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Abstract

In this review we provide an overview of various bioinformatics methods and tools

for the analysis of metazoan mitochondrial genomes. We compare available dedicated

databases and present current tools for accurate genome annotation, identification of

protein coding genes, and determination of tRNA and rRNA models.We also evaluate

various tools and models for phylogenetic tree inference using gene order or sequence

based data. As for gene order based methods, we compare rearrangement based and

gene cluster based methods for gene order rearrangement analysis. As for sequence

based methods, we give special emphasis to substitution models or data treatment that

reduces certain systematic biases that are typical for metazoan mitogenomes such as

within genome and/or among lineage compositional heterogeneity.
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Models, Gene Annotation

1. Introduction

In many aspects animal mitogenomes differ substantially from sources of other ge-

nomic data (Bernt et al., 2012a,in this special issue). With a size rarely exceeding

20kb and a nearly invariant gene inventory typically comprising 22 tRNAs, 2 rRNAs,

and only 13 distinctive protein-coding genes they are amenable to computational tech-

niques that are applicable to few other genetic systems. Thesmall size of the genomes

makes it possible to achieve nearly complete and quite accurate annotations in the ab-

sence of experimental transcript information. The high variability in particular of the

tRNA sequences, on the other hand, requires specialised methods for tRNA gene find-

ing. The constancy of the mitogenome gene content suggests to view mitochondrial

gene orders as signed permutations. These signs indicate the reading direction, which

is determined uniquely, since the two DNA strands of the circular mitogenome are

usually distinguishable by their base composition.

In response to these atypical features, a large number of algorithms, pipelines, mod-

els, and software tools have been developed specifically formitogenomic studies. Sev-

eral databases are dedicated exclusively to make the results of such computational anal-

yses available to the community. The comparison of mitochondrial gene orders benefits

from their constant gene content which allows to apply the available methods devel-

oped for the permutation model that is of limited use for genetic systems with large

differences in gene content, e.g., whole genome comparisons. Clearly, many compu-

tational tasks to analyse mitogenomes do not require specifically dedicated tools. For

instance, generic software tools are applicable to assemble mitogenomic sequences

(Boore et al., 2005), to construct sequence alignments, andto infer phylogenetic trees

from sequence alignments, although for the latter specialised substitution models are

required.

Here, we review only the bioinformatics infrastructure specialised to mitogenomics.

We collect URLs and references for the databases, the software tools that are avail-

able for download, and the web services that are discussed throughout this contribu-
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Table 1: Bioinformatics Resources discussed in the text.

Resource URL References

Databases

GenBank www.ncbi.nlm.nih.gov/genbank/ Benson et al. (2011)
GOBASE† gobase.bcm.umontreal.ca/ O’Brien et al. (2009)
Mamit-tRNA mamit-trna.u-strasbg.fr/ Pütz et al. (2007)
MamMiBase www.mammibase.lncc.br/ de Vasconcelos et al. (2005)
MetAMIGA a amiga.cbmeg.unicamp.br/ Feijão et al. (2006)
MitoZOA mi.caspur.it/mitozoa/ Lupi et al. (2010)
NCBI O.R. www.ncbi.nlm.nih.gov/genomes/ORGANELLES/

organelles.html

Wolfsberg et al. (2001)

OGRe drake.mcmaster.ca/ogre/ Jameson et al. (2003)
RefSeq www.ncbi.nlm.nih.gov/RefSeq/ Pruitt et al. (2007)
tRNAdb trnadb.bioinf.uni-leipzig.de/ Jühling et al. (2009)

Web Services

ARWEN www.acgt.se/online.html Laslett and Canbäck (2008)
CREx pacosy.informatik.uni-leipzig.de/crex/ Bernt et al. (2007)
DOGMA dogma.ccbb.utexas.edu/ Wyman et al. (2004)
FACIL↓ www.cmbi.ru.nl/FACIL/ Dutilh et al. (2011)
GENESIS www.uni-ulm.de/in/theo/research/genesis.

