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Abstract

In this review we provide an overview of various bioinforimcatmethods and tools
for the analysis of metazoan mitochondrial genomes. We emengvailable dedicated
databases and present current tools for accurate genorotatian, identification of
protein coding genes, and determination of tRNA and rRNA elatlVe also evaluate
various tools and models for phylogenetic tree inferenaegugene order or sequence
based data. As for gene order based methods, we comparangament based and
gene cluster based methods for gene order rearrangemdysianas for sequence
based methods, we give special emphasis to substitutioelsnoddata treatment that
reduces certain systematic biases that are typical foramatemitogenomes such as
within genome an@r among lineage compositional heterogeneity.
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Models, Gene Annotation

1. Introduction

In many aspects animal mitogenomefeti substantially from sources of other ge-
nomic data (Bernt et al., 2012mm this special issye With a size rarely exceeding
20kb and a nearly invariant gene inventory typically corsipg 22 tRNAS, 2 rRNAS,
and only 13 distinctive protein-coding genes they are ainlerta computational tech-
niques that are applicable to few other genetic systemssiitadl size of the genomes
makes it possible to achieve nearly complete and quite atzannotations in the ab-
sence of experimental transcript information. The highaklity in particular of the
tRNA sequences, on the other hand, requires specialisdtbdeetor tRNA gene find-
ing. The constancy of the mitogenome gene content suggesiew mitochondrial
gene orders as signed permutations. These signs indieateatding direction, which
is determined uniguely, since the two DNA strands of theut&nc mitogenome are
usually distinguishable by their base composition.

In response to these atypical features, a large numberafitdms, pipelines, mod-
els, and software tools have been developed specificallpitoigenomic studies. Sev-
eral databases are dedicated exclusively to make theses$slich computational anal-
yses available to the community. The comparison of mitodhiahgene orders benefits
from their constant gene content which allows to apply thalakle methods devel-
oped for the permutation model that is of limited use for diengystems with large
differences in gene content, e.g., whole genome comparisoearly;imany compu-
tational tasks to analyse mitogenomes do not require spaityfidedicated tools. For
instance, generic software tools are applicable to asgemiibgenomic sequences
(Boore et al., 2005), to construct sequence alignmentstaimder phylogenetic trees
from sequence alignments, although for the latter speeidlsubstitution models are
required.

Here, we review only the bioinformatics infrastructurecipsed to mitogenomics.
We collect URLs and references for the databases, the seftiwals that are avail-

able for download, and the web services that are discussedghout this contribu-



Table 1: Bioinformatics Resources discussed in the text.

Resource URL References
Databases
GenBank www.ncbi.nlm.nih.gov/genbank/ Benson et al. (2011)
GOBASET gobase.bcm.umontreal .ca/ O'Brien et al. (2009)
Mamit-tRNA mamit-trna.u-strasbg.fr/ Putz et al. (2007)
MamMiBase www.mammibase. lncc.br/ de Vasconcelos et al. (2005)
MetAMIGA 2 amiga.cbmeg.unicamp.br/ Feijao et al. (2006)
MitoZOA mi.caspur.it/mitozoa/ Lupi et al. (2010)
NCBI O.R. www.ncbi.nlm.nih.gov/genomes/ORGANELLES/ Wolfsberg et al. (2001)
organelles.html
OGRe drake.mcmaster.ca/ogre/ Jameson et al. (2003)
RefSeq www.ncbi.nlm.nih.gov/RefSeq/ Pruitt et al. (2007)
tRNAdb trnadb.bioinf.uni-leipzig.de/ Juhling et al. (2009)
Web Services
ARWEN www.acgt.se/online.html Laslett and Canbéack (2008)
CREx pacosy.informatik.uni-leipzig.de/crex/ Bernt et al. (2007)
DOGMA dogma.ccbb.utexas.edu/ Wyman et al. (2004)
FACIL|] www.cmbi.ru.nl/FACIL/ Dutilh et al. (2011)
GENESIS www.uni-ulm.de/in/theo/research/genesis. Bader and Ohlebusch (2007)
html
GenDecoder darwin.uvigo.es/software/gendecoder.html Abascal et al. (2009)
MGR nbcr.sdsc.edu/GRIMM/mgr. cgi Bourgue and Pevzner (2002)
MITOS mitos.bioinf.uni-leipzig.de/ Bernt et al. (2012c)this issug
MOSAS mosas.byu.edu/ Shefield et al. (2010)
roci bibiserv.techfak.uni-bielefeld.de/roci/ Stoye and Wittler (2009)

