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ABSTRACT

Motivation: Next generation sequencing has become an important
tool in molecular biology. Various protocols to investigate genomic,
transcriptomic, and epigenomic features across virtually all species
and tissues have been devised. For most of these experiments, one
of the first crucial steps of bioinformatic analysis is the mapping of
reads to reference genomes.

Results: Here, we present thorough benchmarks of our read
aligner segenehl in comparison with other state-of-the-art methods.
Furthermore, we introduce the tool | ack to rescue unmapped RNA-
seq reads which works in conjunction with segenehl and many other
frequently used split-read aligners.

Availability: | ack is distributed together with segenehl and
freely available at www. bi oi nf. uni - | ei pzi g. de/ Sof t war e/
segenehl /.

Contact: steve@bioinf.uni-leipzig.de

1 INTRODUCTION

reads that join two or more exons, the aligner is requiredspit”

the read and align its parts to the appropriate exons in fieeargce
genome. Alternatively, the mapper needs to be provided with
junction or paired-end information to predict or constrag®NA
references. Today, most of the tools allow only a singlet,sphile
reads that span multiple exon-exon junctions may not beguhpp
aligned. As read lengths are constantly increasing, dlgos that
allow multiple splits are clearly favorables.egenehl facilitates
multi-split alignments using a local transition algorithimat was
shown to perform very well in simulated and read data bencksna
(Hoffmannet al., 2014). The alignment of reads of bisulfite-treated
DNA, i.e. methyl-cytosine sequencing, also requires spizeid
algorithms and methods (Smit al., 2009; Chenet al., 2010;
Krueger & Andrews, 2011). The bisulfite and split-read feasu
of segenehl have recently been published along with extensive
benchmarks (Ottet al., 2012; Hoffmanret al., 2014). The diversity

of tools and the rapid development of algorithms and softwar
requires frequent, transparent, and reproducible bendsmeere,
we present the results of performance tests for DNA-seq aa-R
seq read alignments and provide detailed information omthe

The problem of aligning (short) sequencing reads to (Irger we have therefore assembled an extensive electronic suppfe

reference genomes has received considerable attentioacentr

years, and many different alignment tools based on a vadety

distinct algorithmic approaches have been published sé furvey
at the EBI currently counts more than 80 different mappeosgEca
et al., 2012). This competitive field has seen quite a bit of evohuti
and progress. Early mappers were restricted to aligning sbads
with no or few mismatches and reads with insertions and ideket
were excluded more often than nddowt i e (Langmeadet al.,
2009; Langmead & Salzberg, 2012) asdgenehl (Hoffmann

comprising all data, custom scripts, and detailed desoripton
how to re-run the analyses. In reference to recent heatestekebn
the comparison of mappers, we would like to stress that braadks
only measure specific aspects and may not be used to claim any
universal superiority or inferiority of any tool. We wouléké to
encourage all readers to reproduce this data and to comethp wi
alternative benchmarks.

In addition to the benchmarking, we propose a novel toatk,
for remapping previously unmapped RNA-seq reads usinglisapp

etal., 2009) were among the first next-generation sequencing JNGSspjice junctions. The workflow of common, split-read, anstitfite

aligners that explicitly implemented strategies for alignreads

with indels. The rise of RNA-seq protocols has added yetlarot

layer of complexity to the problem: splicing. When mappifigNA

*to whom correspondence should be addressed

mapping usingegenehl and remapping by ack is depicted in
Figure 1.

1 http://ww. bi oi nf.uni-|eipzig.de/publications/
suppl enent s/ 13- 008
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Fig. 1: Workflow of segenehl and| ack. segenehl is able to
align paired and unpaired DNA-seq, RNA-seq, and bisulfieied

All aligners were benchmarked both with their default paztars
and with parameter settings optimized for sensitivity anchher of
false positive alignments, respectively.

