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Abstract

Given two graphsr = (Vg, Eg) andH = (Vi, Err), we ask under which conditions
there is a relatiol? C Vi x Vy that generates the edgesifgiven the structure of the
graphG. This construction can be seen as a form of multihomomonphlsgeneralizes
surjective homomorphisms of graphs and naturally leadsotmms of R-retractions, R-
cores, and R-cocores of graphs. Both R-cores and R-cocbggaphs are unique up to
isomorphism and can be computed in polynomial time.
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1 Introduction
1.1 Motivation

Graphs are frequently employed to model natural or artlfeyatems [3, 11]. In many
applications separate graph models have been constractdibfinct, but at least concep-
tually related systems. One might think, e.g., of trafficwaks for different means of
transportation (air, ship, road, railroad, bus). In the $§i€iences, elaborate network models
are considered for gene expression and the metabolic pgshhegulated by these genes,
or for the co-occurrence of protein domains within proteind the physical interactions of
proteins among each other.

Let us consider an example. Most proteins contain severditifonal domains, that
is, parts with well-characterized sequence and strucaatifes that can be understood as
functional units. Protein domains for instance mediatectitalytic activity of an enzyme
and they are responsible for specific binding to small mdés;unucleic acids, or other
proteins. Databases such@sper Fam | y compile the domain composition of a large
number of proteins. We can think of these data as a reldian D x P between the set
D of domains and the set d? proteins which contain them. Protein-protein interaction
networks (PPIs) have been empirically determined for sgvgrecies and are among the
best-studied biological networks [16]. From this graphjchithasP as its vertex set, and
the relationR we can obtain a new graph whose vertex set are the proteinidsmawith
edges connecting domains that are found in physicallyacterg proteins. This “domain
interaction graph” conveys information e.g. on the funaéibversatility of protein com-
plexes. On the other hand, we can uséo construct the domain-cooccurrence networks
(DCNSss) [14] as simple relational compositidtio RT. In examples like these, the detailed
connections between the various graphs have remained lonedtpln fact, there may not
be a meaningful connection between some of them, e.g. betRBé& and DCNs, while
in other cases there is a close connection: the domain atikenagraph, for example, is
determined by the PPI anél.

A second setting in which graph structures are clearly edlab each other is coarse-
graining. Here, sets of vertices are connected to a singleseegrained vertex, with coarse-
grained edges inherited from the original graph. In the $éstirase, we deal with quotient
graphs [15], although other, less stringent constructemesconceivable. Similarly, we
would expect that networks that are related by some evaolatioprocess retain some sort
of structural relationship.

E-mail addresseslan.Hubicka@mff.cuni.cz (Jan Hubicka), jost@mis.mpdXlirgen Jost),
ylong@mis.mpg.de (Yangjing Long), studla@bioinf.uripieg.de (Peter F. Stadler), yanglingfd@fudan.edu.cn
(Ling Yang)
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Figure 1: The graplé’ = R is determined by the grapi and the relatiorR.

1.2 Main Definitions

A well-defined mathematical problem is hidden in this settiGiven two networks, can we
identify whether they are related in meaningful ways? Thealsathematical approach to
this question, namely to ask for the existence of strucpueservingnaps appears to be
much too restrictive. Instead, we set out here to ask if tieeagelation between the two
networks that preserve structures in a less restraine@ sens

The idea is to transfer edges from a grapho a graphH with the help of a relation
R between the vertex sét of G and the vertex se of H. In this context,R is simply a
set of pairg(v, b), withv € V,b € B. Since graphs can be regarded as representations of
binary relations, we can also consid&ras a relation on its vertex set, with, y) € G if
and only ifz andy are connected by an edge@f We then have the compositidiio R
given by all pairs(z, b) for which there exists a vertaxe V' connected by an edge 6f
toz and(y,b) € R. This, however, likeR is a relation between elements of different sets.
In order to equip the target sBtwith a graph structure, we simply connect elemenésd
v in B if they stand in relation to connected elementg:bf In the following, we give a
formal definition, and we shall then relate it to the compogibf relations just described.

A directed graph’ is a pairG = (V, E¢) such thatE; is a subset oz x V. We
denote byl theset of vertices ofr and by E the set of edges @f. We consider only
finite graphs and allow loops on vertices.

An undirected graplfor simply agraph) G is any directed graph such that, v) € E¢
if and only if (v,u) € Eq. We thus consider undirected graphs to be special case of
directed graphs and we still allow loops on verticessifiple graphis an undirected graph
without loops.

Definition 1.1. Let G = (Vz, E) be a graphB a finite set, and? C V x B a binary
relation, where for every elemeh B, we can find an elemente V¢ such tha{v,b) €
R. Then the grapldi: x R has vertex seB and edge set

Eci«r = {(u,v) € B x B|thereis(z,y) € E¢ and(z,u), (y,v) € R}. (1.1

An example of thex operation is depicted in Fig. 1.
Graphs with loops are not always a natural model, howevehatdt may appear more
appealing to consider the slightly modified definition.
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Definition 1.2. Let G = (Vi, E¢) be a simple graphB a finite set,R a binary relation,
where for every elememite B, we can find an elemente Vi such thaiv,b) € R. Then
the (simple) grapld: « R has vertex seB and edge set

Ec«r = {(u,v) € B x Blu # v and there i§z,y) € Eg and(z, u), (y,v) € R}.
(1.2)

We shall remark that these definitions remain meaningfulii@cted graphs, weighted
graphs (where the weight of edge is a sum of weights of itSipeges) as well as relational
structures. For simplicity, we restrict ourselves to uadied graphs (with loops). Most of
the results can be directly generalized.

Graphs can be regarded as representations of symmetrigy glations. Using the
same symbol for the graph and the relation it represents, ayerarinterpret definition 1.1
as a conjugation of relations? ™ is thetransposeof R, i.e., (u,x) € R* if and only if
(z,u) € R. The double compositioR™* o G o R contains the paifu, v) in B x B if and
only if there arer andy such tha(u, z) € RT, (y,v) € R, and(z,y) € Eg. Thus

GxR=RToGoR. (1.3)

Simple graphs, analogously, correspond to the irrefleymensetric relations. For any
relation R, let R* denote its irreflexive part, also known as ttedlexive reductiorof R.
Since definition 1.2 explicitly excludes the diagonalsaih de written in the form

GxR=(RToGoR)". (1.4)

We haveG x R = (G * R)*, and henc&c.r C Eg«r. The compositiorG = R is of
particular interest whe@' is also a simple graph, i.e5 = G*.

The main part of this contribution will be concerned with gwutions of the equation
G x R = H. The weak versioni x R = H, will turn out to have much less convenient
properties, and will be discussed only briefly in section 7.

Throughout this paper we use the following standard natatand terms.

For relationR C X x Y we define byR(z) = {p € Y|(z,p) € R} theimage ofz
underkR andR~(p) = {z € X|(z,p) € R} thepre-image op underR.

Thedomainof R is defined bydom R = {z € X|3p € Y s.t.(z,p) € R}, and the
imageof R is defined byimg R = {p € Y|3z € X s.t.(x,p) € R}. We say that the
domain ofR is full if for any z € X we haveR(x) # (). Analogously, themage is fullif
for anyp € Y we haveR~!(p) # 0.

Let R C X x Y is a binary relation, the® is injective if for all x andz in X andy in
Y it holds that if(z,y) € R and(z,y) € Rthenx = z. Ris functional if for all z in X,
andy andz in Y it holds that if(z,y) € Rand(z, z) € Rtheny = z.

We denote by theidentity map orG, i.e.,{(z,z)|x € Vg}.

Let G = (Vig, Eq) be a graph and léi C V. Theinduced subgraplt:[17] has
vertex sefV and(x, y) is an edge o&&[W] if x,y € W and(z,y) € E¢.

A graphP is a path of lengtlk. Similarly, Cy, is an (elementary) cycle of lengkhwith
vertex sef{0, 1,...,k — 1}. Finally, K} is the complete (loopless) graph withvertices.

An isolated vertexs a vertex with degree 0. Note that the vertex with a loop is no
isolated in this sense.
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1.3 Matrix Multiplication

The operation« can also be formulated in terms of matrix multiplication. See this,
consider the following variant of the operation on weighgeaphs.

Definition 1.3. If G is a weighted graph, we use&(z, y) to denote the weight between
andy. Given afinite se3 and a binary relatioi® C Vi x B, G® R is defined as a weighted
graphH with vertex setB, for anyu, v € B, w(u,v) = >_(, wer,(y,0)er V(T Y)-

Ignoring the weights, operatiorsand® are equivalent.
Using the language of matricas@® R = H can be interpreted as matrix multiplication:

Weer = RTWGR (1.5)

whereR is the matrix representation of the relatiini.e.,R,.,, = L ifand only if (x, u) €
R, otherwiseR,, = 0, R* denotes the transpose Bf, andW¢; is the matrix of edge
weights ofG.