tRNAscan-SE |
UniMoG

lowelab.ucsc.edu/tRNAscan-SE/
bibiserv.techfak.uni-bielefeld.de/dcj/

Lowe and Eddy (1997)
Bergeron et al. (2006)

Software for Download

ANGES
BADGER
circal

EMRAE

GRAPPA
inferCARs
MiTFi
PATHGROUPS

PHYLO

http://paleogenomics.irmacs.sfu.ca/ANGES/
www.badger.duq.edu/
www.bioinf.uni-leipzig.de/Publications/

SUPPLEMENTS/04-015/
www.gis.a-star.edu.sg/~bourque/download/

EMRAE.zip

wWww.cS.unm. edu/~moret/GRAPPA/
www.bx.psu.edu/miller_lab/car/
www.bioinf.uni-leipzig.de/Software/MiTFi/

albuquerque.bioinformatics.uottawa.ca/lab/

software.html
http://www.uni-ulm.de/in/theo/m/alumni/

bader.html

Jones et al. (2012)
Larget et al. (2005)
Fritzsch et al. (2006)

Zhao and Bourque (2009)

Moret et al. (2001)

Ma et al. (2006)

Juhling et al. (2012)
Zheng and Sankb(2011)

Bader et al. (2008)

a previously calledAMIGA.  no longer updated] alsg available for download and local use.



tion (Tab. 1).

2. Databases

GenBank andRefSeq are the most commonly used repositories of sequence data.
WhereasenBank provides access to original sequence data and associatethions
including taxonomic and bibliographic informatiokefSeq aims to provide expert-
curated and largely non-redundantinformation based @ir@liGenBank entries. The
NCBI Organelle Resources database provides easy accesstitbchondrial genome
data ofRefSeq, to information such as the arrangement of the mitochohpircgeins,
and allows specialised BLAST searches. Access to all theseurces is provided
through NCBI's gateway, hence we will, for brevity, refetti@m collectively as NCBI.

The currenGenBank (release 184) contains 13,916 complete metazoan mitogesom
of which 2,355 are included iRefSeq (release 48). Since NCBI provides data that
were collected by dierent researchers aiming foffiidirent research questions and us-
ing different sets of tools, a certain amount of inconsistency iavhéable annotations
is unavoidable despite all curatoridf@rts (Boore, 2006a)GenBank andRefSeq dis-
play very uneven taxonomic coveragefSeq contains mitogenomes of 1,627 Chor-
data, 376 Arthropoda, and 104 Mollusca. The policyRefSeq to provide “only one
example of each natural biological molecule for major orgeas” (Mizrachi, 2007)
is a potential problem for taxa with doubly uniparental intaace, e.g., many Mol-
lusca or cryptic species (Lupi et al., 2010). Several daebhave been built upon the
GenBank or RefSeq with the aim of improving annotation and data quality. In man
cases they also provide access to additional tools for dagsis. Important “derived”
databases a@GRe, MetAMIGA, andMitoZOA (Tab. 2).