The evaluation with default parameters shows that their
performance varied quite strongly with length and type d& th
input. Neverthelesssegenehl performed better with respect to
sensitivity and number of false positive alignments tharstraf
the other tools (Fig. 2a). In the case of lllumina reaisgenehl
achieved the highest sensitivity for simulated reads a$ ageteal
DNA-seq and mRNA-seq reads. At the same time, it reported
the lowest number of sub-optimal alignments with mRNA-seq
data (Fig. 2a). This is also the case for paired-end mRNA-seq
data. In all-best benchmarks, it outperformed all othelstéested
in terms of sensitivity while maintaining low false poséivates
(Supplementary Figure S1 and Table S3). In any-best bermisma
a better sensitivity was only achieved BYWA- MEM on Illumina
paired-end DNA-seq data and IBMA on Illumina shortRNA-
seq data (Supplementary Figure S2 and Table S3) with 0.1%
and 5% increase, respectively. In the latter ca®@A reported
80% more false positive alignments as comparegdegenehl .
While segenehl performed similarly well in the all-best and
any-best scenarios, relatively large differences can lservkd for
Bowt i e 2, BWA, andBWA- MEMsince their default parameters are
presumably tailored to find one instead of all optimal aligmts
with significant effects on the run time.

A larger difference among the read aligners can be observed i
lllumina short-read and 454 data (Supplementary FigureS31
In the first casesegenehl ’s closest competitor waBWA, which,

DNA-seq data. Previously unmappped reads can be rescubd WIhowever, achieved low sensitivities in most of the lllumaiagle-

| ack.

2 RESULTS
2.1 Comparison of read aligners

Because several aligners have limitations in finding migtits, we
evaluated the performance of alignment programs in twedifft
manners as proposed by Holtgregal. (2011). First, we measured
the sensitivity and the number of false positive (FP) alignta for
each program in finding ‘at least one’ optimal hit (any-besith
respect to the unit edit distance. The second benchmarkumezhs
the performance in finding ‘all’ optimal hits (all-best). &Hests
were carried out on different data sets comprising simdlated

end benchmarks. In all 454 scenarisggenehl and BWA- MEM
turned out to be the best aligners among the tested tools.

To explore the trade-off between sensitivity and the number
of false positive alignments, benchmarks with differentapaeter
settings were carried out. For each tool, we selected those
parameter sets with best sensitivity and lowest number Isk fa
positive alignments. Regardless of evaluation type (edtbor
any-best) and parameter setting (default, best-sengitiiest-
FP), the sensitivities afegenehl exceeded 99% in all datasets
except for shortRNA-seq (Supplementary Figures S1-S2 ahtes
S3-S5) wheresegenehl still achieved the best or second-best
results (-91%). In the comparison of best-FP parameter settings,
segenehl performed best or second-best in terms of number of
false positives in seven out of 10 datasets. The closest ettop
of segenehl with best-sensitivity settings wa@EMdespite some

real DNA-seq and RNA-seq data sets from lllumina and 454performance issues with paired-end data. Apart fsegenehl ,

sequencing technologies. Simulated data was generated usiseveral alignersBWA- MEM BWA, GEM) showed good performances
Mason (Holtgrewe, 2010). For the case of lllumina, we evaluatedwith best-FP parameter settings, depending on the dataset u
short (~22-30 nt) as well as long~100 nt) sequencing reads. The In terms of number of mapped readsegenehl performed
median length of 454 reads was 407 nt for simulated and 52 nt f comparable or better than the other tools tested (Supplanyen
read 454 data. To obtain the complete set of optimal alignmere  Tables S3-S5).

usedRazer S3 (Weeseset al., 2012). Using a classical pigeonhole  The performance aegenehl in terms of sensitivity and false
principle, the algorithm oRazer S3 reportedly guarantees to find positive rate came at the cost of higher running times and angm
all optimal alignments (up to a given maximum number) with an consumption. With default parametesggenehl was on average
edit distance (mismatches + insertions + deletions) oftleas or  slower than the competitorsSTAR was the fastest tool in this
equal tok. Because of the relatively long computation times for benchmark (Fig. 2b). Using best-sensitivity settings, &y, the
the full sensitivity alignment, it was necessary to sampsenaller  running times of several aligners includiBpwt i e 2, BWA, GEM
set of reads~ 10°, for each data set and estimate sensitivity andbecame significantly longer (Supplementary Figure S3 areTa
number of false positive alignments from this sample (sexiGe4 S4). The peak virtual memory footprint afegenehl (70 GB)
and Supplementary Material).
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Fig. 2: Comparison of different read aligner with default parameter. The performance is assessed in terms of () sensitivity alsd f
positives as well as (b) user timsegenehl performed better with respect to sensitivity and numberatdef positive alignments than
most of the other tools with default parameters at the costigiier running times. The number of reads used for evaloas@iven in