1.4 Graph Homomorphisms and Multihomomorphisms

The notion of relations between graphs is in many ways sirnfilat not equivalent) to the
well studied notion of graph homomorphisms. The majoritgwf results focus on similar-
ities and differences between those two concepts. We gredrdy the basic definitions
of graph homomaorphisms. For more details see [7].

A homomorphisnirom a graphG to a graphH is a mappingf : Vo — Vg such
that for every edgéz, y) of G, (f(z), f(y)) is an edge off. Note that homomorphisms
require loops inf whenever(z,y) € Eg andf(z) = f(y). In contrast,f is aweak ho-
momorphisnif (z,y) € FE¢ implies that eitheif (x) = f(y) or (f(z), f(y)) € Eu. Every
homomorphism frond= to H induces also a weak homomorphism, but not conversely [9].

Since every homomorphism preserves adjacency, it nagutafines a mapping’ :
Eg — Eg by settingf!((z,y)) = (f(x), f(y)) forall (x,y) € Eg. If fis surjective, we
call f avertex surjective homomorphisemd if ! is surjective, we calf anedge surjective
homomorphismf is surjective homomaorphisihit is both vertex- and edge-surjective [7].

Amapf : Vg — Vg is, of course, a special case of a relation. This is seen lipget
F ={(z, f(z))|z € V&}. Hence, there is a surjective homomorphism fr@rto H if and
only if there is a functional relatiof’ such thatz « ' = H. Another important connection
to the graph homomorphisms is the following simple Lemma.

Lemma 1.4. If G x R = H, and the domain oR is full, then there is a homomorphisfn
from G to H contained inkR.

Proof. If G« R = H, then take any functional relatighC R, we haveG x f C H, where
fis a homomorphism frond’ to H. O

Analogously, there is weak surjective homomorphignom G to H if and only if there
is a functional relatiort” such thatG x ' = H, and there is a weak homomorphism from
G to H if there is a functional relatiod” C Vi x Vg such thatG x F' is a subgraph of
H. The existence of relations between graphs thus can be seepraper generalization
of graph homomaorphisms or weak graph homomorphisms, riaeelgc
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Finally, afull homomorphisnfrom a graphG to a graphH is a vertex mappingf
such that for distinct verticeg andv of G, we have(u,v) an edge ofG if and only if
(f(u), f(v)) is an edge oH, see [4].

Relation between graphs can be regarded also as a varianiltfieamomorphisms.
Multihomomorphisms are building blocks of Hom-complexag,oduced by Lovasz, and
are related to recent exciting developments in topologicaibinatorics [10], in particular
to deep results involved in proof of the Lovasz hypothegjs [

A multihomomorphisnty — H is a mappingf : Vg — 2V# \ {()} (i.e., associating a
nonempty subset of vertices &F with every vertex o) such that wheneveu,, us} is
an edge of7, we have(vy, v2) € Ey for everyv, € f(uq) and everys € f(us).

The functions from vertices to sets can be seen as repréisardgfrelations. A relation
with full domain thus can be regardedsasjective multihomomorphisra multihomomor-
phism such that pre-image of every vertextinis non-empty and for every edge, v) in
H we can find an edgér, y) in G satisfyingu € f(z), v € f(y).

1.5 Examples

Similarly to graph homomorphisms, the equat@n R = H (or G x R = H respec-
tively) may have multiple solutions for some pairs of grap@is ), while there may be
no solution at all for other pairs.

As an example, considdf, (two verticese, y connected by an edge) ang (a cycle
of three vertices:, v, w). DenoteR; = {(u,z), (v,y)}, Ra = {(v,2),(w,y)}, R3 =
{(w,x), (u,y)}, then it is easily seen thdts x R, = K, for eachl < i < 3, i.e. the
equationCs x R = K5 has more than one solution.

On the other hand, there is no relatiBhsuch thatK, « R = Cs3. Otherwise, each
vertex ofCj is related to at most one vertex &%, sinceCs is loop free; hence there exists
a vertex inKs which has no relation to at least two vertice<ig w.l.0.g., one can assume
(xz,u), (z,v) ¢ R; then the definition ok implies that there is no edge betweeandv,
which causes a contradiction.

Because relations do not need have full domain (unlike gheyphomorphisms), there
is always an relation from a graghto its induced subgrap&[WW].

Relations with full domain are not restricted to surjectisenomorphisms. As a simple
example, consider pattfy with vertex sefx, y} and P, with vertex se{u, v, w}, respec-
tively, and setR = {(x,u), (x,w), (y,v)}. One can easily verify’; x R = P, by direct
computation. HereR is not functional since has two images.

1.6 Outline and Main Results

This paper is organized as follows.

In section 2 the basic properties of the strong relationa/éen graphs are compiled.
It is shown that relations compose and every relation cande®rdposed in a standard
way into a surjective and an injective relation (Corollarg)2 We discuss some structural
properties of graph preserved by the relations.

Equivalence on the class of graphs induced by the existdmetations between graphs
is the topic of section 3. We consider two forms: the strorati@nal equivalence, where
relations are required to be reversible, and weak reldtemavalence. Equivalence classes
of strong relational equivalence are characterized in Téra®.8. To describe equivalence
classes of the weak relational equivalence we introducadtien of an R-core of a graph
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and show that it is in many ways similar to the more familianstouction of the graph
core (Theorem 3.17). We explore in particular the diffeemnbetween core and R-core
and provide an effective algorithm to compute the R-corenadrggraph is provided.

Section 4 is concerned with the partial order induced orticzia between two fixed
graphs and H. Focusing on the special caGe= H the minimal elements of this partial
order are described. In Theorem 4.7 we give a, perhaps singlsi simple, characteriza-
tion of those graphé& for which all relations of to itself are automorphisms.

R-retraction is defined in section 5 in analogy to retractidhnaturally gives rise to a
notion of R-reduced graphs that we show to coincide with tirecept of graph cores. By
reversing the direction of relations, however, we obtagabncept of a cocore of a graph,
which does not have a non-trivial counterpart in the worldafinary graph homomor-
phisms, and explore its properties.

The computational complexity of testing for the existenta oelation between two
graphs is briefly discussed in section 6. In Theorem 6.1 werilbesthe reduction of this
problem to the surjective homomorphism problem.

Finally, in section 7 we briefly summarize the most importsintilarities and differ-
ences between weak and strong relational composition.

2 Basic Properties
2.1 Composition

Recall that the composition of binary relations is asso@ai.e., supposé C W x X,
SCXxY,andT CY x Z. ThenRo (SoT) = (Ro S)oT. Furthermore, the
transposition of relations satisfyz o S)* = ST o RT. Interpreting the grapli” as a
relation on its vertex set, we easily derive the followingritities:

Lemma 2.1(Composition law) (G « R) « S = G % (Ro S).

Proof. (G* R)*S=STo(RtocGoR)oS=(SToR")oGo(RoS)
=(RoS)"ToGo(RoS)=Gx*(Ro?S). O

Now we show that every relatioR can be decomposed, in a standard way, to a relation
Rp duplicating vertices and a relatidf- contracting vertices.

Lemma 2.2. Let R C X x Y be arelation. Then there exists a sub$etf X, a setB, an
injective relation with full domainkp, C A x B and a functional relatioi®c € B x Y,
suchthatR = I, o Rp o R¢, Wwherel 4 is the identity onX restricted toA.

Proof. PutA = dom R. Then the relatiod 4 removes vertices itX \ dom R. It remains
to show, therefore, that any relatidghC X x Y with full domain can be decomposed into
an injective relatiomp C X x B with full domain and a functional relatioRc C B x Y.
To see this, seB = R and declaréz, a) € Rp if and only if « = (z,p) € R for some

p € Y,and(3,q) € Rc ifand only if 5 = (y,q) € R for somey € X. By construction
Rp is injective andR is functional. Furthermoréyo, po) € Rp o R¢ if and only if there
is a € R thatis simultaneously of the fortixg, p) and(x, py), i.e.,z = z¢ andp = py.
Hence(zo, po) € R. O

Note that this decomposition is not unique. For instancecadd construct3 from
multiple copies ofR. More precisely, letB = R x {1,2,---,k}, then we would set
(z,(ovi)) € Rp (1 <i < k)ifand onlyifa = (z,p) € R for somep € Y, etc.
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The setB as constructed in the proof of Lemma 2.2 has minimal size.€egothis, it
suffices to show that, giveR there is a mapping from® onto R. SinceRp, is injective and
R¢ is functional we may set

a € B (Rp'(a), Ro(a)).