An important property of a database is the consistency odiéte presented to the
user. Among the six databases, oMt AMIGA uses a consistent naming convention
for the genes for all specielitoZO0A internally uses a list of synonymous gene names
for retrieving data, but presents search results using rilggnal, inconsistent annota-
tion. AlthoughOGRe originally used a consistent naming scheme, inconsisteeere

introduced with a recent update. The three NCBI databasg¥&roZ0A provide a



Table 2: Comparison of the databases; Meaning of the sym@qisesent0 absent® partially available;
Upper section: usability of data. Criteria are the consaisteof gene names, the availability of (easily)
parsable output, consistent designations of annotaténsit and coherent definitions of gene boundaries.
Middle section: improvements over primary data. Error enieg (consistent, documented, traceable error
screening, claimed and obvious improvements), anticodmotation (available for all tRNAs), additional
information (e.g., from literature); Lower section: veitiy of search end data export. Options for searching
data and downloading them in common formats: species sitiel per search or from a list of species, se-
guences of features (as FASTA), gene orders (availablééoselected species); complete database available

for download;: only HTML table, *: warns for potential problem§; only list of unique gene orders
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parsable format for downloading the genome annotatieasiank and EMBL format
respectively), whil®OGRe andMetAMIGA display search results only as HTML-tables
for viewing in a web browser. Onl¥itoZO0A provides a consistent method for defin-
ing ORFs and implements rudimentary methods for deterrmgigégne boundaries. For
instance, it warns of potential errors and non-canonicat stodons. All three de-
rived databases improve to some extent the annotationseddrom NCBI, but only

MitoZOA provides a well defined, semi-automatic procedure for canghg the en-



hanced database entries. WhereasiitoZ0A the anticodons of tRNAs are annotated
for duplicated tRNAs, irOGRe this information is stored for all Leucine and Serine
tRNAs, andMetAMIGA does not contain this information. Graphical represeostdf
the mitogenome annotation are available from all databeyssptMitoZ0A.

The databases do not onlyfidir in the level of improvements and the amount of
extensions of the annotation, but also in the versatilitthefr user interfaces. Beyond
the ubiquitous search by species name, alphabetical ontewic browsing QGRe,
MetAMIGA), taxonomic searchietAMIGA, MitoZ0A) may be availableMitoZOA pro-
vides an advanced search function, allowing queries foetigeode, base composi-
tion, or genomic features such as a specific gene order. batdbases it is possible
to export sequence data of single or multiple features fareaipusly selected set of
species. A download of the complete database is only pesfibGenBank, RefSeq,
andMitoZOA. With the exception ofletAMIGA all databases can output gene order
data. In the case of NCBI, this is restricted to protein cgdjanes.

Some of the databaseffer additional useful function4etAMIGA, for instance,
can display information related to codon- and nucleotigayador the selected species.
A similar feature is available iOGRe for selected species. NCBI in particulaffers
various sequence search tools. Pairwise comparisons efageers in terms of break-
points can be performed OGRe’s interface.

In addition to these general-purpose databases, theravareutrated specialised
collections of mitochondrial tRNAsMamit-tRNA and tRNAdb provide high quality
structural annotations of tRNAs for 150 Mammalia and 152 d&de#, respectively.
These databases provide secondary structure informatidnding consensus struc-
tures and information on deviations from typical folds. Amer specialised database,
MamMiBase, does not provide annotations or sequence data, but allwsrhpute
alignments and phylogenetic trees of stored protein andentide sequences from
mammalian mitochondria.

Several databases described in the literature are no lopgeted and maintained
or have gone filine. Among the first group iGOBASE, compiling diverse data related
to mitochondria and chloroplasts. Not available any moeMat BASE (Attimonelli

et al.,, 1999)AMmtDB (Lanave et al., 1999MitoNUC (Attimonelli et al., 2002), or



Mitome (Lee et al., 2008).

3. Annotation and Re-Annotation

3.1. tRNA Detection

Mitochondrial tRNAs frequently have aberrant sequencestindtture features. In
contrast to nuclear tRNAs, they are therefore often hardh éven in the small mi-
togenomes. Three specialised tools are available for tRiN&ation.tRNAscan-SE,
the most commonly used software for this purpose, featurgseaial mode for or-
ganelle genomes in which a special covariance model is greglby using the ap-
proach of Eddy and Durbin (1994) and the filtering of pseudeges disabled.

