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Abstract

Given two graphsG = (VG, EG) andH = (VH , EH), we ask under which conditions
there is a relationR ⊆ VG × VH that generates the edges ofH given the structure of the
graphG. This construction can be seen as a form of multihomomorphism. It generalizes
surjective homomorphisms of graphs and naturally leads to notions of R-retractions, R-
cores, and R-cocores of graphs. Both R-cores and R-cocores of graphs are unique up to
isomorphism and can be computed in polynomial time.
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1 Introduction

1.1 Motivation

Graphs are frequently employed to model natural or artificial systems [3, 11]. In many
applications separate graph models have been constructed for distinct, but at least concep-
tually related systems. One might think, e.g., of traffic networks for different means of
transportation (air, ship, road, railroad, bus). In the life sciences, elaborate network models
are considered for gene expression and the metabolic pathways regulated by these genes,
or for the co-occurrence of protein domains within proteinsand the physical interactions of
proteins among each other.

Let us consider an example. Most proteins contain several functional domains, that
is, parts with well-characterized sequence and structure features that can be understood as
functional units. Protein domains for instance mediate thecatalytic activity of an enzyme
and they are responsible for specific binding to small molecules, nucleic acids, or other
proteins. Databases such asSuperFamily compile the domain composition of a large
number of proteins. We can think of these data as a relationR ⊂ D × P between the set
D of domains and the set ofP proteins which contain them. Protein-protein interaction
networks (PPIs) have been empirically determined for several species and are among the
best-studied biological networks [16]. From this graph, which hasP as its vertex set, and
the relationR we can obtain a new graph whose vertex set are the protein domainsD, with
edges connecting domains that are found in physically interacting proteins. This “domain
interaction graph” conveys information e.g. on the functional versatility of protein com-
plexes. On the other hand, we can useR to construct the domain-cooccurrence networks
(DCNs) [14] as simple relational compositionR ◦R+. In examples like these, the detailed
connections between the various graphs have remained unexplored. In fact, there may not
be a meaningful connection between some of them, e.g. between PPIs and DCNs, while
in other cases there is a close connection: the domain interaction graph, for example, is
determined by the PPI andR.

A second setting in which graph structures are clearly related to each other is coarse-
graining. Here, sets of vertices are connected to a single coarse-grained vertex, with coarse-
grained edges inherited from the original graph. In the simplest case, we deal with quotient
graphs [15], although other, less stringent constructionsare conceivable. Similarly, we
would expect that networks that are related by some evolutionary process retain some sort
of structural relationship.
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ylong@mis.mpg.de (Yangjing Long), studla@bioinf.uni-leipzig.de (Peter F. Stadler), yanglingfd@fudan.edu.cn
(Ling Yang)
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Figure 1: The graphG ∗ R is determined by the graphG and the relationR.

1.2 Main Definitions

A well-defined mathematical problem is hidden in this setting: Given two networks, can we
identify whether they are related in meaningful ways? The usual mathematical approach to
this question, namely to ask for the existence of structure-preservingmaps, appears to be
much too restrictive. Instead, we set out here to ask if thereis a relation between the two
networks that preserve structures in a less restrained sense.

The idea is to transfer edges from a graphG to a graphH with the help of a relation
R between the vertex setV of G and the vertex setB of H . In this context,R is simply a
set of pairs(v, b), with v ∈ V, b ∈ B. Since graphs can be regarded as representations of
binary relations, we can also considerG as a relation on its vertex set, with(x, y) ∈ G if
and only ifx andy are connected by an edge ofG. We then have the compositionG ◦ R
given by all pairs(x, b) for which there exists a vertexy ∈ V connected by an edge ofG
to x and(y, b) ∈ R. This, however, likeR is a relation between elements of different sets.
In order to equip the target setB with a graph structure, we simply connect elementsu and
v in B if they stand in relation to connected elements ofG. In the following, we give a
formal definition, and we shall then relate it to the composition of relations just described.

A directed graphG is a pairG = (VG, EG) such thatEG is a subset ofVG × VG. We
denote byVG theset of vertices ofG and byEG the set of edges ofG. We consider only
finite graphs and allow loops on vertices.