html

Bader and Ohlebusch (2007)

GenDecoder darwin.uvigo.es/software/gendecoder.html Abascal et al. (2009)
MGR nbcr.sdsc.edu/GRIMM/mgr.cgi Bourque and Pevzner (2002)
MITOS mitos.bioinf.uni-leipzig.de/ Bernt et al. (2012c) (this issue)
MOSAS mosas.byu.edu/ Sheffield et al. (2010)
roci bibiserv.techfak.uni-bielefeld.de/roci/ Stoye and Wittler (2009)
tRNAscan-SE ↓ lowelab.ucsc.edu/tRNAscan-SE/ Lowe and Eddy (1997)
UniMoG bibiserv.techfak.uni-bielefeld.de/dcj/ Bergeron et al. (2006)

Software for Download

ANGES http://paleogenomics.irmacs.sfu.ca/ANGES/ Jones et al. (2012)
BADGER www.badger.duq.edu/ Larget et al. (2005)
circal www.bioinf.uni-leipzig.de/Publications/

SUPPLEMENTS/04-015/

Fritzsch et al. (2006)

EMRAE www.gis.a-star.edu.sg/˜bourque/download/

EMRAE.zip

Zhao and Bourque (2009)

GRAPPA www.cs.unm.edu/˜moret/GRAPPA/ Moret et al. (2001)
inferCARs www.bx.psu.edu/miller_lab/car/ Ma et al. (2006)
MiTFi www.bioinf.uni-leipzig.de/Software/MiTFi/ Jühling et al. (2012)
PATHGROUPS albuquerque.bioinformatics.uottawa.ca/lab/

software.html

Zheng and Sankoff (2011)

PHYLO http://www.uni-ulm.de/in/theo/m/alumni/

bader.html

Bader et al. (2008)

a previously calledAMIGA. † no longer updated.↓ also available for download and local use.
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tion (Tab. 1).

2. Databases

GenBank andRefSeq are the most commonly used repositories of sequence data.

WhereasGenBank provides access to original sequence data and associated annotations

including taxonomic and bibliographic information,RefSeq aims to provide expert-

curated and largely non-redundant information based on originalGenBank entries. The

NCBI Organelle Resources database provides easy access to the mitochondrial genome

data ofRefSeq, to information such as the arrangement of the mitochondrial proteins,

and allows specialised BLAST searches. Access to all three resources is provided

through NCBI’s gateway, hence we will, for brevity, refer tothem collectively as NCBI.

The currentGenBank (release 184) contains 13,916 complete metazoan mitogenomes

of which 2,355 are included inRefSeq (release 48). Since NCBI provides data that

were collected by different researchers aiming for different research questions and us-

ing different sets of tools, a certain amount of inconsistency in theavailable annotations

is unavoidable despite all curatorial efforts (Boore, 2006a).GenBank andRefSeq dis-

play very uneven taxonomic coverage.RefSeq contains mitogenomes of 1,627 Chor-

data, 376 Arthropoda, and 104 Mollusca. The policy ofRefSeq to provide “only one

example of each natural biological molecule for major organisms” (Mizrachi, 2007)

is a potential problem for taxa with doubly uniparental inheritance, e.g., many Mol-

lusca or cryptic species (Lupi et al., 2010). Several databases have been built upon the

GenBank or RefSeq with the aim of improving annotation and data quality. In many

cases they also provide access to additional tools for data analysis. Important “derived”

databases areOGRe, MetAMIGA, andMitoZOA (Tab. 2).

An important property of a database is the consistency of thedata presented to the

user. Among the six databases, onlyMetAMIGA uses a consistent naming convention

for the genes for all species.MitoZOA internally uses a list of synonymous gene names

for retrieving data, but presents search results using the original, inconsistent annota-

tion. AlthoughOGRe originally used a consistent naming scheme, inconsistencies were

introduced with a recent update. The three NCBI databases and MitoZOA provide a
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Table 2: Comparison of the databases; Meaning of the symbols: � present,� absent,⊛ partially available;

Upper section: usability of data. Criteria are the consistency of gene names, the availability of (easily)

parsable output, consistent designations of annotation items, and coherent definitions of gene boundaries.

