein annotation databases

only share the similar biases. However, it is reasonable to assume that the annotation of protein-coding

exons is fairly complete at least in the human genome [48], suggesting that qualitatively similar results

from AUGUSTUS and RefSeq are closer to the truth.

The second source of major ascertainment biases in the analysis of large scale evolutionary patterns of

functional domains are the protein domain databases themselves. Recent studies reported the innovation

of a large number of domain innovation events within both the green plants [49] and the animals [50].

The number of identified clade-specific domains must be expected to depend on the depths in which the

clade is studied. The domain inventory is thus probably more complete in animals, fungi, and plants

animals compared to most protozoan lineages.

We find that domain annotation data in particular in less well-annotated genomes may suffer from

significant ascertainment biases that are uniform neither across functional classes of proteins nor across

phylogeny. Data such as those in Fig. 4 indicate that errors can reach a factor of two (or even larger in

extreme cases) in the number of counts cannot be rules out. This is large enough to seriously confound

for instance the enrichment analyses ubiquitously used in many genomics publications. Nevertheless the

reannotation of domains based on modern gene predictors instead of protein sequence databases appears

at least to help reduce the ascertainment bias, although we cannot strictly rule out that manually curated

data sets are strongly biased as well.
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Large numbers unannotated domains, on the other hand, could further undermine the analysis

presented here since the lead to a systematic under-estimation of an organisms metabolic or regulatory

capability. Recent reports such as [49] seem to indicate that the innovation of novel domains is

prevalent in particular in conjunction with stress response and developmental innovations, and hence

a particular functional classes. A more systematic survey of so-far undescribed protein domains thus

constitutes a natural next step towards a comprehensive understanding of functional evolution in the

eukaryotes. Accurate domain inventories are not only of interest in their own right but also constitute an

important source of phylogenetic information [51], in particular in “deep phylogeny” applications. The

presence/absence patterns of protein domains were recently used for instance to place the Strepsiptera

as a sister group of beetles in insect phylogeny [52]. Improved pipelines to estimate the protein

domain content directly from genomic data thus have the potential to greatly facilitate phylogenomic

investigations.

In the analysis of protein domain combinations at least two sources of biases interact: the dependence

of the sensitivity of the protein annotation and an uneven coverage of protein domains that might reflect

e.g. different levels of interest in different protein families. When domains distributions are summarized

in terms of functional annotations, i.e., GO classes, the uneven interests in different protein families is

again a likely source of ascertainment biases. The influence of the same or similar confounding factors

in different data sources can conspire to produce even qualitatively different results such as the ones

observed here for domain co-occurrence data in Fig. 5.

We conclude that ascertainment biases in current annotation databases as well as computational

annotation tools fundamentally limit the accuracy with which domain distributions can be estimated.

Statistical significance measures estimated via the commonly employed permutation tests often cannot

account for these biases. Hence statistical significance may not not sufficient in such cases to make

statements about biological reality. Large effects thus will in general be necessary to draw reliable

conclusions from domain distribution data unless biases can be ruled out e.g. based on near completeness

of data. We showed that at least some of the biases can be reduced by using predictions instead of manual

curated annotation. Results show, however, that the prediction has to be choosen carefully so as to avoid

introducing new biases.
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