An undirected graph(or simply agraph) G is any directed graph such that(u, v) ∈ EG

if and only if (v, u) ∈ EG. We thus consider undirected graphs to be special case of
directed graphs and we still allow loops on vertices. Asimple graphis an undirected graph
without loops.

Definition 1.1. Let G = (VG, EG) be a graph,B a finite set, andR ⊆ V × B a binary
relation, where for every elementb ∈ B, we can find an elementv ∈ VG such that(v, b) ∈
R. Then the graphG ∗ R has vertex setB and edge set

EG∗R = {(u, v) ∈ B × B| there is(x, y) ∈ EG and(x, u), (y, v) ∈ R} . (1.1)

An example of the∗ operation is depicted in Fig. 1.
Graphs with loops are not always a natural model, however, sothat it may appear more

appealing to consider the slightly modified definition.
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Definition 1.2. Let G = (VG, EG) be a simple graph,B a finite set,R a binary relation,
where for every elementb ∈ B, we can find an elementv ∈ VG such that(v, b) ∈ R. Then
the (simple) graphG ⋆ R has vertex setB and edge set

EG⋆R = {(u, v) ∈ B × B|u 6= v and there is(x, y) ∈ EG and(x, u), (y, v) ∈ R} .
(1.2)

We shall remark that these definitions remain meaningful fordirected graphs, weighted
graphs (where the weight of edge is a sum of weights of its pre-images) as well as relational
structures. For simplicity, we restrict ourselves to undirected graphs (with loops). Most of
the results can be directly generalized.

Graphs can be regarded as representations of symmetric binary relations. Using the
same symbol for the graph and the relation it represents, we may re-interpret definition 1.1
as a conjugation of relations.R+ is the transposeof R, i.e., (u, x) ∈ R+ if and only if
(x, u) ∈ R. The double compositionR+ ◦ G ◦ R contains the pair(u, v) in B × B if and
only if there arex andy such that(u, x) ∈ R+, (y, v) ∈ R, and(x, y) ∈ EG. Thus

G ∗ R = R+ ◦ G ◦ R. (1.3)

Simple graphs, analogously, correspond to the irreflexive symmetric relations. For any
relationR, let Rι denote its irreflexive part, also known as thereflexive reductionof R.
Since definition 1.2 explicitly excludes the diagonals, it can be written in the form

G ⋆ R = (R+ ◦ G ◦ R)ι. (1.4)

We haveG ⋆ R = (G ∗ R)ι, and henceEG⋆R ⊆ EG∗R. The compositionG ∗ R is of
particular interest whenG is also a simple graph, i.e.,G = Gι.

The main part of this contribution will be concerned with thesolutions of the equation
G ∗ R = H . The weak version,G ⋆ R = H , will turn out to have much less convenient
properties, and will be discussed only briefly in section 7.

Throughout this paper we use the following standard notations and terms.
For relationR ⊆ X × Y we define byR(x) = {p ∈ Y |(x, p) ∈ R} the image ofx

underR andR−1(p) = {x ∈ X |(x, p) ∈ R} thepre-image ofp underR.
Thedomainof R is defined bydomR = {x ∈ X |∃p ∈ Y s.t. (x, p) ∈ R}, and the

imageof R is defined byimg R = {p ∈ Y |∃x ∈ X s.t. (x, p) ∈ R}. We say that the
domain ofR is full if for any x ∈ X we haveR(x) 6= ∅. Analogously, theimage is fullif
for anyp ∈ Y we haveR−1(p) 6= ∅.

Let R ⊆ X × Y is a binary relation, thenR is injective, if for all x andz in X andy in
Y it holds that if(x, y) ∈ R and(z, y) ∈ R thenx = z. R is functional, if for all x in X ,
andy andz in Y it holds that if(x, y) ∈ R and(x, z) ∈ R theny = z.