Middle section: improvements over primary data. Error screening (consistent, documented, traceable error

screening, claimed and obvious improvements), anticodon annotation (available for all tRNAs), additional

information (e.g., from literature); Lower section: versatility of search end data export. Options for searching

data and downloading them in common formats: species set selection per search or from a list of species, se-

quences of features (as FASTA), gene orders (available for the selected species); complete database available

for download;†: only HTML table,∗: warns for potential problems,§: only list of unique gene orders
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d feature seq (nt/aa) �/� �/� �/� �/�

gene orders (w/wo tRNA) �/� �/�§ �/� �/�

complete database � � � �

parsable format for downloading the genome annotations (GenBank and EMBL format

respectively), whileOGRe andMetAMIGA display search results only as HTML-tables

for viewing in a web browser. OnlyMitoZOA provides a consistent method for defin-

ing ORFs and implements rudimentary methods for determining gene boundaries. For

instance, it warns of potential errors and non-canonical start codons. All three de-

rived databases improve to some extent the annotations derived from NCBI, but only

MitoZOA provides a well defined, semi-automatic procedure for constructing the en-

5



hanced database entries. Whereas inMitoZOA the anticodons of tRNAs are annotated

for duplicated tRNAs, inOGRe this information is stored for all Leucine and Serine

tRNAs, andMetAMIGA does not contain this information. Graphical representations of

the mitogenome annotation are available from all databasesexceptMitoZOA.

The databases do not only differ in the level of improvements and the amount of

extensions of the annotation, but also in the versatility oftheir user interfaces. Beyond

the ubiquitous search by species name, alphabetical or taxonomic browsing (OGRe,

MetAMIGA), taxonomic search (MetAMIGA, MitoZOA) may be available.MitoZOA pro-

vides an advanced search function, allowing queries for genetic code, base composi-

tion, or genomic features such as a specific gene order. In alldatabases it is possible

to export sequence data of single or multiple features for a previously selected set of

species. A download of the complete database is only possible forGenBank, RefSeq,

andMitoZOA. With the exception ofMetAMIGA all databases can output gene order

data. In the case of NCBI, this is restricted to protein coding genes.

Some of the databases offer additional useful functions.MetAMIGA, for instance,

can display information related to codon- and nucleotide usage for the selected species.

A similar feature is available inOGRe for selected species. NCBI in particular offers

various sequence search tools. Pairwise comparisons of gene orders in terms of break-

points can be performed inOGRe’s interface.

In addition to these general-purpose databases, there are two curated specialised

collections of mitochondrial tRNAs:Mamit-tRNA andtRNAdb provide high quality

structural annotations of tRNAs for 150 Mammalia and 152 Metazoa, respectively.

These databases provide secondary structure information,including consensus struc-

tures and information on deviations from typical folds. Another specialised database,

MamMiBase, does not provide annotations or sequence data, but allows to compute

alignments and phylogenetic trees of stored protein and nucleotide sequences from

mammalian mitochondria.

Several databases described in the literature are no longerupdated and maintained

or have gone offline. Among the first group isGOBASE, compiling diverse data related

to mitochondria and chloroplasts. Not available any more are MitBASE (Attimonelli

et al., 1999),AMmtDB (Lanave et al., 1999),MitoNUC (Attimonelli et al., 2002), or
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Mitome (Lee et al., 2008).

3. Annotation and Re-Annotation

3.1. tRNA Detection

Mitochondrial tRNAs frequently have aberrant sequence andstructure features. In

contrast to nuclear tRNAs, they are therefore often hard to find even in the small mi-

togenomes. Three specialised tools are available for tRNA annotation.tRNAscan-SE,

the most commonly used software for this purpose, features aspecial mode for or-

ganelle genomes in which a special covariance model is employed by using the ap-

proach of Eddy and Durbin (1994) and the filtering of pseudogenes is disabled.

