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ABSTRACT
Motivation: Next generation sequencing has become an important
tool in molecular biology. Various protocols to investigate genomic,
transcriptomic, and epigenomic features across virtually all species
and tissues have been devised. For most of these experiments, one
of the first crucial steps of bioinformatic analysis is the mapping of
reads to reference genomes.
Results: Here, we present thorough benchmarks of our read
aligner segemehl in comparison with other state-of-the-art methods.
Furthermore, we introduce the tool lack to rescue unmapped RNA-
seq reads which works in conjunction with segemehl and many other
frequently used split-read aligners.
Availability: lack is distributed together with segemehl and
freely available at www.bioinf.uni-leipzig.de/Software/

segemehl/.
Contact: steve@bioinf.uni-leipzig.de

1 INTRODUCTION
The problem of aligning (short) sequencing reads to (larger)
reference genomes has received considerable attention in recent
years, and many different alignment tools based on a varietyof
distinct algorithmic approaches have been published so far. A survey
at the EBI currently counts more than 80 different mappers (Fonseca
et al., 2012). This competitive field has seen quite a bit of evolution
and progress. Early mappers were restricted to aligning short reads
with no or few mismatches and reads with insertions and deletions
were excluded more often than not.Bowtie (Langmeadet al.,
2009; Langmead & Salzberg, 2012) andsegemehl (Hoffmann
et al., 2009) were among the first next-generation sequencing (NGS)
aligners that explicitly implemented strategies for aligning reads
with indels. The rise of RNA-seq protocols has added yet another
layer of complexity to the problem: splicing. When mapping cDNA
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reads that join two or more exons, the aligner is required to “split”
the read and align its parts to the appropriate exons in the reference
genome. Alternatively, the mapper needs to be provided with
junction or paired-end information to predict or constructmRNA
references. Today, most of the tools allow only a single split, while
reads that span multiple exon-exon junctions may not be properly
aligned. As read lengths are constantly increasing, algorithms that
allow multiple splits are clearly favorable.segemehl facilitates
multi-split alignments using a local transition algorithmthat was
shown to perform very well in simulated and read data benchmarks
(Hoffmannet al., 2014). The alignment of reads of bisulfite-treated
DNA, i.e. methyl-cytosine sequencing, also requires specialized
algorithms and methods (Smithet al., 2009; Chenet al., 2010;
Krueger & Andrews, 2011). The bisulfite and split-read features
of segemehl have recently been published along with extensive
benchmarks (Ottoet al., 2012; Hoffmannet al., 2014). The diversity
of tools and the rapid development of algorithms and software
requires frequent, transparent, and reproducible benchmarks. Here,
we present the results of performance tests for DNA-seq and RNA-
seq read alignments and provide detailed information on them.
We have therefore assembled an extensive electronic supplement1

comprising all data, custom scripts, and detailed descriptions on
how to re-run the analyses. In reference to recent heated debates on
the comparison of mappers, we would like to stress that benchmarks
only measure specific aspects and may not be used to claim any
universal superiority or inferiority of any tool. We would like to
encourage all readers to reproduce this data and to come up with
alternative benchmarks.

In addition to the benchmarking, we propose a novel tool,lack,
for remapping previously unmapped RNA-seq reads using supplied
splice junctions. The workflow of common, split-read, and bisulfite
mapping usingsegemehl and remapping bylack is depicted in
Figure 1.

1 http://www.bioinf.uni-leipzig.de/publications/
supplements/13-008
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Fig. 1:Workflow of segemehl and lack. segemehl is able to
align paired and unpaired DNA-seq, RNA-seq, and bisulfite-treated
DNA-seq data. Previously unmappped reads can be rescued with
lack.