We denote byIG the identity map onG, i.e.,{(x, x)|x ∈ VG}.
Let G = (VG, EG) be a graph and letW ⊆ VG. The induced subgraphG[W ] has

vertex setW and(x, y) is an edge ofG[W ] if x, y ∈ W and(x, y) ∈ EG.
A graphPk is a path of lengthk. Similarly,Ck is an (elementary) cycle of lengthk with

vertex set{0, 1, . . . , k − 1}. Finally,Kk is the complete (loopless) graph withk vertices.
An isolated vertexis a vertex with degree 0. Note that the vertex with a loop is not

isolated in this sense.
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1.3 Matrix Multiplication

The operation∗ can also be formulated in terms of matrix multiplication. Tosee this,
consider the following variant of the operation on weightedgraphs.

Definition 1.3. If G is a weighted graph, we usew(x, y) to denote the weight betweenx
andy. Given a finite setB and a binary relationR ⊆ VG×B, G⊛R is defined as a weighted
graphH with vertex setB, for anyu, v ∈ B, w(u, v) =

∑

(x,u)∈R,(y,v)∈R w(x, y).

Ignoring the weights, operations∗ and⊛ are equivalent.
Using the language of matrices,G⊛R = H can be interpreted as matrix multiplication:

WG⊛R = R
+
WGR (1.5)

whereR is the matrix representation of the relationR, i.e.,Rxu = 1 if and only if (x, u) ∈
R, otherwiseRxu = 0, R

+ denotes the transpose ofR, andWG is the matrix of edge
weights ofG.

1.4 Graph Homomorphisms and Multihomomorphisms

The notion of relations between graphs is in many ways similar (but not equivalent) to the
well studied notion of graph homomorphisms. The majority ofour results focus on similar-
ities and differences between those two concepts. We give here only the basic definitions
of graph homomorphisms. For more details see [7].

A homomorphismfrom a graphG to a graphH is a mappingf : VG → VH such
that for every edge(x, y) of G, (f(x), f(y)) is an edge ofH . Note that homomorphisms
require loops inH whenever(x, y) ∈ EG andf(x) = f(y). In contrast,f is aweak ho-
momorphismif (x, y) ∈ EG implies that eitherf(x) = f(y) or (f(x), f(y)) ∈ EH . Every
homomorphism fromG to H induces also a weak homomorphism, but not conversely [9].

Since every homomorphism preserves adjacency, it naturally defines a mappingf1 :
EG → EH by settingf1((x, y)) = (f(x), f(y)) for all (x, y) ∈ EG. If f is surjective, we
callf avertex surjective homomorphism, and iff1 is surjective, we callf anedge surjective
homomorphism. f is surjective homomorphismif it is both vertex- and edge-surjective [7].

A mapf : VG → VH is, of course, a special case of a relation. This is seen by setting
F = {(x, f(x))|x ∈ VG}. Hence, there is a surjective homomorphism fromG to H if and
only if there is a functional relationF such thatG∗F = H . Another important connection
to the graph homomorphisms is the following simple Lemma.

Lemma 1.4. If G ∗ R = H , and the domain ofR is full, then there is a homomorphismf
from G to H contained inR.

Proof. If G ∗R = H , then take any functional relationf ⊆ R, we haveG ∗ f ⊆ H , where
f is a homomorphism fromG to H .

Analogously, there is aweak surjective homomorphismfromG to H if and only if there
is a functional relationF such thatG ⋆ F = H , and there is a weak homomorphism from
G to H if there is a functional relationF ⊆ VG × VH such thatG ⋆ F is a subgraph of
H . The existence of relations between graphs thus can be seen as a proper generalization
of graph homomorphisms or weak graph homomorphisms, respectively.
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Finally, a full homomorphismfrom a graphG to a graphH is a vertex mappingf
such that for distinct verticesu andv of G, we have(u, v) an edge ofG if and only if
(f(u), f(v)) is an edge ofH , see [4].

Relation between graphs can be regarded also as a variant of multihomomorphisms.
Multihomomorphisms are building blocks of Hom-complexes,introduced by Lovász, and
are related to recent exciting developments in topologicalcombinatorics [10], in particular
to deep results involved in proof of the Lovász hypothesis [1].

A multihomomorphismG → H is a mappingf : VG → 2VH \ {∅} (i.e., associating a
nonempty subset of vertices ofH with every vertex ofG) such that whenever{u1, u2} is
an edge ofG, we have(v1, v2) ∈ EH for everyv1 ∈ f(u1) and everyv2 ∈ f(u2).