Supplementary Table S1.

was higher than that d8TAR (28 GB) and the other aligners (3-
6 GB). Unexpectedly, the memory consumptionGEM depended
on its parameter values, strongly varying in the benchmuiikis
best-sensitivity settings (4—70 GB). Note that we compaitesl
virtual memory consumption. The required physical memary i
considerably smaller. For large mammalian genorsegenehl
may not be feasibly applied on computers witB0 GB of memory.
The memory consumption afegenehl is considerably smaller
for smaller genomes:Escherichia coli 0.7 GB, Caenorhabditis
elegans 1.5 GB, Drosophila melanogaster 2.6 GB, orArabidopsis
thaliana 1.8 GB.

by differences in the read lengths (407 nt versus 524 nt fouksited
and real data, respectively).

2.2 Rescuing reads witH ack

The objective ofl ack is to rescue previously unmapped RNA-
seq reads that may have emerged from splicing events. itasil

de novo splice junction information from alignments reported by
state-of-the-art split-read aligners. In contrast to othmeethods,

| ack is able to map reads across multiple splice junctions. The

Interestingly, throughout all test scenarios we observed genefit of this multi-junction remapping is illustrated ifgére 3b

difference between simulated and real data. Most of thenaitig
achieved higher sensitivities and lower number of falsetpes
alignments with simulated compared to real data. The opgposi
effect was only present in 454 data which, however, may beezhu

where previously unlinked splice junctions were connredby

| ack-remapping. We testeldack on simulated and real lllumina
and 454 RNA-seq datasets as well as artificial lon Torrena,dat
all of which were initially mapped byBl at (Kent, 2002),
segenehl (Hoffmannet al., 2014)TopHat 2 (Kim et al., 2013),
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Fig. 3: Performance ofl ack. (a) Frequency of unsplit-mapped and split-mapped read#fefeht split-read aligners as well as initially
unmapped reads recoveredlbgck. Reads that were not mapped by the alignerlaadk are termed unmapped. All split-read aligners as
well asl ack were executed under default parameters. Ovdraltk was able to rescue a substantial proportion of unmapped reased

by the aligner (51% on average). (b) Example on real lllundata that illustrates the benefits of usingck. With threede novo splice
junctions, extracted from five single-split mapped readpped bysegenehl , | ack retrieves split-alignments for another five previously
unmapped reads, each of which spans over two of three junsctior the purpose of isoform reconstruction, previoustiependent splice
junctions have become correlated.




and STAR (Dobin et al., 2013). Details about the evaluation and length and technology. Since the initial publicatisggenehl
datasets are given in the Supplementary Material. has been continuously updated and extended. Here, we have
Overall, the evaluation shows thhack was able to rescue a focused updatingegenehl 's performance in aligning DNA-seq

substantial portion of the previously unmapped reads (B&).
Using the alignments and unmapped reads of the split-régioeas

or unspliced RNA-seq reads. While the core algorithms resthi
unchanged, we have adjusted several parameterizatiomsitoize

as input,| ack was able to rescue 51% of the unmapped readghe tool. Our results indicate thategenehl is not only more

on average with every split-read aligner and for every lilem
and 454 dataset (Supplementary Table S6). When considenigg

sensitive in finding the optimal alignment with respect te tmit
edit distance but also very specific compared to the most coriym

those unmapped reads that wdedfacto aligning across exon-exon used alternative read mappers. These advantages areaiiiseior
junctions, the benefit of ack was more apparent: on average it both real and simulated reads.