2 RESULTS

2.1 Comparison of read aligners
Because several aligners have limitations in finding multiple hits, we
evaluated the performance of alignment programs in two different
manners as proposed by Holtgreweet al. (2011). First, we measured
the sensitivity and the number of false positive (FP) alignments for
each program in finding ‘at least one’ optimal hit (any-best)with
respect to the unit edit distance. The second benchmark measured
the performance in finding ‘all’ optimal hits (all-best). The tests
were carried out on different data sets comprising simulated and
real DNA-seq and RNA-seq data sets from Illumina and 454
sequencing technologies. Simulated data was generated using
Mason (Holtgrewe, 2010). For the case of Illumina, we evaluated
short (∼22–30 nt) as well as long (∼100 nt) sequencing reads. The
median length of 454 reads was 407 nt for simulated and 524 nt for
read 454 data. To obtain the complete set of optimal alignments, we
usedRazerS3 (Weeseet al., 2012). Using a classical pigeonhole
principle, the algorithm ofRazerS3 reportedly guarantees to find
all optimal alignments (up to a given maximum number) with an
edit distance (mismatches + insertions + deletions) of lessthan or
equal tok. Because of the relatively long computation times for
the full sensitivity alignment, it was necessary to sample asmaller
set of reads,∼ 10

5, for each data set and estimate sensitivity and
number of false positive alignments from this sample (see Section 4
and Supplementary Material).

All aligners were benchmarked both with their default parameters
and with parameter settings optimized for sensitivity and number of
false positive alignments, respectively.

The evaluation with default parameters shows that their
performance varied quite strongly with length and type of the
input. Nevertheless,segemehl performed better with respect to
sensitivity and number of false positive alignments than most of
the other tools (Fig. 2a). In the case of Illumina reads,segemehl
achieved the highest sensitivity for simulated reads as well as real
DNA-seq and mRNA-seq reads. At the same time, it reported
the lowest number of sub-optimal alignments with mRNA-seq
data (Fig. 2a). This is also the case for paired-end mRNA-seq
data. In all-best benchmarks, it outperformed all other tools tested
in terms of sensitivity while maintaining low false positive rates
(Supplementary Figure S1 and Table S3). In any-best benchmarks,
a better sensitivity was only achieved byBWA-MEM on Illumina
paired-end DNA-seq data and byBWA on Illumina shortRNA-
seq data (Supplementary Figure S2 and Table S3) with 0.1%
and 5% increase, respectively. In the latter case,BWA reported
80% more false positive alignments as compared tosegemehl.
While segemehl performed similarly well in the all-best and
any-best scenarios, relatively large differences can be observed for
Bowtie2, BWA, andBWA-MEM since their default parameters are
presumably tailored to find one instead of all optimal alignments
with significant effects on the run time.

A larger difference among the read aligners can be observed in
Illumina short-read and 454 data (Supplementary Figures S1-S2).
In the first case,segemehl’s closest competitor wasBWA, which,
however, achieved low sensitivities in most of the Illuminasingle-
end benchmarks. In all 454 scenarios,segemehl andBWA-MEM
turned out to be the best aligners among the tested tools.

To explore the trade-off between sensitivity and the number
of false positive alignments, benchmarks with different parameter
settings were carried out. For each tool, we selected those
parameter sets with best sensitivity and lowest number of false
positive alignments. Regardless of evaluation type (all-best or
any-best) and parameter setting (default, best-sensitivity, best-
FP), the sensitivities ofsegemehl exceeded 99% in all datasets
except for shortRNA-seq (Supplementary Figures S1-S2 and Tables
S3-S5) wheresegemehl still achieved the best or second-best
results (>91%). In the comparison of best-FP parameter settings,
segemehl performed best or second-best in terms of number of
false positives in seven out of 10 datasets. The closest competitor
of segemehl with best-sensitivity settings wasGEM despite some
performance issues with paired-end data. Apart fromsegemehl,
several aligners (BWA-MEM,BWA, GEM) showed good performances
with best-FP parameter settings, depending on the dataset used.
In terms of number of mapped reads,segemehl performed
comparable or better than the other tools tested (Supplementary
Tables S3-S5).