ARWEN is a heuristic approach that starts with a search for three adjacent hairpin

loops surrounded by additional potential base pairs that meet constraints on stem and

loop lengths typical for tRNA clover leaf structures. The compliance of the candidate

with the pattern is translated into a score value. A major advantage ofARWEN is its

speed.

While tRNAscan-SEandARWEN use general models to recognise all tRNAs,MiTFi

employsInfernal (Nawrocki et al., 2009) to search the mitogenome using a different

covariance model for each of the tRNA families (a single model is employed for the

two tRNA-Leu genes). One advantage ofMiTFi is thatInfernal computes reliable

E-values.MiTFi makes it easy to detect duplicate tRNA genes since alternative non-

conflicting predictions are also reported. It appears thatMiTFi is more accurate than

the other two tools (Jühling et al., 2012). Its false negative rate is much lower than that

of tRNAscan-SEwhile it detects much fewer false positives compared toARWEN.

3.2. Genome Annotation

Three web services offer full-fledged annotation pipelines for mitogenomes:DOGMA,

MOSAS, andMITOS. All three use BLASTX searches against internal databases to iden-

tify protein coding genes,DOGMA and MOSAS also employ BLAST to detect rRNA

genes.MITOS usesInfernal and covariance models of mitochondrial rRNAs to iden-

tify them in a sequence. Database sequences from a wide variety of Metazoa are used
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for the search inDOGMA andMITOS; MOSAS is currently restricted to insects. BothDOGMA

andMOSAS usetRNAscan-SE for the identification of tRNA genes, whileMITOS uses

MiTFi for tRNA annotation. TheMITOS pipeline attempts to improve the prediction of

gene boundaries automatically.

All three tools provide graphical and tabular output and they let export Sequin

formatted annotation files to facilitate the submission of new mitogenomes toGenBank.

MOSAS and DOGMA assist the user in selecting from alternative annotations and fine

tuning the annotation. TheMOSAS system offers users to manage their own database

of up to 2,000 annotated sequences, to perform sequence searches against the NCBI

databases, and to produce and inspect multiple alignments.MITOS provides also direct

access to gene order files.

3.3. Determination of the Genetic Code

Mitochondrial genetic codes can differ in the assignment of several codons from the

standard genetic code, reviewed by (Knight et al., 2001). Currently available methods

to estimate the genetic code use a comparative approach.GenDecoder uses a major-

ity vote on the amino acids aligned with codon triplets. Highly variable alignment

columns can be excluded. It requires an annotation of protein coding sequences for

the input mitogenome.FACIL does not need any annotation. It uses a HMMER search

of provisional translations against Pfam-fs protein domain models (Finn et al., 2010)

for the mitochondrial proteins.FACIL also computes confidence scores for its codon

assignments.

4. Gene order

The analysis of gene orders is a promising source of phylogenetic information (e.g.,

Boore et al., 1995; Sankoff et al., 1992). For mitogenomes, in particular, rearrange-

ments are often considered to be infrequent and to affect mostly tRNA genes. Cases

of reversion or convergent evolution are thought to be rare (Boore, 1999). Therefore

they are particularly interesting for problems of deep phylogeny (Boore, 2006b). With

increasing taxon sampling, however, more and more exceptions have been reported,
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such as the variable gene order of the Ascidians (Gissi et al., 2010) contrasting the well

preserved deuterostome gene order or cases of convergent evolution in Hymenoptera

(Dowton et al., 2009). Furthermore, due to the small size, the nearly conserved gene

inventory, and the wide-spread availability gene order analysis is of particular interest

for animal mitogenomes. Because the available tools have been considered as insuf-

ficient until recently (Grande et al., 2008) most of the published work on gene order

comparisons is still carried out manually, a practice that is likely to change in the near

future. Several methods automatising the comparative analysis have been developed

in recent years and a variety of software tools implementingthese approaches are be-

coming publicly available. In addition, manual analyses become impractical with the

fast growing number of available mitochondrial genome (Boore, 1999). For a detailed

presentation of the formal study of gene order evolution problems we refer to Fertin

et al. (2009); we focus here on the available tools.

