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ABSTRACT

Single cell tracking, based on the computerised analysis
of time-lapse movies, is a sophisticated experimental tech-
nique to quantify single cell dynamics in time and space.
Although the resulting cellular genealogies comprehensively
describe the divisional history of each cell, there are many
open questions regarding the statistical analysis of this type
of data. In particular, it is unclear, how tracking uncer-
tainties or spatial information of cellular development can
correctly be incorporated into the analysis. Here we propose
a generalised description of single cell tracking data by spa-
tiotemporal networks that accounts for ambiguities in cell
assignment as well as for spatial relations between cells. We
present a way to measure correlations among cell states by
analysing the mutual information in state space considering
causal (time-respecting) paths and illustrate our approach by
a corresponding example. We conclude that a comprehensive
spatiotemporal description of single cell tracking data is ulti-
mately necessary to fully exploit the information obtained by
time-lapse imaging.

Index Terms— cell tracking, lineage trees, temporal net-
works, information theory, stem cells

1. INTRODUCTION

Time-lapse microscopy is an extremely valuable technique for
addressing basic questions in stem cell biology [1, 2], devel-
opment [3] and regenerative medicine, as it naturally allows
to study single cell behaviour in space and time [2]. Many
different methods for partially automated cell tracking have
been proposed in recent years, cf. [4]. The typical result from
single cell tracking are lineage trees, also termed cellular ge-
nealogies, comprising the divisional history of each cell and
its progeny along with annotated data on time of division, cell
position and further cell specific parameters. However, this
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genealogy-based description has two major shortcomings: (i)
Ambiguities in cell tracking between consecutive frames are
not sufficiently represented as only the most likely assign-
ment between subsequent cell representations is contained in
a particular genealogy. This implies that the effect of pos-
sible tracking errors on the resulting trees and the statistics
derived therefrom can hardly be addressed. (ii) Positional in-
formation of cells is not appropriately represented to allow for
analysing the influence of spatial interactions (that may often
play an important role [5]). In order to address these short-
comings we present a novel approach to generalise the notion
of cellular genealogies. We use spatiotemporal networks to
describe alternate developmental paths induced by ambigu-
ous cell assignments. This framework can further incorporate
spatial interactions among cells and can be used to study a
range of questions not assessable on the basis of traditional
genealogies.

2. RELATED WORK

A number of works focused on the analysis of cell cycling
dynamics based on cellular genealogies [6, 7, 8]. Further-
more the synchronicity of cycling between related cells (e.g.
daughters and siblings) has been studied in [6, 9]. Nordon
et al. [8] further introduced an analysis of genealogical trees
based on the statistics of branching processes. Apart from
that, only few works have addressed more sophisticated mea-
sures of cellular development obtained from genealogies [10,
11]. In [10] we were among the first to propose a set of dif-
ferent measures to reliably detect asymmetries in cellular ge-
nealogies and potential correlations between apoptotic events
of related cells. In particular, the latter analysis provided an
important step to study regulation of differentiation in stem
cell cultures. However, to the best of our knowledge, no work
has explicitly addressed the possible ambiguities in cell as-
signments during cell tracking and their influence on the in-
terpretation of cellular developments.



3. METHODS

The basic rationale behind our approach is the following:
Given the recorded development of a cell population over
time we are interested in uncovering correlations between
cells that share common features, such as lineage fate, or
apoptosis. In order to address the causal relations of individ-
ual cellular developments we employ a mutual information
measure. This in turn requires the definition of cellular states
(e.g. fates assigned to individual cell objects) and a repre-
sentation of the relations between those objects/states. These
relations can either be a genealogical coupling (i.e. cells
share a common ancestor) or a spatial coupling (i.e. cells
had contact with each other). The resulting spatiotemporal
network structures comprise both information and are used
to calculate all causal paths between cells. Simply speaking,
two cells are connected by a causal path if they share a po-
tential source of influence. For a particular cell of interest at
time point 7, the areas of potential influence can be defined
similar to the concept of light cones (see Fig.1). Based on this
concept of causal paths we can now calculate the empirical
co-occurrence of two (causally connected) cells in defined
states, which is the essential information to be contained in
our required state space matrix. Based on this matrix we
calculate the mutual information between any two detected
cell objects. A toy example illustrating the conversion of
the spatiotemporal network into the matrix representation is
provided in Fig.2.