SinceR = 14 o Rp o Rc we conclude that the mapping is surjective, and héBt¢e> |R).
According to Lemma 2.1, the decompositionfoin the Lemma 2.2 can be restated as
follows:

Corollary 2.3. Suppos€&- « R = H. Then there is a s&B, an injective relationRp C
dom R x B with full domain, and a surjective relatio®R~ C B x img R such that
Gldom R] « Rp « Rc = H.

In diagram form, this is expressed as

o R=RpoRc = 2.1)
R A’
G * RD

We shall remark that from the fact the relations composdlivic that the existence of
a relation implies a quasi-order on graphs that is relatédegdnomomorphism order. This
order is studied more deeply in [8].

2.2 Structural Properties Preserved by Relations

In this subsection we investigate structural propertied ¢fiat can be derived from knowl-
edge about certain properties @f and the fact that there is some relati@nsuch that
G+xR=H.

2.2.1 Connected Components

Proposition 2.4. Let G « R = H and denote by{,, - - - , H;, the connected components of
H. Thenthere are relation®; C Vi x Vi, foreachl < i < k suchthatG« R; = H; and
R= Ule R;. Furthermore, sef; = G[R~!(Vg,)]. Then there are no edges betw&en
andG; for arbitrary: # j.

Proof. Define the restriction oR to the connected componentsBfasR; = {(z,y) €
Ry € Vg, }. Clearly,R is the disjoint union of the?; andG x R; C H;. The definition of
ximpliesH = G+ R = (|J, Ri)" o Go (Uj Rj) =U;U; R oGoR;. SinceR; andR,;
relate vertices of; to different connected componentsidf we haveR;” o G o R; = (. It
follows thatH = U, U, RfoGoR; =J;, R oGoR; =J; G*R;. HenceG* R; = H;.
Any edge betweefi; andG; would generate edges betwednandH;, thus causing
a contradiction to our assumptions. O

Denote by, (G) the number of connected component&othen from Proposition 2.4
we arrive at:



Preprint 9

Corollary 2.5. Suppose bothir and H do not have isolated vertices.dfx R = H andR
has full domain, thehy(G) > bo(H).

Proof. Our notations is the same as in Proposition 2.4. We claimraitrary connected
component’ of graphG, there exists a uniqug such that” is a connected component of
G,. Otherwise one can find two verticesy € C, x andy adjacent, such that € Vg,
andy € Vg,, sinceG has no isolated vertices, which contradigt§~;, G;) = 0. Thus it
follows by (G) > bo(H ) is easily followed. O

From corollary 2.5, we know that is connected whenevé# is connected. The con-
nectedness aff, however, cannot be deduced from the connectednes &br example,
considerG = P; U P, with vertex sef{x1, 22, x3, 24} and edgegz1, 22} and{xs, x4},
andH = Py with vertex Set{’l}l, V2, ’U3}. SetR = {(,Tl, Ul), (.%'2, ’Ug), ($3, ’Ug), (.%'4, Ug)}.
One can easily verify that’ « R = H. On the other handX is connected but: has 2
connected components. The point here is, of course Rhsinot injective.

2.2.2 Colorings

Graph homomorphisms of simple graphs can be seen as gea&oais of colorings: A
(vertex)k-coloring of G is a mapping: : Vo — {1,2,...,k} such that adjacent vertices
have distinct colors, i.eq(u) # c(v) whenever(u,v) € Eq. Everyk-coloringc can be
also seen as a homomorphismG — K.

Thechromatic numbey is defined as the minimal of colors needed for a coloring, see
e.g. [7]. Thus, ifR is a functional relation describing a vertex coloring, tlién R C K.
ConverselyG« R C K}, whereR has full domain and image, then from Lemma 1.4, there
exists a homomorphism fro to K, which is a coloring of=.

Lemma 2.6. If G is a simple graph an& has full domain, thery (G) < x(G * R).

Proof. Supposé& '+« R = H and the domain of is full, from Lemma 1.4 we knoww — H,
sox(G) < x(G x R). O

2.2.3 Distances

Observation 2.7.If P, « R = G, G is a simple graph and the domain®fis full, P, with
the vertex sef, 1, - - - , k, then there is a walkvg, v, . . ., v¢] In G, where(i, v;) € R for
0<i<k.

Observation 2.8. If Cy * R = G, G is a simple graph and the domain Bfis full, then
there is a closed walkg, v1, . .., vx—1] In G, where(i,v;) € Rfor0 <i <k — 1.

Let d¢(z,y) denote thecanonical distancen graphG, i.e., d¢(x,y) is the minimal
length of a path in grapl’ that connects vertices andy; if there is no path connects
verticese andy, then the distance is infinite.

Lemma 2.9. Suppose there exists a relatifrwith fulldomains.tG«R = H, z,y € Vg,
u,v € Vi and(z,u) € R, (y,v) € R. If z # y, thendy (u,v) < dg(z,y); If x =y and
2 is not an isolated vertex, thehy (u, v) < 2.
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Proof. If x = y andx is not isolated, pick a vertex of graphG which is adjacent to
vertexz, and find a vertexs € H satisfying(z, w) € R. Then(w,u) € Ey and similarly
(w,v) € Eg. Sodg (u,v) < 2.

If = # y, choose the shortest path= x, 1,22, - - - , 21, y betweenr andy, and find
corresponding vertices,, us, - - - ,ur € H such thatr;,u;) € Rforanyl < i < kit
is easily seen thaltu,u1) € Fu, (u,u;y1) € Ey and(ug,v) € Ey, thend(u,v) <
d(z,y). O

Theeccentricitye of a vertexv is the greatest distance betwaeand any other vertex.
Theradiusof a graphG, denoted byrad(G), is the minimum eccentricity of any vertex.
The diameterof a graphG, denoted bydiam(G), is the maximum eccentricity of any
vertex in the graph, i.e., the largest distance between ainyppvertices.

Corollary 2.10. Suppos& « R = H, G and H are connected graphs, an@ with full
domain, themrad(H) < max{rad(G),2}.

An analogous results holds for the diameters. In particiil&f is not a complete graph,
thendiam(G) > diam(G * R).

Corollary 2.11. There is a relation from the path of lengkh Py, to the path of lengtth,
Py, ifand only if eitherk > lork = 1,1 = 2.

Proof. Fork > [ there is a surjective homomorphighfrom Py to P, and hence by Lemma
1.4 there is also a relation frol, to ;. In Section 1.5 we already showed a relation from
P to Ps.

To show thatP; « R = P; is the only case withk < [ we first observe that Lemma 2.9
excludes the existence of relation frafy to P, for 1 < k& < [. Now supposer satisfies
P xR = P, fork > 2. SinceP,, has at least 4 vertices, either one of the verticeB,dias
at least 3 images so tha} « R has a vertex with degree at least 3, or both of the vertices
in P; have at least 2 images, in which case all verticeBiof R have degree at least 2. In
both cased” * R cannot be a path. O

In particular,{ P, P>} is the only pair of paths such that there is a relation betweem
them in both directions.
2.2.4 Complete Graphs

The complement graphl_iof a simple graphi{ has the same vertex set &5 and two
vertices are connected it if and only if they are not connected it.
Note that in this subsection we do not require that the dom@mis full.

Proposition 2.12. Let H be a simple graph. Then there exists a relatiosuch that
K x R = H ifand only if H is the disjoint union of at mogt complete graphs.

Proof. Denote the connected componentsidtby Hy, ..., H,,. If m < k and every
connected component &f is a complete graph, l&8 = {(¢,u)|i = 1,--- ,m,u € Vg, }
and by the definition of complement graph, forany 1, - -- , m, all the vertices i, are

independent inff, andu is adjacent ta wheneven € Vg, andv € Vg, for distincti, j.
Hence it is easily seen thaf, « R = H.

Conversely, ifK;, * R = H, denote the vertices ik by 1,--- &k, s.t. dom R =
{1,---,m}. We claim thatR is injective, otherwise? would have loops. Thu¥y is
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the disjoint union ofR(1), - - - , R(m). For any two distinct vertices, v in R(i), u andv
are independent ifif and for distincti andj every vertex inR (i) are adjacent with every
vertex inR(j) wheneverR(i) # (). Therefore for any, R(i) is the vertex set of a connect
component of, which is a complete graph. O

2.2.5 Subgraphs

Relations between graphs intuitively imply relations begw local subgraphs. In this sec-
tion we make this concept more precise. Denote by

Nglz] :={z € Vglz =2V (z,2) € Eg} (2.2)
theclosed neighborhoodf « in G. Furthermore, we leNg[z] := Vi \ N¢[z] be the set
of vertices that are not adjacent (or identicalytm G and denote by, := G[N¢|z]] the
induced subgraph af that is obtained by removing the closed neighborhood of texer
xZ.