ARWEN is a heuristic approach that starts with a search for thrggecant hairpin
loops surrounded by additional potential base pairs tha&t menstraints on stem and
loop lengths typical for tRNA clover leaf structures. Thergdiance of the candidate
with the pattern is translated into a score value. A majoaathge ofARWEN is its
speed.

While tRNAscan-SE andARWEN use general models to recognise all tRN®ETFi
employsInfernal (Nawrocki et al., 2009) to search the mitogenome usindgfardint
covariance model for each of the tRNA families (a single niaslemployed for the
two tRNA-Leu genes). One advantageMifTFi is thatInfernal computes reliable
E-values.MiTFi makes it easy to detect duplicate tRNA genes since altematin-
conflicting predictions are also reported. It appearsMidfi is more accurate than
the other two tools (Juhling et al., 2012). Its false negatate is much lower than that

of tRNAscan-SE while it detects much fewer false positives compareARGEN.

3.2. Genome Annotation

Three web servicedker full-fledged annotation pipelines for mitogenonzaGMA,
MOSAS, andMITOS. All three use BLASTX searches against internal databasieten-
tify protein coding genesDOGMA and MOSAS also employ BLAST to detect rRNA
genesMITOS usesInfernal and covariance models of mitochondrial rRNAs to iden-

tify them in a sequence. Database sequences from a widéyafikletazoa are used



for the search iDOGMA andMITOS; MOSAS is currently restricted to insects. BAIDGMA
andMOSAS usetRNAscan-SE for the identification of tRNA genes, whil€ITOS uses
MiTFi for tRNA annotation. Th&ITOS pipeline attempts to improve the prediction of
gene boundaries automatically.

All three tools provide graphical and tabular output andythet export Sequin
formatted annotation files to facilitate the submissionemitogenomes tGenBank.
MOSAS and DOGMA assist the user in selecting from alternative annotatiorsfae
tuning the annotation. Th®OSAS system dfers users to manage their own database
of up to 2,000 annotated sequences, to perform sequenaseesargainst the NCBI
databases, and to produce and inspect multiple alignm&Fiss provides also direct

access to gene order files.

3.3. Determination of the Genetic Code

Mitochondrial genetic codes canfi@ir in the assignment of several codons from the

standard genetic code, reviewed by (Knight et al., 2001)retly available methods

to estimate the genetic code use a comparative apprGaeldecoder uses a major-

ity vote on the amino acids aligned with codon triplets. Hyjghariable alignment
columns can be excluded. It requires an annotation of prateiling sequences for
the input mitogenomeEACIL does not need any annotation. It uses a HMMER search
of provisional translations against Pfam-fs protein dommabdels (Finn et al., 2010)
for the mitochondrial proteinsFACIL also computes confidence scores for its codon

assignments.

4. Geneorder

The analysis of gene orders is a promising source of phyketiinformation (e.g.,
Boore et al., 1995; SanKoet al., 1992). For mitogenomes, in particular, rearrange-
ments are often considered to be infrequent andfecamostly tRNA genes. Cases
of reversion or convergent evolution are thought to be rBaofe, 1999). Therefore
they are particularly interesting for problems of deep plyginy (Boore, 2006b). With

increasing taxon sampling, however, more and more exaeptiave been reported,



such as the variable gene order of the Ascidians (Gissi,é2@10) contrasting the well
preserved deuterostome gene order or cases of convergduti@wy in Hymenoptera
(Dowton et al., 2009). Furthermore, due to the small size niarly conserved gene
inventory, and the wide-spread availability gene ordefyaimis of particular interest
for animal mitogenomes. Because the available tools haga bensidered as insuf-
ficient until recently (Grande et al., 2008) most of the psiudid work on gene order
comparisons is still carried out manually, a practice thdikely to change in the near
future. Several methods automatising the comparativeysisahave been developed
in recent years and a variety of software tools implementiege approaches are be-
coming publicly available. In addition, manual analysesdme impractical with the
fast growing number of available mitochondrial genome (80&999). For a detailed
presentation of the formal study of gene order evolutiorbfms we refer to Fertin
et al. (2009); we focus here on the available tools.