rescued 70% of them (Supplementary Table S7). The accufacy o In addition, we have presenteldack to rescue previously
the alignments reported Hyack was high (Supplementary Table unmapped RNA-seq reads that have emerged from splicingssven
S8). The number of splice sites with at least 20 reads inetcehg It shows excellent performance for every dataset with dit-spad
34% on average with lllumina and 454 data (SupplementaryrBig aligner tested and hence represents a valuable extendRiteseq

S4a).l ack performed particularly well with 454 data. In case of analysis pipelines.

real 454 data, there was a considerable number of poteptiaés
sites (394 forBl at , 396 for STAR, 790 forTopHat 2) with >20
additional reads per junction (Supplementary Figure Svbjlerate
remapping rates in the real lllumina dataset resulted fromaraber
of low-quality reads that were not mapped by any of the folit-sp
read aligners tested. For simulated lon Torrent dada&,k was able

4 METHODS
4.1 Comparison of read aligners

to achieve an average remapping rate of 45% and an average Sp|In total, 10 datasets were used for benchmarking: threeselstavith

read remapping rate of 69%. However, the ratesatk differed
widely with very high to moderate (split-read) remappintesafor

segenehl , STAR, andBl at . The rather poor remapping rates

long single-end lllumina reads (artificial, DNA-seq, mRIsAg), three
with long paired-end lllumina reads (artificial, DNA-seqRINA-seq), two
with short single-end lllumina reads (artificial, shortRisAq), and two
with 454 reads (artificial, DNA-seq). An overview of the blntarking

for TopHat 2 can be explained by the program’s difficulties t0 yatasets, their sequencing platforms, library types, amchge read lengths

split-map reads with high insertion and deletion rates.

STAR and TopHat 2 provide similar tools with less extensive
functionality. Most importantly, these tools cannot aligmmapped
reads to chimeric junctions. Moreover, remapping WBIPAR via
its ‘second pass’ method requires a new index for every siepott
splice junctions. This is demanding with respect to comirta

time as well as disk space. Both approaches were compared ok
| ack on simulated and real data from lllumina and 454 sequencingi\l

technology.l ack outperformed the remapping tools 8TAR and

is given in Supplementary Table S1. Details about simutatand read data
preprocessing are given in the Supplementary Material.

For benchmarking, we comparseégenehl v.0.1.7 to five read aligners:
Bowti e2 v.2.1.0, BWA/ BWA- SWv.0.7.4 (Li & Durbin, 2009, 2010),
BWA- MEMV.0.7.4 (Li, 2013),GEMpre-release 3 (Marco-Sok al., 2012),

andSTARV.2.3.0e (Dobiret al., 2013). The aligners were run on all datasets

ile keeping track of the user time and peak virtual memaryscmption.
ote that user time measurements did not include the prepsotgy time
or building the index structures of the reference, requiog each aligner.
In case ofBWA where separate commands for alignmeaitr{) and post-

TopHat 2 in terms of number of remapped reads and total runningprocessing the intermediate alignmenssifse/ sanpe) were executed,

time (Supplementary Material and Tables S8 and $8pHat 2
recovered only a few unmapped read®(2%). Also in comparison
with STAR's second pass methotlack achieved a significantly
higher number of remapped reads, in particular for 454 détaan

increase of>60 and 25% for artificial and real data, respectively.

The difference may be explained by the fact that simply align
reads over a set of given splice junctions differs fundaalgntrom
the greedy extension algorithm bfick in which arbitrary paths
over multiple splice junctions are allowed. This particlyleook
effect in case of long 454 reads.

In terms of running time] ack is on average between 4 and
32-fold times faster thamegenehl , TopHat 2, or Bl at but 14-

time and memory were measured to include both commands. %br 4
datasets, as recommended by the auti®/g, was exchanged bBWA- SW
and Bowt i e 2 was run inl ocal mode. If necessary, the output of the
aligners was converted into SAM format (&ial., 2009).