One may distinguish two main ways of treating gene order data. The historically

older approach assumes that certain well-defined types of elementary “operations” are

responsible for evolutionary changes in mitogenomic gene orders. These types of op-

erations areinversion(e.g., Smith et al., 1990),transposition(e.g., Boore et al., 1995),

inverse transposition(e.g., Boore et al., 1998), andtandem duplication random loss

(TDRL) (e.g., Boore, 2000). Empirical evidence and mechanistic considerations are

briefly reviewed in (Bernt et al., 2012a,in this special issue). Alternatively differ-

ences of gene orders are measured without recourse to specific operations, but instead

properties of the gene orders itself, i.e., gene clusters, are used. In the following we

will call the formerrearrangement-basedand the lattergene-cluster-basedapproach.

We emphasise that this classification pertains to different ways of looking at gene or-

der data. Both types can be analysed within the standard frameworks for phylogeny

reconstructions, i.e., by means of distance methods, maximum parsimony, and max-

imum likelihood, as well as with different aims, e.g., reconstruction of phylogeny or

ancestral states. It remains unclear, at present, which approach is preferable. Even

though the rearrangement-based strategy seems more appealing from a biological point

of view because of the underlying mechanistic model, it remains unknown how vari-

able rates of rearrangements and prevalence of particular operations are over longer
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evolutionary time-scales. The advantage of the gene-cluster-based approach is that it is

rearrangement-model-free, i.e., it does not make explicitassumptions on the type and

frequency of rearrangement operations. But instead the phylogenetic significance of

the considered gene clusters is assumed.

4.1. Rearrangement-Based Approaches

The eventual goal of the rearrangement-based approach is toreconstruct the actual

sequence of rearrangement events that have led to the contemporary gene orders. Usu-

ally, one considers a maximum parsimony problem for a set of allowed rearrangement

operations and associated costs. The simplest case is to minimise thedistance, i.e.,

the weighted number of rearrangements, that transform a given gene order into another

one.

Major progress has been made in developing algorithms for computing rearrange-

ment distances for the case that only one particular type of operations occur. The

best-studied cases are inversions (e.g., Hannenhalli and Pevzner, 1995) and TDRLs

(Chaudhuri et al., 2006; Bernt et al., 2011). Nevertheless,there are still major unsolved

problems that are relevant to the study of mitochondrial gene order evolution, including

the lack of efficient exact algorithms for rearrangement problems incorporating trans-

positions, where only approximation algorithms are known,implemented for instance

in GENESIS. Recently, the so called double cut and join (DCJ) rearrangement opera-

tion (Yancopoulos et al., 2005; Bergeron et al., 2006), i.e., the cut of a gene order at

two places with a subsequent re-joining in a different order, was proposed to solve the

problem more efficiently. This operation incorporates inversions, circularisation and

linearisation, and block interchanges (a generalisation of transpositions). Thereby it

circumvents the algorithmic complications of transpositions. A recent implementation

is UniMoG. CREx is a heuristic tailored for studying rearrangement scenarios for pairs

of mitochondrial gene orders (Bernt et al., 2007). It takes inversions, transpositions,

inverse transpositions, and TDRLs into account. Also the other approaches discussed

so far are based on pairwise comparisons and produce rearrangement distances that can

be further analysed by distance matrix methods (e.g., Wang et al., 2006).