The functions from vertices to sets can be seen as representation of relations. A relation
with full domain thus can be regarded assurjective multihomomorphism, a multihomomor-
phism such that pre-image of every vertex inH is non-empty and for every edge(u, v) in
H we can find an edge(x, y) in G satisfyingu ∈ f(x), v ∈ f(y).

1.5 Examples

Similarly to graph homomorphisms, the equationG ∗ R = H (or G ⋆ R = H respec-
tively) may have multiple solutions for some pairs of graphs(G, H), while there may be
no solution at all for other pairs.

As an example, considerK2 (two verticesx, y connected by an edge) andC3 (a cycle
of three verticesu, v, w). DenoteR1 = {(u, x), (v, y)}, R2 = {(v, x), (w, y)}, R3 =
{(w, x), (u, y)}, then it is easily seen thatC3 ∗ Ri = K2 for each1 ≤ i ≤ 3, i.e. the
equationC3 ∗ R = K2 has more than one solution.

On the other hand, there is no relationR such thatK2 ∗ R = C3. Otherwise, each
vertex ofC3 is related to at most one vertex ofK2, sinceC3 is loop free; hence there exists
a vertex inK2 which has no relation to at least two vertices inC3, w.l.o.g., one can assume
(x, u), (x, v) /∈ R; then the definition of∗ implies that there is no edge betweenu andv,
which causes a contradiction.

Because relations do not need have full domain (unlike graphhomomorphisms), there
is always an relation from a graphG to its induced subgraphG[W ].

Relations with full domain are not restricted to surjectivehomomorphisms. As a simple
example, consider pathsP1 with vertex set{x, y} andP2 with vertex set{u, v, w}, respec-
tively, and setR = {(x, u), (x, w), (y, v)}. One can easily verifyP1 ∗ R = P2 by direct
computation. Here,R is not functional sincex has two images.

1.6 Outline and Main Results

This paper is organized as follows.
In section 2 the basic properties of the strong relations between graphs are compiled.

It is shown that relations compose and every relation can be decomposed in a standard
way into a surjective and an injective relation (Corollary 2.3). We discuss some structural
properties of graph preserved by the relations.

Equivalence on the class of graphs induced by the existence of relations between graphs
is the topic of section 3. We consider two forms: the strong relational equivalence, where
relations are required to be reversible, and weak relational equivalence. Equivalence classes
of strong relational equivalence are characterized in Theorem 3.8. To describe equivalence
classes of the weak relational equivalence we introduce thenotion of an R-core of a graph
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and show that it is in many ways similar to the more familiar construction of the graph
core (Theorem 3.17). We explore in particular the differences between core and R-core
and provide an effective algorithm to compute the R-core of given graph is provided.

Section 4 is concerned with the partial order induced on relations between two fixed
graphsG andH . Focusing on the special caseG = H the minimal elements of this partial
order are described. In Theorem 4.7 we give a, perhaps surprisingly simple, characteriza-
tion of those graphsG for which all relations ofG to itself are automorphisms.

R-retraction is defined in section 5 in analogy to retractions. It naturally gives rise to a
notion of R-reduced graphs that we show to coincide with the concept of graph cores. By
reversing the direction of relations, however, we obtain the concept of a cocore of a graph,
which does not have a non-trivial counterpart in the world ofordinary graph homomor-
phisms, and explore its properties.

The computational complexity of testing for the existence of a relation between two
graphs is briefly discussed in section 6. In Theorem 6.1 we describe the reduction of this
problem to the surjective homomorphism problem.

Finally, in section 7 we briefly summarize the most importantsimilarities and differ-
ences between weak and strong relational composition.

2 Basic Properties

2.1 Composition

Recall that the composition of binary relations is associative, i.e., supposeR ⊆ W × X ,
S ⊆ X × Y , andT ⊆ Y × Z. ThenR ◦ (S ◦ T ) = (R ◦ S) ◦ T . Furthermore, the
transposition of relations satisfy(R ◦ S)+ = S+ ◦ R+. Interpreting the graphG as a
relation on its vertex set, we easily derive the following identities:

Lemma 2.1(Composition law). (G ∗ R) ∗ S = G ∗ (R ◦ S).