Analogously, for a subseét C V; we define

S=G

ve\ Nc[x]] (2.3)

TES

as the induced subgraph obtained by removing all verticésand their neighbors.
Then we have the following result about relations betweeallsubgraphs.

Proposition 2.13. Supposé&r« R = H andS andD are subsets df; andVy, respectively,
such thalG[S] * R|(sx py = H[D], R|(sx p) has full domain orf, and there is no isolated

vertexinD. ThenS « R = D, wherek = R| g, 1, is the corresponding restriction &f

Proof. Obviously,S « R is an induced subgraph @. We have to show the reverse inclu-
sion: Givenu € V5 andz € R~*(u), we first show that there are two possibilities:

1. x is vertex ofS.

2. z is isolated vertex of.

Assume that is not the case, i.e., thaf 1 and thatr is either an non-isolated vertex of
S orzx is in the neighborhood of some vertex®f In either case there is€ S connected
by an edge ta. Consequently there is alsoe D, such that € R(y), connected by an
edge tou. It follows u ¢ V45, a contradiction.

Now consider a arbitrary edde, v) € E. We have(x,y) € Eg such that, € R(x)
andv € R(y). It follows thatz andy are not isolated and thus y are vertices ofS.
Consequently « R has precisely the same edgegasBecausé has no isolated vertices
and thus every vertex is an endpoint of some edge, we knowtthatertex set of * R is
same as the vertex set bt O

This result is of particular practical use in the speciakcatereS and D consist of
a single vertex. When looking for a relatidh such thatz « R = H one can remove a
vertex including its neighborhood frod as well as the prospective image including the
neighborhood fronff and solve the problem on the subgraphs.
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3 Relational Equivalence

GraphsG and H arehomomorphism equivalefmr hom-equivalentif there exists homo-
morphismsG — H andH — G. Itis well known that every equivalence class of the
homomorphism order contains a minimal representativeishatique up to isomorphism:
thegraph core[7].

We define similar equivalences implied by the existence pé¢gl) relations between
graphs. In this section, we require all relations to havedamain unless explicitly stated
otherwise. With this condition we will show that these e@l@nces produce a rich structure
closely related to but distinct from the structure of homophdsm equivalences.

This may come as a surprise: the equivalence implied by tistegice of surjective
homomorphisms is not interesting. Consider two gra@ghend H and suppose there are
surjective homomorphismg : G — H andg : H — G. Since every vertex ig has
at most one image undgr we have|Vi| > |Vy|. Analogously|Vy| > |Ve|, and hence
|Va| = |Vi|. Thusf andg are both bijective, and" is isomorphic toH .

3.1 Reversible Relations

Definition 3.1. A relation R is reversible with respect to grapR if (G « R) * RT = G.

We write N¢(z) := {z € Vg|(z, 2) € Eg} for theopen neighborhoodf vertexz in
graphG.

Proposition 3.2. SupposeR = Rp o R, whereRp and R are constructed as in the
proof of Proposition 2.2. TheR is reversible with respec if and only if for everya and
3 satisfyingRc () = R () we haveNg.r, () = Nawry, (5)-

Proof. We setG; = G « Rp, then from Lemma 2.1 we havé, « Rc = H. If Ro(a) =
Rc(B) implies Ng, (o) = Ne, (3), thenH * R = G4. SinceG, * Rf, = H, we have
H* RL« RE = H+ RT =G, ie,Risreversible.

Conversely, sincer is reversible, i.e.H * RT™ = G, settingGy, = H * RJCr gives
GoxRf = G. HenceG * Re xR, = Gy andGa xR}, *Rp = Gy. Fromlg, C Re xR,
we concludez; C G, and similarlyls, C RE x Rp yieldsG, D Gs. HenceG, = Gbs.
R is injective, hencey, 3 € Vi, = Vi, has the same open neighborhood whenever the
pre-image ofv and3 underR/; coincide, i.e.R¢(a) = Re (). O

Rp is an injective relation, hence one can easily §et.r, (o) = Rp(Ng(x)) pro-
vided that(z, o) € Rp. On the other hand, if we defin® to be the image oRRp as in
the proof of Proposition 2.2, theR¢ () = R () implies there are two distinct vertices
z,y € Vg, st. (z,u), (y,u) € R, whereu = Rc(a) = Rc(0), and verse visa. Using
Proposition 3.2 we thus obtain

Proposition 3.3. A relation R is reversible with respect t€' if and only if for every two
verticese andy such thatR(z) U R(y) # 0 we haveN¢ (z) = N¢(y).

3.2 Strong Relational Equivalence

Definition 3.4. Two graphsG and H are (strongly) relationally equivalentz «~ H, if
there is a relatior such thati * R = H andH x RT = G.

Lemma 3.5. Relational equivalence is an equivalence relation on graph
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AX

Figure 2: Non-isomorphic graplis and H with isomorphic thin graphs.

Gihin = Hinin

Proof. The relation-~ is reflexive sinced « I = G. Symmetry also follows directly
from the definition. Supposé *x R = H andH * R™ = GandH * Q = K and
KxQT =H,ie,(GxR)xQ =Kand(K*QT)+« R =@G,ie,G*x(RoQ)= K and
K*x(QToR")=K=x*(RoQ)" =G, i.e.,isalso transitive. O

Definition 3.6. Thethinness relatior5 of G is the equivalence relation drt; defined by
(z,y) € Sifand only if N¢(z) = Ne(y). A graphG is calledthin if every vertex forms
its own class ins.

Thin graphs are also known as “point determining graphs].[13

We denote byS the corresponding partition df, and writeRs C Vi x S for the
relation that associates each vertex withStequivalence class, i.e(z, 5) € Rg if and
only if x € 3.

Definition 3.7. Thethin graph ofG, denoted by, is the quotient grap&'/ S, i.e., Giin
has vertex sef and two equivalence classesandr of S are adjacent i, if and only
if (x,y) is an edge ofi with = € o andy € .

As noted e.g. in [6, p.817in is itself a thin graph. Furthermor&g is a full homo-
morphism ofG to Gin, see [4].

Thinness and the quotients w.r.t. the thinness relatiopgatamportant role in particu-
lar in the context of product graphs, see [9]. In this contieistwell known thatG can be
reconstructed frond/y,in and the knowledge of thg-equivalence classes. In fact, we have

Gwin * Rst = G. (3.1)

Theorem 3.8. G and H are in the same equivalence class wsktif and only if their thin
graphs are isomorphic.

Proof. AssumeG «~ H. From Equation(3.1) we know th& « Giin, H «~ Hihin, SO
Ghhin v~ Hihin. Now we claim thatz i, and Hyin are isomorphic. Suppogéninx R = Hin,
then the pre-image ak is unique. Otherwise, there exist distinct verticeg € V4,,, such
that R(z) = R(y), thenNg,,.(z) = N¢,..(v), contradicting thinness. Likewise, the pre-
image of R~! is unique, i.e., the image @t is unique. Hence is one-to-one. O

The example in Fig. 2 shows that thin graphs can be isomoxphiie G and H them-
selves are not isomorphic. Relational equivalence thusasser than graph isomorphism
(surjective homomorphic equivalence) but stronger thandmorphic equivalence.
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Figure 3:G andH are weakly relationally equivalent but have non-isomoephin graphs.

3.3 Weak Relational Equivalence

Definition 3.9. Two graphsz and H areweak relationally equivalentG «~,, H, if there
are relations? andS such thatz x R = H andH xS = G.

Lemma 3.10. Weak relational equivalence is an equivalence relationraphs.

Proof. By definition -~,, is symmetric. Becaus€' x I = G, relation—,, is reflexive.
Supposes «, G’ andG’ «,, G”. Thus there are relations, S, R’, and.S’, such that
G =G*+R,G' =G *R,G =G *S,andG" = G” x S’. By the composition law
(Lemma 2.1) it follows thaG” = G * (Ro R') andG = G” * (S’ 0 S), i.e,G «, G".
Hence-,, is transitive. O

Strong relational equivalence implies weak relationaliegjance. To see this, simply
observe that the definition of the weak form is obtained frbwm $trong one by setting
S =RT.

The converse is not true, as shown by the graplasdH in Fig. 3: Itis easy to see that
their thin graphs are different and thGsand H are not strongly relationally equivalent.
However, are relationally equivalent. To get relation fréhto H contract vertices 2 and 3
and keep other vertices on place, i.e.,

R = {(15 1)7 (25 2)7 (35 2)7 (45 4)7 (5a 5)7 (6a 6)7 (73 7)}
To get relation fromH to G, duplicate 5 and 7 and contract them together to 3,
S = {(17 1)’ (27 2)5 (474)a (57 5)a (67 6)a (77 7)a (57 3)1 (77 3)}
Consequently, weak relational equivalence is coarserdtrang relational equivalence.