One may distinguish two main ways of treating gene order.dake historically
older approach assumes that certain well-defined type®&pfesitary “operations” are
responsible for evolutionary changes in mitogenomic geders. These types of op-
erations arénversion(e.g., Smith et al., 1990)ansposition(e.g., Boore et al., 1995),
inverse transpositioife.g., Boore et al., 1998), artdndem duplication random loss
(TDRL) (e.g., Boore, 2000). Empirical evidence and mec$iimiconsiderations are
briefly reviewed in (Bernt et al., 2012&) this special issye Alternatively difer-
ences of gene orders are measured without recourse to spgasfiations, but instead
properties of the gene orders itself, i.e., gene clusteesused. In the following we
will call the formerrearrangement-baseand the lattegene-cluster-basedpproach.
We emphasise that this classification pertains fiedént ways of looking at gene or-
der data. Both types can be analysed within the standardefvanks for phylogeny
reconstructions, i.e., by means of distance methods, maxiparsimony, and max-
imum likelihood, as well as with dtierent aims, e.g., reconstruction of phylogeny or
ancestral states. It remains unclear, at present, whictoaphp is preferable. Even
though the rearrangement-based strategy seems moreiaggeah a biological point
of view because of the underlying mechanistic model, it iesianknown how vari-

able rates of rearrangements and prevalence of particpiEnatons are over longer



evolutionary time-scales. The advantage of the genearilostsed approach is that it is
rearrangement-model-free, i.e., it does not make ex@&stimptions on the type and
frequency of rearrangement operations. But instead théogbwgetic significance of

the considered gene clusters is assumed.

4.1. Rearrangement-Based Approaches

The eventual goal of the rearrangement-based approachdsdastruct the actual
sequence of rearrangement events that have led to the qootary gene orders. Usu-
ally, one considers a maximum parsimony problem for a sel@fad rearrangement
operations and associated costs. The simplest case is tmiggrnthedistance i.e.,
the weighted number of rearrangements, that transformem@jene order into another
one.

Major progress has been made in developing algorithms fimpeing rearrange-
ment distances for the case that only one particular typepefaiions occur. The
best-studied cases are inversions (e.g., Hannenhalli amzhBr, 1995) and TDRLs
(Chaudhurietal., 2006; Bernt et al., 2011). Neverthekbgse are still major unsolved
problems that are relevant to the study of mitochondriakgeder evolution, including
the lack of dficient exact algorithms for rearrangement problems inc@afoay trans-
positions, where only approximation algorithms are knoimplemented for instance
in GENESIS. Recently, the so called double cut and join (DCJ) rearravege opera-
tion (Yancopoulos et al., 2005; Bergeron et al., 2006), thee cut of a gene order at
two places with a subsequent re-joining in &alient order, was proposed to solve the
problem more fiiciently. This operation incorporates inversions, circisktion and
linearisation, and block interchanges (a generalisatfamamspositions). Thereby it
circumvents the algorithmic complications of transposis. A recent implementation
is UniMoG. CREx is a heuristic tailored for studying rearrangement scesdor pairs
of mitochondrial gene orders (Bernt et al., 2007). It takesisions, transpositions,
inverse transpositions, and TDRLs into account. Also theoapproaches discussed
so far are based on pairwise comparisons and produce rgamamt distances that can
be further analysed by distance matrix methods (e.g., Whal, 006).