The described spatiotemporal representation is naturally
suited to also incorporate the possible, technical ambiguity
in cell tracking (Fig.1b). In these cases the temporal assign-
ments of cell objects (vertical links) are replaced by the cor-
responding probabilities for their accuracy, thus accounting
for a multitude of possible developments that cannot be ex-
cluded based on the tracking method. In this paper we will
concentrate on influence of potential tracking ambiguities on
the mutual information measure. The formal structure of our
approach is provided below.

3.1. Spatiotemporal networks

Single cell tracking data from time lapse experiments can be
represented by means of specific network structures that we
denote as spatiotemporal networks G = G(N', A, C). We de-
fine a set of nodes A/, where each node, labelled by the tuple
(i,t), represents the observation of a cellular object ¢ at time-
point t. The development of cells over time is described as a
set of edges A = UA® represented by the following tempo-
ral adjacency matrices (for each time point t) :

1, if (j,t) and (i,t — 1) represent the
A same cell at consecutive time-points )
g 1, if (4, t) is a daughter cell of (¢,¢ — 1)
0, otherwise.
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Fig. 1. Spatiotemporal networks: Principal architecture of
spatiotemporal networks incorporating spatial contacts (a) or
tracking ambiguities (b). Furthermore, examples for areas
of influence (past/blue and future/red) are highlighted for the
cells marked in black. Shading intensity of coloured disks
correspond to temporal distance.

This network representation of genealogies can now be
adapted to deal with tracking ambiguities by transforming
A® into probability matrices (cf. Fig.1b):

p, if (j,t) and (é,¢ — 1) represent the
same cell with probability p

Agtj) =4 &, if(j,t)is adaughtercellof (i, —1) (2)
with probability p
0, otherwise.

The temporal network can be extended to represent spatial
relationships C' between cells by additionally defining spatial
adjacency matrices for all time points ¢:

v, if cells ¢ and j interact at time ¢
o =41, ifi=j 3)
0, otherwise.

An interaction might be a direct cell-cell contact or spatial
proximity with « being the interaction strength, see Fig.1a.

The resulting spatiotemporal network G = G(N, A, C) is
a comprehensive representation of single cell tracking data
that contains genealogical information as well as potential
spatial interactions in one framework. By replacing temporal
assignments of cell objects with corresponding probabilities
for their accuracy as in equation (2), one is able to reflect un-
certainties of the single cell tracking. In the following we will
confine ourselves to the temporal network component, but the
analysis can also incorporate the spatial component.

3.2. Mutual information of state space by analysing
causal paths

In our case, a causal path links those cells that may share
information derived from a common ancestor, i.e. it goes
backward in time to potential sources of information and then
traces possible alternate routes to present cell objects (as in-
dicated by blue and red paths in Fig.2).



Formally, we define the matrix of causal paths between
cells at a certain time-point 7 as

T T—k T
B =% ( [T 11 A<t>>, 4!
k=1 t=71 t=17—k

where the latter product describes backward-time paths to
all cells who are potential sources of information within &
time-steps, while the former product computes the respective
forward-time paths to all cells that could have potentially be
influenced by the same sources within k steps. Thus a positive
value BJ; indicates that cells ¢ and j potentially share infor-
mation derived from a common ancestor. Since cell division
events have an edge weight of 0.5, a causal path between two
cells is weighted less after more divisions.

We use the matrix of causal paths B(") to compute the
mutual information for the empirical co-occurrence of cellu-
lar states. For the example of two cell states X and Y (il-
lustrated with black and white in Fig.2) the empirical co-
occurrence is defined by the number of weighted causal paths
connecting cells in these respective states. Samples of paths
of increasing length between cell states are depicted for a car-
toon example in Fig.2. We define a state space matrix D by
summing up all causal paths within the groups X and Y (of
black and white cells, respectively) and between these groups:
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In order to quantify the clustering of cell states within the
genealogies we use the mutual information computed from
the normalised matrix D*:

* * D-ij
MID") =52, Dy log (355,57

This mutual information equals O if the paths are dis-
tributed independent of cell state and reaches its maximum if
there are only paths between cells of the same state.