Proof. (G ∗ R) ∗ S = S+ ◦ (R+ ◦ G ◦ R) ◦ S = (S+ ◦ R+) ◦ G ◦ (R ◦ S)
= (R ◦ S)+ ◦ G ◦ (R ◦ S) = G ∗ (R ◦ S).

Now we show that every relationR can be decomposed, in a standard way, to a relation
RD duplicating vertices and a relationRC contracting vertices.

Lemma 2.2. Let R ⊆ X × Y be a relation. Then there exists a subsetA of X , a setB, an
injective relation with full domainRD ⊆ A × B and a functional relationRC ⊆ B × Y ,
such thatR = IA ◦ RD ◦ RC , whereIA is the identity onX restricted toA.

Proof. PutA = domR. Then the relationIA removes vertices inX \ domR. It remains
to show, therefore, that any relationR ⊆ X × Y with full domain can be decomposed into
an injective relationRD ⊆ X×B with full domain and a functional relationRC ⊆ B×Y .
To see this, setB = R and declare(x, α) ∈ RD if and only if α = (x, p) ∈ R for some
p ∈ Y , and(β, q) ∈ RC if and only if β = (y, q) ∈ R for somey ∈ X . By construction
RD is injective andRC is functional. Furthermore,(x0, p0) ∈ RD ◦RC if and only if there
is α ∈ R that is simultaneously of the form(x0, p) and(x, p0), i.e.,x = x0 andp = p0.
Hence(x0, p0) ∈ R.

Note that this decomposition is not unique. For instance, wecould constructB from
multiple copies ofR. More precisely, letB = R × {1, 2, · · · , k}, then we would set
(

x, (α, i)
)

∈ RD (1 ≤ i ≤ k) if and only if α = (x, p) ∈ R for somep ∈ Y , etc.
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The setB as constructed in the proof of Lemma 2.2 has minimal size. To see this, it
suffices to show that, givenB there is a mapping fromB ontoR. SinceRD is injective and
RC is functional we may set

α ∈ B 7→ (R−1
D (α), RC(α)).

SinceR = IA ◦RD ◦RC we conclude that the mapping is surjective, and hence|B| ≥ |R|.
According to Lemma 2.1, the decomposition ofR in the Lemma 2.2 can be restated as

follows:

Corollary 2.3. SupposeG ∗ R = H . Then there is a setB, an injective relationRD ⊆
domR × B with full domain, and a surjective relationRC ⊆ B × img R such that
G[domR] ∗ RD ∗ RC = H .

In diagram form, this is expressed as

G

RD ##G
GG

GG
GG

GG

R=RD◦RC // H

G ∗ RD

RC

;;wwwwwwwww

(2.1)

We shall remark that from the fact the relations compose it follows that the existence of
a relation implies a quasi-order on graphs that is related tothe homomorphism order. This
order is studied more deeply in [8].

2.2 Structural Properties Preserved by Relations

In this subsection we investigate structural properties ofH that can be derived from knowl-
edge about certain properties ofG and the fact that there is some relationR such that
G ∗ R = H .

2.2.1 Connected Components

Proposition 2.4. Let G∗R = H and denote byH1, · · · , Hk the connected components of
H . Then there are relationsRi ⊆ VG ×VHi

for each1 ≤ i ≤ k such thatG ∗Ri = Hi and
R =

⋃k

i=1 Ri. Furthermore, setGi = G[R−1(VHi
)]. Then there are no edges betweenGi

andGj for arbitraryi 6= j.

Proof. Define the restriction ofR to the connected components ofH asRi = {(x, y) ∈
R|y ∈ VHi

}. Clearly,R is the disjoint union of theRi andG ∗ Ri ⊆ Hi. The definition of

∗ impliesH = G∗R = (
⋃

i Ri)
+ ◦G◦

(

⋃

j Rj

)

=
⋃

i

⋃

j R+
i ◦G◦Rj . SinceRi andRj

relate vertices ofG to different connected components ofH , we haveR+
i ◦G ◦Rj = ∅. It

follows thatH =
⋃

i

⋃

j R+
i ◦G◦Rj =

⋃

i R+
i ◦G◦Ri =

⋃

i G∗Ri. HenceG∗Ri = Hi.
Any edge betweenGi andGj would generate edges betweenHi andHj , thus causing

a contradiction to our assumptions.