Alternatively, rearrangement parsimony problems havenbmmsidered. These

10



approaches attempt to reconstruct ancestral gene ordargiiren phylogenetic tree
so that the sum of distances along the edges is minimiseddditi@n, the phyloge-
netic tree itself can be reconstructed by standard tecksignumerating phylogenies
(Felsenstein, 2004). In contrast to the correspondinglenolfor sequences, already
the problem of reconstructing ancestral gene orders fovengbhylogeny is in most
cases a computationally hard problem (e.g., Caprara, ZG08yier et al., 2009), but
a few tractable cases have been reported recently (Feiwd/laidanis, 2011; Bernt
et al., 2012b). The problem is studied most intensively far tase that only inver-
sions are allowed: witlGRAPPA, MGR, andamGRP three toolkits are available. Recent
algorithmic advances include the fast heuristic appr@®aat.0 that is able to consider
inversions and transpositions in a weighted fashion (Batlal., 2008) and the heuris-
tic PATHGROUPS that dficiently solves the problem to reconstruct ancestral staltes
DCJ operations are considered (Zheng and SEinR011). TreeREx (Bernt et al.,
2008) and the method described recently in Bernt and Midoér{@011) are based
on CREx and allow to analyse genome rearrangements with or with@iven phy-
logenetic tree. A Bayesian approach limited to inversi@navailable in th8ADGER
software. Recent progress on rearrangement-based plisti@abiethods is reported in
Miklos and Tannier (2012).

4.2. Gene-Cluster-Based Approaches

The gene-cluster-based approaches implicitly analysedteecurrence of consec-
utive groups of genes. Sugfene clustersnight also have to satisfy additional re-
strictions, e.g., a limited size. From a mathematical pofntiew, different definitions
of consecutiveness have been investigated (Heber and,209#; Luc et al., 2003).
Empirically one observes that preservation of gene clasi@n be phylogenetically in-
formative. The number of gene clusters not shared by two gesers thus provides a
natural measure of dissimilarity for gene orders that ishastied on any particular set
of rearrangement operations.

Gene clusters of size two are most widely used and best unddrsThebreak-
point distancgBlanchette et al., 1997) is simply the number of adjacesw@ shared

between two gene orders. In general, the number of commaos gasters is a mea-

11



sure for the similarity of two gene orders. For gene ordeth wgual gene content
this can be transformed into a distance measure by normgi{subtractioydivision)

it with the maximum possible number of common gene clusiezs, the number of
gene clusters a gene order has in common with itself. Exteltas to be taken if the
gene orders have filerent gene content. Bergeron and Stoye (2006) proposeato us
the number of common gene clusters of size larger than twdearsed to define a
distance measure for gene orders. Jahn and Stoye (2008] thi$erent gene cluster
definitions and weighting schemes for the generation ofugianary distances being
used in distance based tree reconstruction methods.

Instead of computing distances, binary characters can beedefrom the ab-
sencgpresence of gene clusters in gene orders.MHBE method (Cosner et al., 2000)
uses adjacencies, i.e., gene clusters of size two, for maxiparsimony analyses. The
common theme ofnferCARs, roci, as well as the approaches of Adam et al. (2007)
and Chauve and Tannier (2008) is to derive binary charaetiarfdom given gene or-
ders, reconstruct ancestral binary states in a given pbyletic tree, and to reconstruct
ancestral gene orders from the reconstructed binary stEtedatter presents the main
algorithmic challenge in the gene-cluster-based appemdiecause not all combina-
tions of binary character states correspond to valid gedersr Ma et al. (2006) used
adjacencies by handling the predecessors and succesgaratedy; Stoye and Wittler
(2009), Adam et al. (2007) used consecutive gene sets wiipel restrictions; and
Chauve and Tannier (2008) allows for gene sets such thabtitaioed genes might be
separated by a maximum number of other genes. Adam et al7286onstructs the
ancestral binary states with the Fitch Algorithm and theia doeedy reconstruction of
the gene order. Stoye and Wittler (2009) give an optimalréigm that minimises the
number of state changes. The taalferCARs implements a heuristic approach to find
a maximum weight subset of the ancestral gene clustersahaie realised by a valid
gene order. This problem is solved optimally by the appratedtribed in Chauve and
Tannier (2008).ANGES implements a variety of Gene-Cluster-Based approaches tha
are suitable for analysing mitogenome gene orders.