3.3. Permutation tests

The absolute value of the mutual information itself is not in-
formative since it depends on other topological characteris-
tics such as the depth of the genealogies, cf.[10]. Therefore,
we propose to use permutation tests to check whether the ob-
tained mutual information is significantly increased compared
to what is expected at random. The respective null distribu-
tion can be estimated by shuffling the rows of the temporal
adjacency matrix. Thus, we can randomise the distribution of
cell states while preserving topological characteristics of the
network.

'The index ¢ of the former product decrements from 7 to 7 — k.
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Fig. 2. Causal paths in state space: Selected causal paths
with increasing length connecting different cell states for the
example network.
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4. EXPERIMENTS

The dichotomy of selective vs. instructive regulation is a fun-
damental question in stem cell biology. Under certain exper-
imental conditions, bipotent progenitor cells can give rise to
progeny of a preferred lineage. There are two conceptually
different paradigms of how lineage specification is regulated:
either by cell survival signals for cell types committed to a
certain lineage (selective), or by an intrinsic bias in lineage
choice during development (instructive).

To demonstrate that our network approach is suitable to
disentangle the underlying regulatory mechanism we use sim-
ulations obtained by a simple agent-based model where cel-
Iular movement is modelled as a random walk and cell dif-
ferentiation into two possible lineages is described by a Pélya
urn model as described in [12]. We modelled two scenarios
of regulatory mechanisms underlying cellular differentiation:
either regulated by an instructive mechanism where cells are
more likely to differentiate into one particular lineage, or a se-
lective mechanism, where cells differentiate with equal proba-
bility into either of the two lineages, but cells of a certain type
are more likely to undergo apoptosis. Phenomenologically,
both simulated scenarios result in an over-representation of
one lineage. We simulated artificial movies, that allow to de-
fine possible sources of tracking errors. For each scenario,
we simulated 100 movies, each with 10 initial undifferenti-
ated cells leading to around 50 to 200 cells after 1000 time
steps.

5. RESULTS AND DISCUSSION

Using the methods introduced above we can distinguish be-
tween both scenarios based on the topology of the temporal
networks, without having further information on the lineage
differentiation of the cells. Fig.3 shows representative results
of the permutation test procedure: Since cell death events oc-
cur randomly in an instructive scenario, the mutual informa-



tion is consistent with the null distribution (Fig.3a). In a se-
lective regulation scenario however, cell death is more likely
to occur within one lineage and is thus clustered within cer-
tain genealogical branches leading to a significantly increased
mutual information compared to the expected null distribu-
tion (Fig.3b). The fraction of instructive scenarios that erro-
neously led to a significant results was below 5% (false pos-
itive rate) whereas the fraction of selective scenarios with a
nonsignificant result was 15% (false negative rate).
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Fig. 3. Results: (a, b) Permutation tests discriminate between
regulatory regimes in simulation experiments. Estimated null
distribution shown as histograms, actual result as red line. (c)
False negative rate of method with respect to number of am-
biguous assignments.

To test the robustness of the presented framework with
respect to tracking errors, we artificially inserted increasing
numbers of ambiguous assignments (50:50 chance of switch-
ing cell tracks) into our simulated data (see Fig.2). The false
negative rate increases linearly with the number of ambigui-
ties. But, even for 30 tracking errors, the method was able to
correctly identify more than 60% of the simulated selective
scenarios (Fig.3c).

These results show that the proposed framework can be
used to analyse correlations of cell states by means of poten-
tial causal relationships, even for non-perfect tracking results.
We are able to reproduce established measures designed for
analysing cellular genealogies and provide a statistical test-
ing procedure to decide between possible alternatives. The
spatiotemporal networks transcend the traditional notion of
genealogies as they facilitate the integration of uncertainty.
Furthermore, this framework can explicitly account for po-
tential spatial cell-cell communication (mediated by contacts
or short-range soluble factors). Since imaging methods are
the prime tool for assessing organisation of multicellular sys-
tems in space and time, this network approach is a valuable
extension of traditional data structures.
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