3.4 R-cores

A graphis arR-core if it is the smallest graph (in the number of vertices) ireitaiivalence
of vy,

This notion is analogous to the definition of graph cores. his section we show
properties of R-cores that are similar to the propertiesraply cores. To this end we first
need to develop a simple characterization of R-cores.

Again we start from a decomposition of relations. Consideelation R such that
G x R = H. We seek for pair of relation®; and R, such thatR = R; o R,. In contrast
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to Lemma 2.2, however, we now look for a decomposition sotttagraph’ = G x R;
is smaller (in the number of vertices) théh

o PRk
;x /R:
G/

The existence of such a decomposition follows from a traiosiaf the well-known Hall
Marriage Theorem [12] to the language of relations. We saytthe relationR C A x B
satisfies theHall condition, if for every S C A we havelS| < |R(S)|.

(3.2)

Theorem 3.11(Hall's theorem) If G * R = H and R satisfies the Hall condition, theR
contains a monomorphisifi: G — H.

Proof. The Hall Marriage Theorem is usually described on set systefor set systems

satisfying the Hall condition, the theorem guarantees Kigtence of a system of distinct

representatives, see i.e. [12]. Relations can be seen agsteins (defined by the images
of individual vertices). Furthermore, in our setting thestgyn of distinct representatives
directly corresponds to a monomorphism contained in ttedicel R. O

Lemma 3.12.If G * R = H and relationR does not satisfy the Hall condition, then there
are relationsR?; and R, such thatR = R; o R,, and the number of vertices of graph
G’ = G * Ry is strictly smaller than the number of vertices(®f

Proof. Without loss of generality assume tHat N Vi = (. If R does not satisfy the Hall
condition, then there exist a vertex setC Vi such thafS| > |R(S)|. Now we define
relationsR; and R, as follows:

R(z) forz e S, x forx € R(S),
= = 3.3
Bale) {a: otherwise, Ra(@) {R(x) otherwise. 33

ObviouslyR; o Re = Rand|Ve/| = [Vi| — (IS| — |R(S)]) < |Vl O

This immediately gives a necessary, but in general not geirfficcondition for a graph
to be an R-core.

Corollary 3.13. If G is an R-core, then every relatidR such thatG « R = G satisfies the
Hall condition and thus contains a monomorphism.

Proof. Assume that there is a relatidi that does not satisfy the Hall condition. Then
there is a grapli?’, |Ve/| < |V, and relationsk?; and R, such thatG « R, = G’ and
G’ x Ry = (. Consequently:’ is a smaller representative of the equivalence class,of
a contradiction with7 being R-core. O

To see that the condition of Corollary 3.13 is not sufficiemisider a graph consisting
of two independent vertices.

Next we show that R-cores are, up to isomorphism, uniquesgmtatives of the equiv-
alence classes 6f,,.
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G
GR-core
B
Cicm
O
f Ry

Figure 4: Construction of an embedding fr@g._core to G.

Proposition 3.14. If both G and H are R-cores in the same equivalence class gfthen
G andH are isomorphic.

Proof. Because botl and H are R-cores, we know thélt;| = |Vx|.

Consider relation®; andR, suchthatz«R; = H andH xRy = G. Applying Lemma
3.12 we know thaf?; satisfies the Hall condition. Otherwise there would be a lgi@p
with [VZ| < |V so thatG’ is relationally equivalent to botty and H contradicting the
fact thatG and H are R-cores. Similarly, we can show thdi also satisfies the Hall
condition.

From Theorem 3.11 we know that there is a monomorphfsfrom G to H, and
monomorphisny from H to G. It follows that number of edges @ is not larger than
the number of edges dff and vice versa. Becauge and H have the same number of
edges and same number of verticgandh must be isomorphisms. O

It thus makes sense to define a construction analogous toth®ta graph.
Definition 3.15. H is anR-core of graphG if H is an R-core andf «,, G.

All R-cores of graplG are isomorphic as an immediate consequence of Prop. 3.14. We
denote the (up to isomorphism) unique R-core of grépby Gr-core

Lemma 3.16. Gr-core iS iSomorphic to a (not necessarily induced) subgrapf.of

Proof. Take any relatior such thatGr.corex R = G. By the same argumentas in Corollary
3.13, there is a monomorphisf: Gr.core — G contained inR. Consider the image of
onG. |

Theorem 3.17. GRr-coreiS iSomorphic to an induced subgraph@f

Proof. Fix R; andRs such thatGr.core* R1 = G andG * Ry = GRrecore

R = RjoRsisarelation such thaircorex R = Gr-core By Corollary 3.13,R contains
a monomorphisnt : Gr-core — GRr-core BeCause such a monomorphism is a permutation,
there exists: such thatf", then-fold composition off with itself, is the identity.
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PutR] = R"~! o Ry. BecauseR™ contains the identity anft” = R} o Ry, it follows
that for everyz € Vi, there is a vertex(z) € Vg such thatl(z) € Rj(z) and
x € Ro(I(x)).

We show that for two vertices # y, we havel (z) # I(y) and thus botll and 7!
are monomorphisms. Assume, that is not the case, i.e.,itbed aire two vertices # y
such that/ () = I(y). Consider an arbitrary vertexin the neighborhood of. It follows
that7(z) must be in the neighborhood éfz) and consequently is in the neighborhood
of y. Thus the neighborhoods ofandy are the same. By Theorem 3.8, however, we know
that the R-core is a thin graph (because weak relationaVelgumce is coarser than strong
relational equivalence), a contradiction.

Finally observe thaf is an embedding froni*r-core t0 G. For every edgéz,y) €
EGr.. We also have edgd (x), I(y)) € E¢ becausd is contained in relatiod;. Sim-
ilarly becausd ~* is contained in relatiod,, every edge (), 1(y)) € Eg corresponds
to an edg€z, y) € Fgp e O

We close the section with an algorithm computing the R-cdra graph. In contrast
to graph cores, where the computation is known to be NP-cempthere is a simple
polynomial algorithm for R-cores.

Observe that the R-core of a graph containing isolated cesrtis isomorphic to the
disjoint union of the R-core of the same graph with the isalatertices removed and a
single isolated vertex. The R-core of a graph without igalatertices can be computed by
Algorithm 1.

Algorithm 1 The R-core of a graph
Input:
GraphG with loops allowed and without isolated vertices, vertekdenoted byl
neighborhood¥V¢ (i), i € V.
1: fori e V do

22 W3E) =0

3:  found = FALSE

4:  for jeV\({i}do

5: if N(j) C N(i) then

6: W (i) := W () UN(j)
7 end if

8: if N(i) C N(j) then

9: found = TRUE
10: end if
11: end for
12 if W (i) = N(i) Afoundthen
13: deletes fromV
14: N(@i)=0
15:  endif
16: end for

17: return The R-coreG[V] of G.

The algorithm removes all verticese G such that (1) the neighborhoodofs union
of neighborhood of some other verticeg v2, < v,, and (2) there is vertex such that
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Ng(v) C Ng(u).

It is easy to see that the resulting graphis relationally equivalent té7. Condition
(1) ensures the existence of a relatiBpn such thatd « R; = G, while the condition (2)
ensure the existence of a relatifa such thats * Ry, = H.

We need to show thdf is isomorphic taGr.core By Theorem 3.17 we can assume that
GRr-coreiS an induced subgraph &f that is constructed as an induced subgrap@ of

We also know that there are relatioms and R, such thatGr.core * R1 = H and
G x Ry = GRr-core BY the same argument as in the proof of Theorem 3.17 we cama&ss
both R, and Rs to contain an (restriction of) identity.

Now assume that there is a vertex Vi \ Vi We can putt = Ry (v) and because
R, contains an identity we haw¥(v) € Ng(u). We can also pufvy,vs ... v, } to be
set of all vertices such thate R;(v;). It follows that the neighborhood efis the union
of neighborhoods of;, vs, . . . v, and consequently we havez Vy, a contradiction.

4 The Partial Order Rel(G, H)
4.1 Basic Properties

For fixed graphg: and H we consider partial ordétel(G, H). The vertices of this partial
order are all relation® such thatz « R = H. We putR; < Ry ifand only if Ry C Rs.

This definition is motivated by Hom-complexes, see [10].His section we show the
basic properties of this partial order and concentrate animal elements in the special
case ofRel(G, G).

Proposition 4.1. Suppose&y « R’ = H, G+ R” = H andR’ C R”, then any relatior?
with R C R C R” also satisfie&/ * R = H.

Proof. FromR’' C R C R"” we concludeZ+«R' C GxR C GxR". HenceG+R' = GxR"
impliesG « R = H. O

Hence it is possible to describe the partial oret(G, H) by listing minimal and
maximal solutions? of G « R = H w.r.t. set inclusion.