The performance ofsegemehl in terms of sensitivity and false
positive rate came at the cost of higher running times and memory
consumption. With default parameters,segemehl was on average
slower than the competitors.STAR was the fastest tool in this
benchmark (Fig. 2b). Using best-sensitivity settings, however, the
running times of several aligners includingBowtie2, BWA, GEM,
became significantly longer (Supplementary Figure S3 and Table
S4). The peak virtual memory footprint ofsegemehl (70 GB)
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Fig. 2: Comparison of different read aligner with default parameter. The performance is assessed in terms of (a) sensitivity and false
positives as well as (b) user time.segemehl performed better with respect to sensitivity and number of false positive alignments than
most of the other tools with default parameters at the cost ofhigher running times. The number of reads used for evaluation is given in
Supplementary Table S1.

was higher than that ofSTAR (28 GB) and the other aligners (3-
6 GB). Unexpectedly, the memory consumption ofGEM depended
on its parameter values, strongly varying in the benchmarkswith
best-sensitivity settings (4–70 GB). Note that we comparedthe
virtual memory consumption. The required physical memory is
considerably smaller. For large mammalian genomes,segemehl
may not be feasibly applied on computers with<50 GB of memory.
The memory consumption ofsegemehl is considerably smaller
for smaller genomes:Escherichia coli 0.7 GB, Caenorhabditis
elegans 1.5 GB, Drosophila melanogaster 2.6 GB, orArabidopsis
thaliana 1.8 GB.

Interestingly, throughout all test scenarios we observed a
difference between simulated and real data. Most of the aligners
achieved higher sensitivities and lower number of false positive
alignments with simulated compared to real data. The opposite
effect was only present in 454 data which, however, may be caused

by differences in the read lengths (407 nt versus 524 nt for simulated
and real data, respectively).

2.2 Rescuing reads withlack
The objective oflack is to rescue previously unmapped RNA-
seq reads that may have emerged from splicing events. It utilizes
de novo splice junction information from alignments reported by
state-of-the-art split-read aligners. In contrast to other methods,
lack is able to map reads across multiple splice junctions. The
benefit of this multi-junction remapping is illustrated in Figure 3b
where previously unlinked splice junctions were connnected by
lack-remapping. We testedlack on simulated and real Illumina
and 454 RNA-seq datasets as well as artificial Ion Torrent data,
all of which were initially mapped byBlat (Kent, 2002),
segemehl (Hoffmannet al., 2014)TopHat2 (Kim et al., 2013),
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Fig. 3: Performance oflack. (a) Frequency of unsplit-mapped and split-mapped reads of different split-read aligners as well as initially
unmapped reads recovered bylack. Reads that were not mapped by the aligner andlack are termed unmapped. All split-read aligners as
well aslack were executed under default parameters. Overall,lack was able to rescue a substantial proportion of unmapped reads missed
by the aligner (51% on average). (b) Example on real Illuminadata that illustrates the benefits of usinglack. With threede novo splice
junctions, extracted from five single-split mapped reads mapped bysegemehl, lack retrieves split-alignments for another five previously
unmapped reads, each of which spans over two of three junctions. For the purpose of isoform reconstruction, previously independent splice
junctions have become correlated.
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andSTAR (Dobin et al., 2013). Details about the evaluation and
datasets are given in the Supplementary Material.

Overall, the evaluation shows thatlack was able to rescue a
substantial portion of the previously unmapped reads (Fig.3a).
Using the alignments and unmapped reads of the split-read aligners
as input,lack was able to rescue 51% of the unmapped reads
on average with every split-read aligner and for every Illumina
and 454 dataset (Supplementary Table S6). When consideringonly
those unmapped reads that werede facto aligning across exon-exon
junctions, the benefit oflack was more apparent: on average it
rescued 70% of them (Supplementary Table S7). The accuracy of
the alignments reported bylack was high (Supplementary Table
S8). The number of splice sites with at least 20 reads increased by
34% on average with Illumina and 454 data (Supplementary Figure
S4a).lack performed particularly well with 454 data. In case of
real 454 data, there was a considerable number of potential splice
sites (394 forBlat, 396 forSTAR, 790 forTopHat2) with >20
additional reads per junction (Supplementary Figure S4b).Moderate
remapping rates in the real Illumina dataset resulted from anumber
of low-quality reads that were not mapped by any of the four split-
read aligners tested. For simulated Ion Torrent data,lack was able
to achieve an average remapping rate of 45% and an average split-
read remapping rate of 69%. However, the rates oflack differed
widely with very high to moderate (split-read) remapping rates for
segemehl, STAR, andBlat. The rather poor remapping rates
for TopHat2 can be explained by the program’s difficulties to
split-map reads with high insertion and deletion rates.
STAR andTopHat2 provide similar tools with less extensive