Denote byb0(G) the number of connected components ofG, then from Proposition 2.4
we arrive at:
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Corollary 2.5. Suppose bothG andH do not have isolated vertices. IfG ∗R = H andR
has full domain, thenb0(G) ≥ b0(H).

Proof. Our notations is the same as in Proposition 2.4. We claim for arbitrary connected
componentC of graphG, there exists a uniquei, such thatC is a connected component of
Gi. Otherwise one can find two verticesx, y ∈ C, x andy adjacent, such thatx ∈ VGi

andy ∈ VGj
, sinceG has no isolated vertices, which contradictsE(Gi, Gj) = ∅. Thus it

follows b0(G) ≥ b0(H) is easily followed.

From corollary 2.5, we know thatH is connected wheneverG is connected. The con-
nectedness ofG, however, cannot be deduced from the connectedness ofH . For example,
considerG = P1 ∪ P1 with vertex set{x1, x2, x3, x4} and edges{x1, x2} and{x3, x4},
andH = P2 with vertex set{v1, v2, v3}. SetR = {(x1, v1), (x2, v2), (x3, v2), (x4, v3)}.
One can easily verify thatG ∗ R = H . On the other hand,H is connected butG has 2
connected components. The point here is, of course, thatR is not injective.

2.2.2 Colorings

Graph homomorphisms of simple graphs can be seen as generalizations of colorings: A
(vertex)k-coloring of G is a mappingc : VG → {1, 2, . . . , k} such that adjacent vertices
have distinct colors, i.e.,c(u) 6= c(v) whenever(u, v) ∈ EG. Everyk-coloringc can be
also seen as a homomorphismc : G → Kk.

Thechromatic numberχ is defined as the minimal of colors needed for a coloring, see
e.g. [7]. Thus, ifR is a functional relation describing a vertex coloring, thenG ∗ R ⊆ Kk.
Conversely,G∗R ⊆ Kk, whereR has full domain and image, then from Lemma 1.4, there
exists a homomorphism fromG to Kk, which is a coloring ofG.

Lemma 2.6. If G is a simple graph andR has full domain, thenχ(G) ≤ χ(G ∗ R).

Proof. SupposeG∗R = H and the domain ofR is full, from Lemma 1.4 we knowG → H ,
soχ(G) ≤ χ(G ∗ R).

2.2.3 Distances

Observation 2.7. If Pk ∗R = G, G is a simple graph and the domain ofR is full, Pk with
the vertex set0, 1, · · · , k, then there is a walk[v0, v1, . . . , vk] in G, where(i, vi) ∈ R for
0 ≤ i ≤ k.

Observation 2.8. If Ck ∗ R = G, G is a simple graph and the domain ofR is full, then
there is a closed walk[v0, v1, . . . , vk−1] in G, where(i, vi) ∈ R for 0 ≤ i ≤ k − 1.

Let dG(x, y) denote thecanonical distanceon graphG, i.e.,dG(x, y) is the minimal
length of a path in graphG that connects verticesx andy; if there is no path connects
verticesx andy, then the distance is infinite.

Lemma 2.9. Suppose there exists a relationR with full domain s.t.G∗R = H , x, y ∈ VG,
u, v ∈ VH and(x, u) ∈ R, (y, v) ∈ R. If x 6= y, thendH(u, v) ≤ dG(x, y); If x = y and
x is not an isolated vertex, thendH(u, v) ≤ 2.
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Proof. If x = y andx is not isolated, pick a vertexz of graphG which is adjacent to
vertexx, and find a vertexw ∈ H satisfying(z, w) ∈ R. Then(w, u) ∈ EH and similarly
(w, v) ∈ EH . SodH(u, v) ≤ 2.