For example, ifG is P; with verticesuvg, vy, v2, v3 and H is P; with verticesxg, z1,
it is easily seen thaR” = {(vo, z¢), (v2, x0), (v1, 1), (vs, 1)} IS @ maximal solution of
G+ R = H andR' = {(vo, z0), (v1, z1)} is @ minimal solution, becausg® c R”,thenall
the relations? with R € R C R” satisfyG « R = H. We note that minimal and maximal
solutions need not be unique.

4.2 Solutions ofG x R =G

For simplicity, we say that a relatioR is anautomorphisnof G if it is of the form R =
{(z, f(z))|z € Vg} andf : Vo — Vs is an automorphism af.

We shall see that conditions related to thinness again piagjar role in this context.
Recall thatG is thin if no two vertices have the same neighborhood, Ne:(x) = N¢(y)
impliesz = y. Here we need an even stronger condition:

Definition 4.2. A graphG satisfiescondition Nif Ng(z) C N¢(y) impliesz = y.

In particular, graph satisfying condition N is thin.
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Proposition 4.3. For a given grapld, the seRel(G, GG) of all relations satisfying+ = R =
G forms a monoid.

Proof. Firstly, becausé: is a finite graph, the sel(G, G) is also finite. Furthermore,
R, S € Rel(G, G) impliesG * R = G andG = S = G and thusG « (R o S) = G, so that
Ro S € Rel(G, G). Finally, the identity relatior; is a left and right identity for relational
composition:/g o R = RoIg = R. O

A relation R C Vi x Vi can be interpreted as a directed gralﬁhrvith vertex set
Ve and a directed edge — v if and only if (u,v) € R. Note thatR may have loops.
We say thaty € Vi is recurrentif and only if there exists a walk (of length at least 1)
from v to itself. LetSs be the set of all the recurrent vertices. Furthermore, wandefn
equivalence relatioti on S¢ by setting(u, v) € ¢ if there is a walk inZz from u to v and
vice versa. The equivalence classes wgrare denoted by?/g = {Dy,Dy,---,D,,}.
We furthermore define a binary relatic)moverﬁ/g as follows: if there is a walk from a
vertexu in D; to a vertexv in D;, then we say: > v. Itis easily seen that is reflexive,
antisymmetric, and transitive, hen(:é/g, >) is a partially ordered set. W.l.o.g. we can
assumeg Dy, Do, ..., Dy} are the maximal elements w.rt. Now letG, = G[D1U--- U
D] be the subgraph a@¥ induced by these maximal elements.

In the following we writeRR' for thel-fold composition ofR? with itself.

Lemma 4.4. For arbitraryz € Vg, there exist € N and a recurrent vertex such that
(v,z) € R%.

Proof. Setxy = x and choose; € R~!(z;_1) forall i > 1. Since|Vs| < oo, there are
indicesj, k € N, j < k, ; = x. Thenx; is recurrent vertex. The lemma follows by
settingl = j andv = x;. O

Lemma 4.5. Foreveryv € Vg, R~ (v) C Vg, .

Proof. Supposer € R~!(v) is not recurrent. Lemma 4.4 implies that therd is N
and a recurrent vertex such thatw, z) € R'. Hence the definitions of and > imply
[w] > [v], where[v] denotes the equivalent class (w.E) containing the vertex. Since
[v] is maximal w.r.t.>, we havev] = [w]. Consequently, there exists an index N such
that (v, w) € R*. On the other hand, we havye, z) = (z,v) o (v,w) o (w,z) € RFFHL,
Thus,x is recurrent, a contradiction.

Therefore, every vertex € R~!(v) is recurrent. Hencér] > [v] together with the
maximality of [v] gives[z] = [v], and thust € V. O

Lemma 4.6. For everyx € Vg, there isl € N such that, for arbitrary > [, there exists
u € Vg, satisfying(u,z) € R".

Proof. From Lemma 4.4 and Lemma 4.5 we conclude that it is sufficeshbw that for
an arbitrary recurrent vertexthere is & € N andw € Vg, such thatw,v) € R*. The
lemma now follows easily from the finitenessgf. O

From these three lemmata we can deduce

Theorem 4.7. All solutions ofG « R = G are automorphisms if and only@ has property
N.
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Proof. Suppose there are distinct verticey) € Vi such thatNg(z) € Ng(y). Then
R = I¢ U (z,y), which is not functional, satisfie§ « R = G. ThusG x R = G is also
solved by relations that are not automorphismé&ofThis proves the "only if’ part.

Conversely, suppos@ has property NClaim: There is & € N such that?* N (Vg, x
Ve,) =Ia,.

For eachw; € Vi, there is a walk of length; > 1 from v; to itself. Hence(v;, v;) €
R#. Lets be the least common multiple of the. Then(v;,v;) € R* for all v; € Vg, .
Define@ := R*N (Vg, x Vg, ). Thuslg, C Q and moreove€)’ C Q’*! forall j € N.
SinceVg, is finite there is am € N such thatQ"*! = Q", and henc&)?" = Q". Let
us writt R~%(v) := {u € Vi : (u,v) € R'}. Forv € Vg, we haveR™*(v) € Vg,
(from Lemma 4.5) and hend@®@ " (v) = R—*"(v) forallv € Vg,. If Q™ # Ig,, then
there are two distinct vertices v € Vi, such thatu,v) € Q™. Ng(u) € Ng(v) and
G = G = R*™ allows us to conclude tha " (u) ¢ R~*"(v) andR*"(v) £ R™*"(u).
Hence, there is a vertey, such thatw, u) € Q™ and(w,v) ¢ Q™. From(u,v) € Q"
and (w,u) € Q™ we concludgw,v) € Q" o Q" = @Q*", contradicting taQ?" = Q™.
ThereforeQ™ = I, . Settingk = sn now implies the claim.

Finally, we show;, = V. Foranyw € Vg \ Vg, , Lemma 4.6 implies the existence of
w € Vg, andm € N such thatw,v) € R™*. However, we have claime—* (w) = {w},
henceR~"*(w) = {w}. This, however, impliesNg(w) C Ng(v) and thus contradicts
property N. ThereforeV; = Vi, and moreoveR* = I5. This R is an automorphism.

O

5 R-Retraction

A particularly important special case of ordinary graph lbomorphisms are homomor-
phisms to subgraphs, and in particular so-called retrastibet H be a subgraph of/, a
retractionof GG to H is a homomorphism : V; — Vi such that'(x) = z forall z € Vy.

We introduced the graph cores in section 3 as minimal reptatees of the homo-
morphism equivalence classes. The classical and equiv@géinition is the following: A
(graph) coreis a graph that does not retract to a proper subgraph. Evephg¥ has a
unigue cored (up to isomorphism), hence one can speakicdisthe core ofG, see [7].

Here, we introduce a similar concept based on relations dsgivgraphs. Again to
obtain a structure related to graph homomorphisms, in #aan we require all relations
to have full domain unless explicitly stated otherwise.

Definition 5.1. Let H be a subgraph af. An R-retractionof G to H is a relationR such
thatG « R = H and(z,z) € R forall z € V. If there is an R-retraction af to H we
say thatH is aretractof G.

Lemma55.2. If H is an R-retract ofy and K is an R-retract off, thenK is an R-retract
of G.

Proof. Supposd’ is an R-retraction off to K and.S is an R-retraction of7 to H. Then
(Gx8S)*xT =Gx*(SoT)= K. Furthermorgx,z) € T forall z € Vg C Vg, and
(u,u) € Sforallu € Vi, hence(z,z) € SoT forall z € Vj. ThereforeS o T is an
R-retraction fromz to K.

O

Hence, the following definition is meaningful.
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Definition 5.3. A graph isR-reducedf there is no R-retraction to a proper subgraph.

Thus, we can also speak about “the R-reduced graph of a gra@s the smallest
subgraph on which it can be retracted. We shall see belowthkaR-reduced graph of a
graph is always unigue up to isomorphism.

We shall remark that R-reduced graphs differs from R-cané®duced in section 3,
thus we chose an alternative name used also in homomorpéisnggcores are also called
reduced graphs).

Lemma 5.4. Let G be a graph with loops anda vertex ofG with a loop on it. Then the
R-reduced graph af is the subgraph induced Hy}.

Proof. Let O be the graph induced bfp}, andR = {(z,0)|z € Vi }, then it is easily
seenk is a R-retraction oty to O. Moreover, sinc& has only one vertex, thus there is no
R-retraction to its subgraphs. ®bis a R-reduced graph «f.