functionality. Most importantly, these tools cannot alignunmapped
reads to chimeric junctions. Moreover, remapping withSTAR via
its ‘second pass’ method requires a new index for every set ofinput
splice junctions. This is demanding with respect to computation
time as well as disk space. Both approaches were compared to
lack on simulated and real data from Illumina and 454 sequencing
technology.lack outperformed the remapping tools ofSTAR and
TopHat2 in terms of number of remapped reads and total running
time (Supplementary Material and Tables S8 and S9).TopHat2
recovered only a few unmapped reads (<0.2%). Also in comparison
with STAR’s second pass method,lack achieved a significantly
higher number of remapped reads, in particular for 454 data with an
increase of>60 and 25% for artificial and real data, respectively.
The difference may be explained by the fact that simply aligning
reads over a set of given splice junctions differs fundamentally from
the greedy extension algorithm oflack in which arbitrary paths
over multiple splice junctions are allowed. This particularly took
effect in case of long 454 reads.

In terms of running time,lack is on average between 4 and
32-fold times faster thansegemehl, TopHat2, or Blat but 14-
fold slower thanSTAR (Supplementary Figure S5a). The memory
consumption oflack is ∼6.3 GB for each dataset (Supplementary
Figure S5b). It is lower than the consumption ofsegemehl and
STAR and in the ballpark of the memory footprint of other tools.

3 DISCUSSION
In this article we show thatsegemehl is a versatile and accurate
read aligner that performs equally well for reads from DNA-
seq and RNA-seq experiments and is largely independent of read

length and technology. Since the initial publication,segemehl
has been continuously updated and extended. Here, we have
focused updatingsegemehl’s performance in aligning DNA-seq
or unspliced RNA-seq reads. While the core algorithms remained
unchanged, we have adjusted several parameterizations to optimize
the tool. Our results indicate thatsegemehl is not only more
sensitive in finding the optimal alignment with respect to the unit
edit distance but also very specific compared to the most commonly
used alternative read mappers. These advantages are observable for
both real and simulated reads.

In addition, we have presentedlack to rescue previously
unmapped RNA-seq reads that have emerged from splicing events.
It shows excellent performance for every dataset with all split-read
aligner tested and hence represents a valuable extension toRNA-seq
analysis pipelines.

4 METHODS

4.1 Comparison of read aligners
In total, 10 datasets were used for benchmarking: three datasets with
long single-end Illumina reads (artificial, DNA-seq, mRNA-seq), three
with long paired-end Illumina reads (artificial, DNA-seq, mRNA-seq), two
with short single-end Illumina reads (artificial, shortRNA-seq), and two
with 454 reads (artificial, DNA-seq). An overview of the benchmarking
datasets, their sequencing platforms, library types, and average read lengths
is given in Supplementary Table S1. Details about simulations and read data
preprocessing are given in the Supplementary Material.

For benchmarking, we comparedsegemehl v.0.1.7 to five read aligners:
Bowtie2 v.2.1.0, BWA/ BWA-SW v.0.7.4 (Li & Durbin, 2009, 2010),
BWA-MEM v.0.7.4 (Li, 2013),GEM pre-release 3 (Marco-Solaet al., 2012),
andSTAR v.2.3.0e (Dobinet al., 2013). The aligners were run on all datasets
while keeping track of the user time and peak virtual memory consumption.
Note that user time measurements did not include the preprocessing time
for building the index structures of the reference, required by each aligner.
In case ofBWA where separate commands for alignment (aln) and post-
processing the intermediate alignments (samse/sampe) were executed,
time and memory were measured to include both commands. For 454
datasets, as recommended by the authors,BWA was exchanged byBWA-SW,
andBowtie2 was run inlocal mode. If necessary, the output of the
aligners was converted into SAM format (Liet al., 2009).