Recently also gene-cluster-based maximum likelihood @qugires have been in-

troduced (Ma, 2010; Hu et al., 2011). Afidirent approach for deriving phylogenetic

12



characters from gene orders is implementeclincal, which computes circular align-
ments of gene orders. The approach allows to appfgrint costs for tRNAs, rRNAS,

and protein coding genes.

4.3. Mixed Approaches

As discussed above both ways of looking at gene order data &dwantages as
well as drawbacks. The first available attempts to mix the@gghes might be a so-
lution to this dilemma. The foundation of these approachake observation that re-
arrangements correspond to certain patterns in the geste3$UEMRAE, for instance,
uses the correspondence between the margins of an inversicansposition and the
two, respectively three, breakpoints that are found in #r@egrders separated by such
an inversion or transposition. Given a phylogenetic tBMRAE determines pairs and
triples of adjacencies corresponding to inversions antbpasitions, respectively, that
are present in the gene orders on one side of a phylogenktiarepabsent on the other
side. Thereby it reconstructs the rearrangements on thesexfghe given phylogeny.
Also CREx might be interpreted as mixed approach because it deriaesarggements
from patterns of the relative order of common gene clusters.

Clearly, the dichotomy used above is fuzzy and has limitegtid-or instance, Fei-
jao and Meidanis (2011) analysed the formal properties cfaarangement model
where the creation and destruction of a single adjacencyharenly allowed kinds
of rearrangement operations. Thereby it acts on the saneetstdsinferCARs, i.e.,
adjacencies, but instead of coding them as binary chagthey are subject to the

rearrangement operations.

5. Modelling MtDNA sequence evolution

The peculiarities of mitochondrial genome replicationdiéa biases in sequence
composition (Bernt et al., 2012& this special issye Together with the limited
amount of sequence information, these systematic biasgsnimaduce artefacts that
impair the inference of a phylogeny. Systematic errorsedrigarticular from model

misspecification, i.e., from discrepancies between theegubstitutions patterns in mi-

13



togenomic sequence evolution and the model of substitsigomployed by the phylo-
genetic inference software (Whelan and Goldman, 2001 ;&8awt al., 2007).

Various methods and tools exist to select the most adequadielrand promote
more reliable mito-phylogenieBroTtest (Abascal et al., 2005)MODELTEST (Posada,
2008), andlodelGenerator (Keane et al., 2006) are popular programs that automati-
cally select the most fitting substitution models for aminimlg, nucleotides, or both. In
general, the fit of a model to the data can be estimated in arfMaxiLikelihood frame-
work (Likelihood Ratio Test, formally applicable only foested models) or by means
of marginal likelihoods in a Bayesian framework (BayesdagctLikelihoods are con-
veniently adjusted using simple statistics such as AIC a@itB penalise models with
many free parameters (Posada and Buckley, 2004; Abasch] 20@85; Rota-Stabelli
et al., 2009). Cross validation (Stone, 1974) is a more roaleit computationally
expensive way of comparing model fit to the data set. A deéitpipeline is conve-
niently implemented iPhylobayes (Lartillot et al., 2009).

For mitochondrial coding genes, the best fitting model atrtheleotide level is
likely to be nnGTR (General Time Reversible), which assudiffgrent rates for the
six possible substitutions and reversibility (Lanave et2984). The model is “mech-
anistic”, i.e., all parameters are inferred from the datal¢esix parameters can easily
be estimated by directed sampling even from data sets taanaall both in terms of
sequence lengths and number of taxa. Given the within codterogeneity of the
evolutionary process in mitochondrial sequences it maydvar@tageous to partition
the data set by codon position and applyféetent n(nGTR model to each subset (Rota-
Stabelli et al., 2010). Furthermore, it is common pract@&estclude highly saturated
third codon positions from the data set or alternativelypkay a recoding strategy,
which can be further expanded to synonymous sites at firsseomhd codon positions
(Masta et al., 2009).