Conversely, letd be a R-reduced graph ¢f and denote by? the R-retraction from
G to H. Then a loop ofG must generate a loop df via R, denote it byO. Similarly
to above, we seé is a R-retract of/, hence it is also a R-retract 6f (by Lemma 5.2).
Therefore the definition of R-reduced graph impliés= O. O

In the remainder of this section, therefore, we will only sigier graphs without loops.
Lemma 5.5. If G is R-reduced, thet¥ has property N.

Proof. Suppose there are two distinct verticey € Vi with Ng(x) C Ng(y) and con-
sider the induced grapfi/z := G|V \ {z}] obtained fromG by deleting the vertex
and all edges incident with. The relation? = {(z, z)|z € Vg \ {z}} U {(z,y)} satisfies
Gx*R = G/x: thefirst partis the identity o6/« and already generates all necessary edges
in G/xz. The second part transforms edges of the féee) € E¢ to edgeqy, z). Since
R has full domain and contains the identity relation restdctio G/, it is an R-retraction
of graphG, and hencé is not R-reduced.

O

Proposition 5.6. A graphG is R-reduced if and only if it has no relation to a proper
subgraph.

Proof. The “if” part is trivial. Now we suppose thdl is a proper induced subgraph of
graphG with the minimal number of vertices such that there is a i@taR? satisfying
G x R = H. ThenH does not have a relation to a proper subgraph of itself. Windlzat
H has property N; otherwise, one can find a veriex V and construct a retraction from
H to H/u as in Lemma 5.5, which causes a contradiction. Deibte R N (Vi x Vi),
thenK = H « R is a subgraph off. From our assumptions aif we obtaink = H. By
virtue of Theorem 4.7R is induced by an automorphism &f. HenceR o R™ is again a
relation of G to H that contains the identity oA, i.e., it is an R-retraction. O

Since graph cores are induced subgraphs and retractiosargeetive they also imply
relations. Proposition 5.6 is also a consequence of this & refer to [7] for a formal
proof.

We call R aminimal R-retractiorif there is no R-retractio®®’ such that? > R’ D Ig.

Lemma 5.7. Let H be an R-retract ofs. Then any minimal R-retraction @ to H is
functional.
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N/

Figure 5: A graphG and its core.

Proof. SupposeR is a minimal R-retraction o~ to H. If R is not functional, then there
exist distinctz,y € Vg such that(u, z), (u,y) € R. Hence we could always pick a
vertex from{x, y} which is different ofu, w.l.o.g. suppose it is. ThenR/(u,z) is an
R-retraction, which contradicts minimality. To see thit B’ = R/(u,z),thenR D R’ D
I and moreovefl = G+ Ig CG*+ R C G+ R=H,andthusi « R = H. O

Proposition 5.8. A graph is R-reduced if and only if it is a graph core.

Proof. If H is R-reduced from there is an R-retraction fror&" to H which can be

chosen minimal and hence by Lemma 5.7 is functional and hanaehomomorphism
retraction. Conversely, a homomorphism retraction is ats®-retraction. Hence the R-
reduced graphs coincide with the graph cores. O

Proposition 5.9. Supposéd is the core of graplé’. If H « R = K then there is a relation
R'suchthatG « R = K. If K S = (G, then there is a relatiof’ such thatk” x S" = H.

Proof. Since H is the core of grapldz, there is a relatiorR; such thatz « R, = H. If
H+R=KwehaveG R xR =K andR' = Rio R satisfiesxi+« R = K. If KxS =G
we haveK * S x R; = H andS’ = S o R; satisfiesK o S’ = G. O

5.1 Cocores

In the classical setting of maps between graphs, one canconlsider retractions from a
graph to its subgraphs, since graph homomorphisms of ac@utsubgraph to the original
graph are just the identity maps. In the setting of relatibesveen graphs, however, it
appears natural to consider relations with identity restm between a graph and an in-
duced subgraph. This gives rise to notions of R-coretractial R-cocore in analogy with
R-retractions and R-reduced graphs.

Definition 5.10. Let H be a subgraph of graghi. An R-coretractiorof H to GG is arelation
R suchthatd « R = G and(z,z) € R forall z € V. We say that{ is anR-coretractof
G.

Lemma 5.11. If H is an R-coretract of grapfi and K is an R-coretract off, thenK is
an R-coretract of5.

Proof. Supposé€l’ is an R-coretraction o to H and S is an R-coretraction off to G.
Then(K «T) %S = K % (T o S) = G. Furthermordz,x) € T forallz € Vg C Vy,
and(v,v) € Sforall v € Vi, hence(z, z) € T o S for all z € V. Thereforel’ o S is an
R-coretraction fronk to G. O
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Hence, the following definition is meaningful.

Definition 5.12. An R-coretractd of a graphG is anR-cocore of7 if H does not have a
proper subgraph that is an R-coretractbfand hence ofy).

N/

G cocore(Q)

Figure 6: A graph and its cocore

Clearly, the reference t6& is irrelevant: A graphG is an R-cocoreif there is no
proper subgraph of; that is an R-coretract off. Similarly, we callR to be aminimal
R-coretractiorof H to G if there exists no R-coretractiai’, such thatk’ C R.

Lemma 5.13. Let H be an R-coretract of graph, and letR be a minimal R-coretraction
of H to G. Then the restriction oR to H equalsiy .

Proof. Suppose&?N (Vy x Vi) # Iy and defineRy = R\ {(z,y) € R:z,y € Vi, z #
y}. ThenH « Ry C H « R = G. We claim thatH « Ry = H = R and thusR; is an
R-coretraction off to R, contradicting the minimality of2.

To prove this claim, it is sufficient to show that any edges FE¢ is contained in
H x R;. If eis notincident with any vertex iy ore € Ey, the conclusion is trivial. So
we only need to consider= (z,u) with z € Ey andu € Vi \ V. SinceG = H * R,
one can findey, 22 € Vy such that(zy, 2), (z2,u) € R and(x1,22) € Ey. Because
HCHx*(IgU(z1,2)) CH* (RN (Vg x Vi) = H, we getNg(z1) C Ng(z). It
follows that(z, z2) € Ey and hence = (z,u) € G * R;. O

Like R-reduced graphs, R-cocores satisfy a stringent tiamddon their neighborhood
structure.

Definition 5.14. A graphG satisfies property N* if, for every vertex € Vi, there is no
subsel, C Vi \ {z} such that

Ne(z) = |J Na(y) (5.1)
yeUs
In other words, no neighborhood can be represented as tha ahnheighborhoods of
other vertices of grapty.

Proposition 5.15. GG is an R-cocore if and only i7 has property N*,

Proof. Consider a vertex sdt, as in Definition 5.14 and suppose that there is a vertex
z € Vg such thatVe(z) = U, <y, Na(y). Then the relatiom? := I'\ (z,z) U {(y,z) :
y € U,} is an R-coretraction fror’ /= to G. ThusG is not a R-cocore.

Conversely, suppose thatis not an R-cocore, let/ be a coretract o7, and denote
by R a minimal R-coretraction off to G. Then, by Lemma 5.1 N (Vg x Vi) = Iy.
Consider a vertex € Vi \ Vi and setR ! (v) = {z1,--- ,2;}. ThenN (v) = |, N(x;),
contradicting property N*. O
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Proposition 5.16. The R-cocore of is unique up to isomorphism.

Proof. We denote by\ the collection of all open neighborhoods of verticesdni.e.,

N = {Ng(z1), Ng(z2), - , Na(zx)}, whereVg = {x1,x2,--- , 21 }. From the defi-
nition of the R-cocore we know that the subcollectibh of A consisting of all the open
neighborhoods of vertices in R-cocore is a basid/ofi.e., any set in\V' can be expressed
by the union of some sets iM. W.l.o.g., we denote the vertex set in a R-cocofef

G is {z1,x2, - ,xm} Wherem < k, then M = {Ng(x1), Na(z2), -, Na(zm)}
We claim that any element iiNg(z1), Ng(22),- -, Na(z,m)} cannot be expressed as
the union of other elements, i.eM is a minimal basis. Otherwise, w.l.0.g., suppose
Ng(xl) = UIkNg(Ik),Ik € {xQ,...,Im}. Foranyl < k < m, NG(SCk) = Nc(Ik)

or NG(SCk) = Nc(Ik) + {I1|(I1,Ik) S Eg,m +1 <1< n}, SO eitherNc(xl) =
Uz, Ne(2r), 2k € {z2,...,xm} Of No(21) = Uy, No(zg) + {x;]i € 1,--- ;n},xy €
{xa,...,2m}, the former contradicts to Proposition 5.15, which impley element in
{Nec(x1), Ne(x2), -, No(zm)} cannot be expressed as the union of other elements, the
latter is impossible becauge;|i € 1,--- ,n} ¢ C.