Since our benchmark only considered optimal alignments with respect
to the unit edit distance, a best-only filter was applied to the output of all
tools. In case of paired-end alignments, the optimal alignment was defined
as a properly paired alignment with the minimum sum of the edit distances
in the first and second mate. In some cases, aligners report local instead
of semi-global read alignments, marked by soft-clipped bases. To apply the
best-only filter in these cases, local alignments were treated as semi-global
ones by considering soft-clipped bases as errors. In addition to the default
parameters, we evaluated a number of different parameter settings for each
aligner (analogously to Langmead & Salzberg, 2012) to explore the tradeoff
between sensitivity and number of false positive alignments (Supplementary
Table S2). In such a way, best-sensitivity and best-false positive parameter
settings were selected for each read aligner and dataset.

To obtain the set of optimal read alignments,RazerS3 v.3.1 was applied
to each dataset in its full-sensitivity mode. More specifically, RazerS3
was run with the parameters-r 100, -i 90, -dr 0, -m 10, -pa, -ds,
and-of sam. Given a maximum edit distance and maximum number of
optimal alignments per input, it guarantees to find all optimal alignments
satisfying these constraints. For the paired-end data,RazerS3 was not
executed in paired-end but in single-end mode on both ends separately.
Reads with>10 alignments or alignments with an error rate>10% were
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discarded and not considered in all subsequent statistics.Subsequently,
concordant optimal single-end alignments with insert sizes between 250 and
500 nt were paired and added to the test set. This strategy ensured that both
alignments of a pair were optimal itself and the insert size constraint was
always fulfilled. In this way, no aligner is put at a disadvantage because it
favors paired-end alignments with lower edit distance but out-of-range insert
sizes.

An alignment was considered optimal if a similar alignment was reported
by RazerS3 with the minimum edit distance on the same chromosome,
strand, and almost identical position. We permitted a deviation of twice
the alignment edit distance from the position of the alignment reported by
RazerS3. Otherwise, the alignment was marked sub-optimal.

For the all-best benchmarks, the sensitivity was calculated as the
normalized number of optimal read alignments. The normalization corrected
for reads with multiple equivalent alignments, i.e. each optimal read
alignment counted as1/n with n being the total number of optimal read
alignments of this read. The number of false positives was given by the
number of sub-optimal read alignments. To compare read aligners that
report multiple alignments per read to those that report only a single
alignment in the any-best scenario, we randomly selected one single-/paired-
end alignment per read. For the any-best benchmarks, the sensitivity and
the number of false positives was given by the number of optimal and
sub-optimal read alignments, respectively. In case of paired-end data, the
alignments of both mates were evaluated separately. In addition to sensitivity
and number of false positive alignments, we assessed the number of mapped
reads of each aligner. To assure compatibility of local and semi-global
alignments, only reads with at least one alignment with≤ 10% mismatches,
indels, and clipped bases were considered.

4.2 Algorithm of lack
lack tries to rescue unmapped RNA-seq reads. In brief, it starts from a
seed alignment and iteratively extends it across potentialsplice junctions.
Subsequently, the read is aligned to the loci given by the extension path
using a transition alignment (Hoffmannet al., 2014). In the following, the
algorithm oflack is described in detail.

Initially, the splice junction data base is built up from split-read
alignments provided by the user. Regardless of splice site consensus motifs
and strandedness of the alignments, the genomic locations of read splits are
clustered and categorized into types L and R (Fig. 4a). For reads that are
mapped to the plus strand, type L sites denote “donor” sites while type R
sites denote “acceptor” sites. For reads that are mapped to the minus strand,
it is the other way round. Subsequently, clusters are linkedaccording to
the split read information, i.e. two clusters A and B are linked if a split-
read alignment from locus A to locus B (or B to A) exists. Thus,for each
cluster we obtain one or more cluster junctions. Note that for regular splice
events, only clusters of different types are linked whereasstrand-switch
events produce links between clusters of same type.