Alternatively, rearrangement parsimony problems have been considered. These
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approaches attempt to reconstruct ancestral gene orders ina given phylogenetic tree

so that the sum of distances along the edges is minimised. In addition, the phyloge-

netic tree itself can be reconstructed by standard techniques enumerating phylogenies

(Felsenstein, 2004). In contrast to the corresponding problem for sequences, already

the problem of reconstructing ancestral gene orders for a given phylogeny is in most

cases a computationally hard problem (e.g., Caprara, 2003;Tannier et al., 2009), but

a few tractable cases have been reported recently (Feijao and Meidanis, 2011; Bernt

et al., 2012b). The problem is studied most intensively for the case that only inver-

sions are allowed: withGRAPPA, MGR, andamGRP three toolkits are available. Recent

algorithmic advances include the fast heuristic approachPHYLO that is able to consider

inversions and transpositions in a weighted fashion (Baderet al., 2008) and the heuris-

tic PATHGROUPS that efficiently solves the problem to reconstruct ancestral stateswhen

DCJ operations are considered (Zheng and Sankoff, 2011). TreeREx (Bernt et al.,

2008) and the method described recently in Bernt and Middendorf (2011) are based

on CREx and allow to analyse genome rearrangements with or without agiven phy-

logenetic tree. A Bayesian approach limited to inversions is available in theBADGER

software. Recent progress on rearrangement-based probabilistic methods is reported in

Miklós and Tannier (2012).

4.2. Gene-Cluster-Based Approaches

The gene-cluster-based approaches implicitly analyse theco-occurrence of consec-

utive groups of genes. Suchgene clustersmight also have to satisfy additional re-

strictions, e.g., a limited size. From a mathematical pointof view, different definitions

of consecutiveness have been investigated (Heber and Stoye, 2001; Luc et al., 2003).

Empirically one observes that preservation of gene clusters can be phylogenetically in-

formative. The number of gene clusters not shared by two geneorders thus provides a

natural measure of dissimilarity for gene orders that is notbased on any particular set

of rearrangement operations.

Gene clusters of size two are most widely used and best understood. Thebreak-

point distance(Blanchette et al., 1997) is simply the number of adjacencies not shared

between two gene orders. In general, the number of common gene clusters is a mea-
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sure for the similarity of two gene orders. For gene orders with equal gene content

this can be transformed into a distance measure by normalising (subtraction/division)

it with the maximum possible number of common gene clusters,i.e., the number of

gene clusters a gene order has in common with itself. Extra care has to be taken if the

gene orders have different gene content. Bergeron and Stoye (2006) proposed to use

the number of common gene clusters of size larger than two canbe used to define a

distance measure for gene orders. Jahn and Stoye (2009) tested different gene cluster

definitions and weighting schemes for the generation of evolutionary distances being

used in distance based tree reconstruction methods.

Instead of computing distances, binary characters can be derived from the ab-

sence/presence of gene clusters in gene orders. TheMPBEmethod (Cosner et al., 2000)

uses adjacencies, i.e., gene clusters of size two, for maximum parsimony analyses. The

common theme ofinferCARs, roci, as well as the approaches of Adam et al. (2007)

and Chauve and Tannier (2008) is to derive binary character data from given gene or-

ders, reconstruct ancestral binary states in a given phylogenetic tree, and to reconstruct

ancestral gene orders from the reconstructed binary states. The latter presents the main

algorithmic challenge in the gene-cluster-based approaches, because not all combina-

tions of binary character states correspond to valid gene orders. Ma et al. (2006) used

adjacencies by handling the predecessors and successors separately; Stoye and Wittler

(2009), Adam et al. (2007) used consecutive gene sets without size restrictions; and

Chauve and Tannier (2008) allows for gene sets such that the contained genes might be

separated by a maximum number of other genes. Adam et al. (2007) reconstructs the

ancestral binary states with the Fitch Algorithm and then doa greedy reconstruction of

the gene order. Stoye and Wittler (2009) give an optimal algorithm that minimises the

number of state changes. The toolinferCARs implements a heuristic approach to find

a maximum weight subset of the ancestral gene clusters that can be realised by a valid

gene order. This problem is solved optimally by the approachdescribed in Chauve and

Tannier (2008).ANGES implements a variety of Gene-Cluster-Based approaches that

are suitable for analysing mitogenome gene orders.