Now we prove that this minimal basis is unique. Note thafMinve view any vertex
with the same neighborhood as the same, since any vertexot®&< has different neigh-
borhoods. Let us consider two minimal sub-collectigh43. Neither contains the other by
their minimality. Since everything is finite, let € A/B be an element of minimal size.
Now A can be expressed as a union of elements,afhich all need to be of smaller cardi-
nality thanA (or same butd ¢ ), but.A then contains all of them, lettind be expressed
by a union of elements ofl contradicting the minimality ofA. O

These results allow us to construct an algorithm that coesattie cocore of given graph
G in polynomial time. First observe that the cocore of a grépthat contains isolated
vertices is the disjoint union of cocore of the gra@h obtained fromG by removing
isolated vertices and the graph consisting of a singletisdlaertex. It is thus sufficient to
compute cocores for graphs without isolated vertices iroAtgm 2.

Algorithm 2 The cocore of a graph
Input:
GraphG with loops and without isolated vertices specified by itdeesetl” and the
neighborhood®V (i), i € V.
1: for i € V do

22 W3E) =0

3 forjeV\{i}do

4: if N(j) C N (i) then
5: W (i) := W) UN(j)
6: end if

7. end for

8 if W(i) = N(i) then
9: deletei from V'

10: N(@i)=0

11:  endif

12: end for

13: return G[V], the cocore of5.
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Proposition 5.17. Suppos€eH is a cocore of7. If K + R = H, then there is a relatioR’
suchthatk « R' = G. If G S = K, then there is a relatiof’ such thatd x« S’ = K.

Proof. SinceH is a cocore of7, there exists an R-coretractidty such thatd * R; = G.
If K« R = H, thenlettingR’ = Ro Ry impliesK *x R = G. If G xS = K, we have
HxRi xS=K.lLetS"=R;08,thenH xS = K. O

6 Computational Complexity

In this section we briefly consider the complexity of compiotaal problems related to
graph homomorphisms. Th®momorphism problefdom(H) takes as input some finite
G and asks whether there is a homomorphism fé@to . The computational complexity
of the homomorphism problem is fully characterized. It ioWm that HOmM(H) is NP-
complete if and only ifH has no loops and contains odd cycles. All the other cases are
polynomial, see [7].

The analogous problem for relations between graphs can tasedh as follows: The
full relation problemFuL-REL(H) takes as input some finit& and asks whether there is
a relation with full domain fronG and asks whether there is a relation fréhto H. We
show that this problem can be easily converted to a relatellggm on surjective homo-
morphisms. Thesurjective homomorphism probleBur-HoM(H) takes as input some
finite G and asks whether there is a surjective homomorphism &raim H .

Let <[V"indicate polynomial time Turing reduction.

Theorem 6.1. For finite H our relation problem sits in the following relationship.
HOM(H) <} FUL-REL(H) <" SUR-HOM(H) . (6.1)

Proof. First we show that IBm(H) is polynomially reducible to BL-REL(H). If there is
a homomorphism fronds H, then there is also a surjective homomorphism fieGm- H
to H. On the other hand, suppoéehas no homomorphism td. From Lemma 1.4 we
conclude thaG + H has no relation td{ sinceG has no relation td7.

The relation problem BL-ReL(H) is polynomially reducible to 8R-HoM(H ). From
Corollary 2.3 we know « R = H if and only if there is a grapt’ = G * Rp which has
a full homomorphism t@~ and has a surjective homomorphismHo

We construct?”’, by duplicating all the vertices @¥ precisely|Vy| times. Itis easy to
see that ifG’ exists, we can also p@¥’ = G because the surjective homomorphism can
easily undo the redundant duplications.

It remains to check whether there is surjective homomorptirem G” to H. This
gives the polynomial reduction fromut-ReL(H ) to SUR-HOM(H). O

To our knowledge, 8rR-Hom(H) is not fully classified. A recent survey of the closely
related complexity problem concerning the existence afexesurjective homomorphisms
[2] provides some arguments why the characterization ofptexity is likely to be hard,
see also [5]. We observe that the existence of a homomorghismG to H is equivalent
to the existence of a surjective homomorphism frém- H to H. Thus SIR-HOM(H)
is clearly hard for all graphs for whichdM(H) is hard, i.e., for all loop-less graphs with
odd cycles.

Testing the existence of a homomorphism from a figetb H is polynomial (there is
only a polynomial numbeji/;|/V<! of possible functions frond to H). Similarly the ex-
istence of a relation from a fixe@d to H is also polynomial. In fact, an effective algorithm
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exists. For fixed= there are finitely many thin grapiSwhich G has relation to. The al-
gorithm thus first constructs the thin graphifand then, using a decision tree recognizes
all isomorphic copies of all thin graplis has relation to.

7 Weak Relational Composition

In this section we will briefly discuss the “loop-free” vesngi i.e., equations of the form
GxR=H.
Most importantly, there is no simple composition law analagto Lemma 2.1. The
expression
(GxR)xS=(STo(RToGoR) 0S) (7.1)

does not reduce to relational composition in general. Famgte, letG = K3 with vertex
setV = {z,y, z} and consider the relatior® = {(z,1),(z,1),(y,2)} C {z,y,z} x
{1,2}andS = {(1,2')(1,2')(2,y')} C{1,2} x {a’,¢/, 2’}. One can easily verify

(GxR)xS =Py #G*(RoS)=Ks (7.2)

The most important consequence of the lack of a composidiani$ that R-retractions
cannot be meaningfully defined for the weak composition.il8ify, the results related to
R-equivalence heavily rely on the composition law.

Nevertheless, many of the results, in particular basisgntas derived in section 2, re-
main valid for the weak composition operation. As the pr@sésin many cases analogous,
we focus here mostly on those results where strong and weagasition differ, or where
we need different proofs. In particular, Lemma 2.2 also hdtd the weak composition.
Thus, we still have a result similar to corollary 2.3, but fheof is slightly different.

Corollary 7.1. Supposé&+ x R = H. Then there is a saf’, an injective relationRp C
dom R x C', and a surjective relatio®- C C x img R such thatG[dom R] x Rp x R¢ =
Hlimg R].

Proof. From Proposition 2.2 we know = I’ o Rp o R o I”. And we knowG|[dom R] *
Rp = Gldom R] * Rp. From the properties of, we have

Gldom R] * R = (R o G[dom R] o R)"
= ((RpoRc)" oGldom R] o Rp o R¢)'!
= (R o Rfy o G[dom R] o Rp o Rc)'
= (R o (R}, 0o Gl[dom R] o Rp) o Rc)!
= (R} 0o Gldom R] * Rp o R¢)'

= (R}, 0 Gl[dom R]  Rp o R¢)'

= G[dom R| x Rp * R¢

= Hlimg R]

O

AssumeG x R = H and letH,, - - -, Hy, the connected components &f. From the
definition ofx andx, if we denoteH = G x R, thenH could be decomposed into the union
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of connected componenfﬁi(l <1 < k), such tha(ﬁz-)b = H,;. Hence the conclusion of
the proposition 2.4 also holds true for weak relations.

Lemma 2.6 does not hold for weak relations. For examplegtisea weak relation of
K5 to K3, bUtX(K5) =5> X(Kg) =3.

Lemma 2.7 and Lemma 2.8 do not hold for weak relations. Fomgka, if G is a graph
consisting of a single isolated vertex isolated, tiign R = G andCs; x R = G, but there
are no walk inG.

With respect to complete graphs, weak relational compmsiiso behaves different
from strong composition. I1i;, x R = H thenR(i) can contain more that one vertex in
V. Compared to Proposition 2.12, we also obtain a differesilte

Theorem 7.2. There is a relation? such thatk’, x R = H if and only if every connected
component ofif is a complete graph, and the number of connected componéris o
containing at least 2 vertices is at mdst

Proof. If every connected component &f is a complete graph, denoted the vertex sets of
the connected components containing at |I@agtrtices byH,, ..., H,,, m < k and the
vertices of K, by 1,--- k. LetR = {(4,u)|li =1, - ,k,u € Vg, } U{(J,v) : 1 < j <
k,v e Vg \ U2, Vu,}. One easily checks th#;, x R = H.

Conversely, letR be a relation satisfyind(;, x R = H. Consider the sd; = {u €
Vyg|R=Y(u) = {i}}. Thenu andv are not adjacent for arbitrany,v € U;, while u is
adjacent tav for everyw € Vi \ U;. HenceH (U;) is a connected component&f, which
is also a complete graph. Givene Vi \;~, U;, R~!(w) must have at least 2 vertices in
K, hencew is adjacent to every vertex il except itself; in other wordsy is an isolated
vertex in H. Therefore the number of connected component& afontaining at least 2
vertices is no more thah O

The results in subsection 3.1 also remain true for weakiogisit
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