Since our benchmark only considered optimal alignments wespect
to the unit edit distance, a best-only filter was applied ® dhtput of all
tools. In case of paired-end alignments, the optimal aligmnwas defined
as a properly paired alignment with the minimum sum of the éidiances
in the first and second mate. In some cases, aligners repat iltstead
of semi-global read alignments, marked by soft-clippedeba3o apply the
best-only filter in these cases, local alignments wereetkas semi-global
ones by considering soft-clipped bases as errors. In additi the default
parameters, we evaluated a number of different parametergsefor each

fold slower thanSTAR (Supplementary Figure S5a). The memory aligner (analogously to Langmead & Salzberg, 2012) to erpiee tradeoff
consumption of ack is ~6.3 GB for each dataset (Supplementary between sensitivity and number of false positive alignm¢8tpplementary

Figure S5b). It is lower than the consumptionsE#genehl and
STARand in the ballpark of the memory footprint of other tools.

3 DISCUSSION

Table S2). In such a way, best-sensitivity and best-falsitipe parameter
settings were selected for each read aligner and dataset.

To obtain the set of optimal read alignmerRszer S3 v.3.1 was applied
to each dataset in its full-sensitivity mode. More spedifijcaRazer S3
was run with the parameters 100,-i 90,-dr 0,-m 10, -pa,-ds,

and- of sam Given a maximum edit distance and maximum number of

optimal alignments per input, it guarantees to find all optimlignments

In this article we show thasegenehl is a versatile and accurate  satisfying these constraints. For the paired-end dater S3 was not

read aligner that performs equally well for reads from DNA- executed in paired-end but in single-end mode on both enpiarately.
seq and RNA-seq experiments and is largely independentadf re Reads with>10 alignments or alignments with an error ratd0% were
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discarded and not considered in all subsequent statisBodsequently,
concordant optimal single-end alignments with insertskzetween 250 and
500 nt were paired and added to the test set. This strategyezhthat both
alignments of a pair were optimal itself and the insert siaestraint was
always fulfilled. In this way, no aligner is put at a disadway@ because it
favors paired-end alignments with lower edit distance bitHas-range insert
sizes.

An alignment was considered optimal if a similar alignmeasweported
by Razer S3 with the minimum edit distance on the same chromosome,
strand, and almost identical position. We permitted a dieviaof twice
the alignment edit distance from the position of the aligntmeported by
Razer S3. Otherwise, the alignment was marked sub-optimal.

For the all-best benchmarks, the sensitivity was calcdlaés the
normalized number of optimal read alignments. The norratiin corrected
for reads with multiple equivalent alignments, i.e. eachimal read
alignment counted as/n with n being the total number of optimal read
alignments of this read. The number of false positives wasngby the
number of sub-optimal read alignments. To compare reachetgthat
report multiple alignments per read to those that repory anlsingle
alignment in the any-best scenario, we randomly selectedsimyle-/paired-
end alignment per read. For the any-best benchmarks, thsitigien and
the number of false positives was given by the number of agtiamd
sub-optimal read alignments, respectively. In case ofegaénd data, the
alignments of both mates were evaluated separately. Iti@wldh sensitivity
and number of false positive alignments, we assessed thbamohmapped
reads of each aligner. To assure compatibility of local aedhigylobal
alignments, only reads with at least one alignment with0% mismatches,
indels, and clipped bases were considered.

4.2 Algorithm of | ack

| ack tries to rescue unmapped RNA-seq reads. In brief, it staoim fa
seed alignment and iteratively extends it across potesfiite junctions.
Subsequently, the read is aligned to the loci given by thensxon path
using a transition alignment (Hoffmaret al., 2014). In the following, the
algorithm ofl ack is described in detail.

Initially, the splice junction data base is built up from isptad
alignments provided by the user. Regardless of splice sitsensus motifs
and strandedness of the alignments, the genomic locatfoesd splits are
clustered and categorized into types L and R (Fig. 4a). Fadsehat are
mapped to the plus strand, type L sites denote “donor” siteifeviype R
sites denote “acceptor” sites. For reads that are mappée tminus strand,
it is the other way round. Subsequently, clusters are linkecbrding to
the split read information, i.e. two clusters A and B are déidkf a split-
read alignment from locus A to locus B (or B to A) exists. This, each
cluster we obtain one or more cluster junctions. Note thatdgular splice
events, only clusters of different types are linked whers@and-switch
events produce links between clusters of same type.