Let r be the read sequence of lengthm andg be the reference sequence
of lengthn. Furthermore, we assume that there is at least one seed alignment
available for each read. The objective is to find the best split-read alignment
betweenr andg using cluster junctions from the data base. The best seed
alignment serves as anchor betweenr and g and is extended greedily in
forward and backward direction. Letk and u be the current alignment
boundaries onr andg, respectively. Starting with the forward extension,k
andu are initially set to the best seed alignment end onr and the downstream
alignment boundary ong, respectively. An example of one extension step is
shown in Figure 4b.

During the extension, splice site clusters in the vicinity of u are looked
up in the data base. Only clusters within the marginM are considered.M is
calculated as the sum of maximum permitted edit distancee and the length
of the remainder of the query sequence, i.e.m−k−1+e during forward and
k + e during backward extension. Once a clusterA is found in the vicinity
of the current extension front, the read is aligned across all cluster junctions
associated with this cluster. More precisely, for each cluster junction from

(a)

(b)

Fig. 4: Concepts oflack. (a) Splice site clusters of type L and
R including split-read alignments connect three differentloci on
the referenceg. Splice sites are illustrated as vertical black bars.
The shading of the split-read alignments denotes the alignment
strand whereby plus strand alignments are pictured by right-pointing
arrows. (b) Example of forward extension step on plus strand. The
previous alignment (dark gray shaded) between readr and reference
g was extended untilk andu, respectively. At the current step, there
are two spliced extensions candidates (1) and (2) and the unspliced
alternative (3). The transition alignments are calculatedbetween the
remainder ofr (light gray) and the two reference loci, i.e., common
region (0) and specific region (1, 2, or 3). Dotted lines indicate
the correspondence of alignment boundaries betweenr andg. The
candidate with best alignment score determines at which reference
loci the extension continues if the best score is obtained bythe
alignment of one of the spliced candidates. Otherwise, the forward
extension is stopped. The backward extension works similarily.

A to B, a local transition alignment is computed between the remainder
of r and two reference loci ong with a total length ofM (Fig. 4b). In
case of junctions between clusters of the same type, a strand-switch event
is represented and the alignment strand ong is switched. To control the false
positive rate, spliced extenstions are valid only if they fulfill the following
quality criteria (analogously tosegemehl): the minimum alignment score
(option -Z) and minimum alignment length (option-U) must be met for
each alignment block. The best spliced extension is the one with valid split
alignment and maximal score. In case of ties, the cluster junction with the
highest split-read support is selected. In addition, we compute an optimal
semi-global alignment between the remainder of the query and a reference
subsequence of lengthM starting atgu (Fig. 4b). To avoid unnecessary
splits, we require the split alignment to have a higher scorecompared to
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the semi-global alignment. If these criteria are met, the split of r from
A to B is accepted and the extension is iteratively continued at the locus
of B. Otherwise, the current extension path is finished. Subsequently, the
backward extension is carried out analogously. For the backward extension,
k andu are initialized to the best seed alignment start onr and upstream
alignment boundary ong. After completion of the extension procedure, the
optimal local transition alignment is computed between thequery sequence
and all reference loci, confined by the extension steps. Onlyalignments with
a minimum accuracy (option-A) and minimum coverage (option-W) are
reported.

To limit the computational effort per step, the set of spliced extensions
for each extension step is limited tom (option-M) and onlym candidates
with highest splice junction support are evaluated. Note that if the number of
spliced extensions of each step is less than or equal tom, the computational
effort as well as outcome of the algorithm will not change.

Overall, the time requirement oflackmainly depends on the read length
and the number of nearby splice site clusters. The number of clusters is
influenced by the splice junction data base and the choice of the parameter
m. In contrast, the memory requirement oflack depends on the length of
the reference sequence, while the number of unmapped reads and the splice
junctions plays a minor role.
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