Although computationally demanding, amino acid subdtihg can also be de-
scribed by a mechanistigaGTR model. The estimation of the 190 entries of the
aaGTR matrix from the relatively short mitochondrial data setsyptaowever, intro-
duce stochastic errors. It is advisable, therefore, to uSdR model pre-estimated

from large well curated data sets, the so-called empiriCER @odels (Adachi and
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Hasegawa, 1996). Various empirical models have been esipegsdesigned for mi-
togenomic studieMtREV (Adachi and Hasegawa, 199@)mamm (Yang et al., 1998),
MtArt (Abascal et al., 2007)itPan (Carapelli et al., 2007), arititZOA (Rota-Stabelli
et al., 2009) are based on the analysis of mitochondriakpretsets from vertebrates,
mammals, arthropods, pancrustaceans, and all metazespgctively. Model fit to
the data set will easily provide the most adequate empinegadel for any given data
set.

These empirical models of protein evolution assume thagtfubion rates are ho-
mogeneous among sites, hence treating all positions ofifre@ent equally. This may
promote systematic artefacts, because models assume bpeitygwhere it does not
exists. The heterogeneous CAT model (Lartillot and Phdigi004) and its empirical
adaptation (Le et al., 2008) relax the homogeneity asswmpind have been shown to
yield more reliable phylogenies using mitochondrial geffiesta-Stabelli et al., 2010).
The CAT model can beftectively coupled with a GTR model (CAT-GTR) leading to
significant improvements over either model (Philippe et2011; Blanquart and Gas-
cuel, 2011). Temporal heterogeneity of the substitutimcess (heterotachy) can be
partially accounted for by the covarion approach as impleettin bothMrBayes or
PhyloBayes (Zhou et al., 2007).

A key problem in mitogenomics is the lineage-specific contj®l heterogene-
ity, which expresses itself at the nucleotide level both asation in G+C content
and as imbalance of nucleotides between the two DNA stré®ascone et al., 1999).
These compositional biases can be so extreme that they fiést the amino acid
content of the encoded proteins (Foster et al., 1997; Rtathe8i et al., 2010). It is
responsible for serious systematic artefacts throughbmetazoans (Gibson et al.,
2005; Hassanin, 2006; Jones et al., 2007). Heterogeneadsisnaf evolution such as
for exampleCAT-BP and the vector model implementedta (Blanquart and Lartillot,
2008; Foster, 2004) allow the stationary frequencies tg wradifferent parts of the
tree. This is computationally demanding but can indeedamrae systematic artefacts

in mitogenomic studies (Bourlat et al., 2009; Blanquart &agcuel, 2011).
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6. Concluding Remarks

The currently available and still fast growing collectidimaitochondrial sequence
data contains highly valuable phylogenetic informatiode4uate tools that a geared to
the specifics of mitogenomic sequences, however, are estjtdrunlock this treasure
trove.

Comparative analyses of mitogenomes and phylogeny racmtisin requires the
availability of reliable and consistent annotations fogkasets of species. A problem
that can be solved with one of the approaches described ifirgtegart of the re-
view. Still, there are open problems, e.g., precise stratannotation of rRNA genes
or features of the mitochondrial control region. An issueafticular importance is
knowledge on the precise properties of the evolutionarggsses. For sequences this
is treated by the methods to derive models for sequence temolweated in the last
section. For gene orders the gene-cluster-based appsoeicbemvents the problem
of the unknown mode of rearrangement evolution. But thenstraction of the rear-
rangements still calls for the rearrangement-based approa

The present review of the bioinformatics methods for thdyaigof mitochondrial
genomes not only may serve as a comprehensive guide foefahalyses but also a

guide towards the pressing methodological issues thatfeawvained unsolved so far.
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