Let r be the read sequence of lengthandg be the reference sequence
of lengthn. Furthermore, we assume that there is at least one seethalign
available for each read. The objective is to find the best-sgdid alignment

g

r

(b)

Fig. 4: Concepts ofl ack. (a) Splice site clusters of type L and
R including split-read alignments connect three differtati on
the referencey. Splice sites are illustrated as vertical black bars.
The shading of the split-read alignments denotes the akghm
strand whereby plus strand alignments are pictured by-pghiting
arrows. (b) Example of forward extension step on plus strahe
previous alignment (dark gray shaded) between remttl reference

g was extended untit andw, respectively. At the current step, there
are two spliced extensions candidates (1) and (2) and th@iced
alternative (3). The transition alignments are calcul&ietiveen the
remainder of (light gray) and the two reference loci, i.e., common
region (0) and specific region (1, 2, or 3). Dotted lines iatkc
the correspondence of alignment boundaries betwesamd g. The
candidate with best alignment score determines at whidreate
loci the extension continues if the best score is obtainedhly
alignment of one of the spliced candidates. Otherwise, dhedrd
extension is stopped. The backward extension works siitgilar

betweenr and g using cluster junctions from the data base. The best seed

alignment serves as anchor betweeand g and is extended greedily in
forward and backward direction. Lét and w be the current alignment
boundaries om andg, respectively. Starting with the forward extensidn,
andu are initially set to the best seed alignment end and the downstream
alignment boundary op, respectively. An example of one extension step is
shown in Figure 4b.

During the extension, splice site clusters in the vicinifyuoare looked
up in the data base. Only clusters within the mayirare considered)/ is
calculated as the sum of maximum permitted edit distanard the length
of the remainder of the query sequence,rnwe- k— 1+ ¢ during forward and
k + e during backward extension. Once a clusteis found in the vicinity
of the current extension front, the read is aligned acrdsduater junctions
associated with this cluster. More precisely, for eachteluginction from

A to B, a local transition alignment is computed between the redei
of » and two reference loci og with a total length of M (Fig. 4b). In
case of junctions between clusters of the same type, a stwaitch event
is represented and the alignment strang @switched. To control the false
positive rate, spliced extenstions are valid only if thelfilfithe following
quality criteria (analogously teegenehl ): the minimum alignment score
(option - Z) and minimum alignment length (optionU) must be met for
each alignment block. The best spliced extension is the dtievalid split
alignment and maximal score. In case of ties, the clustestipm with the
highest split-read support is selected. In addition, we mae an optimal
semi-global alignment between the remainder of the quedyaareference
subsequence of length/ starting atg,, (Fig. 4b). To avoid unnecessary
splits, we require the split alignment to have a higher scompared to




the semi-global alignment. If these criteria are met, thiét s » from

A to B is accepted and the extension is iteratively continued etdbus
of B. Otherwise, the current extension path is finished. Sulesgty the
backward extension is carried out analogously. For thewsaak extension,
k andw are initialized to the best seed alignment startroend upstream

alignment boundary op. After completion of the extension procedure, the

optimal local transition alignment is computed betweendhery sequence
and all reference loci, confined by the extension steps. @igypments with
a minimum accuracy (optionA) and minimum coverage (optionW are
reported.

To limit the computational effort per step, the set of sgli@tensions
for each extension step is limited ta (option- M) and onlym candidates
with highest splice junction support are evaluated. N ifithe number of
spliced extensions of each step is less than or equal, tihe computational
effort as well as outcome of the algorithm will not change.

Overall, the time requirement dfack mainly depends on the read length
and the number of nearby splice site clusters. The numbefustets is
influenced by the splice junction data base and the choickeoparameter
m. In contrast, the memory requirementlaick depends on the length of
the reference sequence, while the number of unmapped reddheasplice
junctions plays a minor role.
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