Recently also gene-cluster-based maximum likelihood approaches have been in-

troduced (Ma, 2010; Hu et al., 2011). A different approach for deriving phylogenetic
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characters from gene orders is implemented incircal, which computes circular align-

ments of gene orders. The approach allows to apply different costs for tRNAs, rRNAs,

and protein coding genes.

4.3. Mixed Approaches

As discussed above both ways of looking at gene order data have advantages as

well as drawbacks. The first available attempts to mix the approaches might be a so-

lution to this dilemma. The foundation of these approaches is the observation that re-

arrangements correspond to certain patterns in the gene clusters.EMRAE, for instance,

uses the correspondence between the margins of an inversionor transposition and the

two, respectively three, breakpoints that are found in the gene orders separated by such

an inversion or transposition. Given a phylogenetic tree,EMRAE determines pairs and

triples of adjacencies corresponding to inversions and transpositions, respectively, that

are present in the gene orders on one side of a phylogenetic split and absent on the other

side. Thereby it reconstructs the rearrangements on the edges of the given phylogeny.

Also CREx might be interpreted as mixed approach because it derives rearrangements

from patterns of the relative order of common gene clusters.

Clearly, the dichotomy used above is fuzzy and has limitations. For instance, Fei-

jao and Meidanis (2011) analysed the formal properties of a rearrangement model

where the creation and destruction of a single adjacency arethe only allowed kinds

of rearrangement operations. Thereby it acts on the same objects asinferCARs, i.e.,

adjacencies, but instead of coding them as binary characters they are subject to the

rearrangement operations.

5. Modelling MtDNA sequence evolution

The peculiarities of mitochondrial genome replication lead to biases in sequence

composition (Bernt et al., 2012a,in this special issue). Together with the limited

amount of sequence information, these systematic biases may introduce artefacts that

impair the inference of a phylogeny. Systematic errors arise in particular from model

misspecification, i.e., from discrepancies between the true substitutions patterns in mi-
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togenomic sequence evolution and the model of substitutions employed by the phylo-

genetic inference software (Whelan and Goldman, 2001; Baurain et al., 2007).

Various methods and tools exist to select the most adequate model and promote

more reliable mito-phylogenies.ProTtest (Abascal et al., 2005),jMODELTEST (Posada,

2008), andModelGenerator (Keane et al., 2006) are popular programs that automati-

cally select the most fitting substitution models for amino acids, nucleotides, or both. In

general, the fit of a model to the data can be estimated in a Maximum Likelihood frame-

work (Likelihood Ratio Test, formally applicable only for nested models) or by means

of marginal likelihoods in a Bayesian framework (Bayes factor). Likelihoods are con-

veniently adjusted using simple statistics such as AIC and BIC to penalise models with

many free parameters (Posada and Buckley, 2004; Abascal et al., 2005; Rota-Stabelli

et al., 2009). Cross validation (Stone, 1974) is a more robust albeit computationally

expensive way of comparing model fit to the data set. A dedicated pipeline is conve-

niently implemented inPhylobayes (Lartillot et al., 2009).

For mitochondrial coding genes, the best fitting model at thenucleotide level is

likely to be nnGTR (General Time Reversible), which assumesdifferent rates for the

six possible substitutions and reversibility (Lanave et al., 1984). The model is “mech-

anistic”, i.e., all parameters are inferred from the data set. Its six parameters can easily

be estimated by directed sampling even from data sets that are small both in terms of

sequence lengths and number of taxa. Given the within codon-heterogeneity of the

evolutionary process in mitochondrial sequences it may be advantageous to partition

the data set by codon position and apply a different nnGTR model to each subset (Rota-

Stabelli et al., 2010). Furthermore, it is common practice to exclude highly saturated

third codon positions from the data set or alternatively, employ a recoding strategy,

which can be further expanded to synonymous sites at first andsecond codon positions

(Masta et al., 2009).

Although computationally demanding, amino acid substitutions can also be de-

scribed by a mechanisticaaGTR model. The estimation of the 190 entries of the

aaGTR matrix from the relatively short mitochondrial data sets may, however, intro-

duce stochastic errors. It is advisable, therefore, to use aGTR model pre-estimated

from large well curated data sets, the so-called empirical GTR models (Adachi and
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Hasegawa, 1996). Various empirical models have been expressively designed for mi-

togenomic studies:MtREV (Adachi and Hasegawa, 1996),Mtmamm (Yang et al., 1998),

MtArt (Abascal et al., 2007),MtPan (Carapelli et al., 2007), andMtZOA (Rota-Stabelli

et al., 2009) are based on the analysis of mitochondrial proteins sets from vertebrates,

mammals, arthropods, pancrustaceans, and all metazoans, respectively. Model fit to

the data set will easily provide the most adequate empiricalmodel for any given data

set.

These empirical models of protein evolution assume that substitution rates are ho-

mogeneous among sites, hence treating all positions of the alignment equally. This may

promote systematic artefacts, because models assume homogeneity where it does not

exists. The heterogeneous CAT model (Lartillot and Philippe, 2004) and its empirical

adaptation (Le et al., 2008) relax the homogeneity assumption and have been shown to

yield more reliable phylogenies using mitochondrial genes(Rota-Stabelli et al., 2010).

The CAT model can be effectively coupled with a GTR model (CAT-GTR) leading to

significant improvements over either model (Philippe et al., 2011; Blanquart and Gas-

cuel, 2011). Temporal heterogeneity of the substitution process (heterotachy) can be

partially accounted for by the covarion approach as implemented in bothMrBayes or

PhyloBayes (Zhou et al., 2007).

A key problem in mitogenomics is the lineage-specific compositional heterogene-

ity, which expresses itself at the nucleotide level both as variation in G+C content

and as imbalance of nucleotides between the two DNA strands (Saccone et al., 1999).

These compositional biases can be so extreme that they also affect the amino acid

content of the encoded proteins (Foster et al., 1997; Rota-Stabelli et al., 2010). It is

responsible for serious systematic artefacts throughout all metazoans (Gibson et al.,

2005; Hassanin, 2006; Jones et al., 2007). Heterogeneous models of evolution such as

for exampleCAT-BP and the vector model implemented inP4 (Blanquart and Lartillot,

2008; Foster, 2004) allow the stationary frequencies to vary in different parts of the

tree. This is computationally demanding but can indeed overcome systematic artefacts

in mitogenomic studies (Bourlat et al., 2009; Blanquart andGascuel, 2011).
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6. Concluding Remarks

The currently available and still fast growing collection of mitochondrial sequence

data contains highly valuable phylogenetic information. Adequate tools that a geared to

the specifics of mitogenomic sequences, however, are required to unlock this treasure

trove.

Comparative analyses of mitogenomes and phylogeny reconstruction requires the

availability of reliable and consistent annotations for large sets of species. A problem

that can be solved with one of the approaches described in thefirst part of the re-

view. Still, there are open problems, e.g., precise structural annotation of rRNA genes

or features of the mitochondrial control region. An issue ofparticular importance is

knowledge on the precise properties of the evolutionary processes. For sequences this

is treated by the methods to derive models for sequence evolution treated in the last

section. For gene orders the gene-cluster-based approaches circumvents the problem

of the unknown mode of rearrangement evolution. But the reconstruction of the rear-

rangements still calls for the rearrangement-based approach.

The present review of the bioinformatics methods for the analysis of mitochondrial

genomes not only may serve as a comprehensive guide for future analyses but also a

guide towards the pressing methodological issues that haveremained unsolved so far.
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Ribeiro, C., Yokaichiya, F., Armôa, G. R. G., Pereira, G. d.S. P., da Silva, I. T.,

Schrago, C. G., Fernandes, A. L. V., da Silveira, A. R., Carneiro, A. G., Carvalho,

B. M., Viana, C. J. M., Gramkow, D., Lima, F. J., Corrêa, L. G.G., Mudado, M.
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