If x 6= y, choose the shortest pathP = x, x1, x2, · · · , xk, y betweenx andy, and find
corresponding verticesu1, u2, · · · , uk ∈ H such that(xi, ui) ∈ R for any1 ≤ i ≤ k it
is easily seen that(u, u1) ∈ EH , (ui, ui+1) ∈ EH and (uk, v) ∈ EH , thend(u, v) ≤
d(x, y).

Theeccentricityǫ of a vertexv is the greatest distance betweenv and any other vertex.
The radiusof a graphG, denoted byrad(G), is the minimum eccentricity of any vertex.
The diameterof a graphG, denoted bydiam(G), is the maximum eccentricity of any
vertex in the graph, i.e., the largest distance between any pair of vertices.

Corollary 2.10. SupposeG ∗ R = H , G andH are connected graphs, andR with full
domain, thenrad(H) ≤ max{rad(G), 2}.

An analogous results holds for the diameters. In particular, if G is not a complete graph,
thendiam(G) ≥ diam(G ∗ R).

Corollary 2.11. There is a relation from the path of lengthk, Pk, to the path of lengthl,
Pl, if and only if eitherk ≥ l or k = 1, l = 2.

Proof. Fork ≥ l there is a surjective homomorphismf fromPk to Pl and hence by Lemma
1.4 there is also a relation fromPk to Pl. In Section 1.5 we already showed a relation from
P1 to P2.

To show thatP1 ∗ R = P2 is the only case withk < l we first observe that Lemma 2.9
excludes the existence of relation fromPk to Pl for 1 < k < l. Now supposeR satisfies
P1 ∗R = Pk for k > 2. SincePk has at least 4 vertices, either one of the vertices ofP1 has
at least 3 images so thatP1 ∗ R has a vertex with degree at least 3, or both of the vertices
in P1 have at least 2 images, in which case all vertices ofP1 ∗ R have degree at least 2. In
both casesP1 ∗ R cannot be a path.

In particular,{P1, P2} is the only pair of paths such that there is a relation betweem
them in both directions.

2.2.4 Complete Graphs

The complement graphH of a simple graphH has the same vertex set asH , and two
vertices are connected inH if and only if they are not connected inH .

Note that in this subsection we do not require that the domainof R is full.

Proposition 2.12. Let H be a simple graph. Then there exists a relationR such that
Kk ∗ R = H if and only if H is the disjoint union of at mostk complete graphs.

Proof. Denote the connected components ofH by H1, . . . , Hm. If m ≤ k and every
connected component ofH is a complete graph, letR = {(i, u)|i = 1, · · · , m, u ∈ VHi

}
and by the definition of complement graph, for anyi = 1, · · · , m, all the vertices inHi are
independent inH , andu is adjacent tov wheneveru ∈ VHi

andv ∈ VHj
for distincti, j.

Hence it is easily seen thatKk ∗ R = H .
Conversely, ifKk ∗ R = H , denote the vertices inKk by 1, · · · , k, s.t. domR =

{1, · · · , m}. We claim thatR is injective, otherwiseH would have loops. ThusVH is
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the disjoint union ofR(1), · · · , R(m). For any two distinct verticesu, v in R(i), u andv
are independent inH and for distincti andj every vertex inR(i) are adjacent with every
vertex inR(j) wheneverR(i) 6= ∅. Therefore for anyi, R(i) is the vertex set of a connect
component ofH , which is a complete graph.

2.2.5 Subgraphs

Relations between graphs intuitively imply relations between local subgraphs. In this sec-
tion we make this concept more precise. Denote by

NG[x] := {z ∈ VG|z = x ∨ (x, z) ∈ EG} (2.2)

theclosed neighborhoodof x in G. Furthermore, we letNG[x] := VG \ NG[x] be the set
of vertices that are not adjacent (or identical) tox in G and denote byGx := G[NG[x]] the
induced subgraph ofG that is obtained by removing the closed neighborhood of a vertex
x.

Analogously, for a subsetS ⊆ VG we define

S = G

[

VG \
⋃

x∈S

NG[x]

]

(2.3)

as the induced subgraph obtained by removing all vertices inS and their neighbors.
Then we have the following result about relations between local subgraphs.

Proposition 2.13.SupposeG∗R = H andS andD are subsets ofVG andVH , respectively,
such thatG[S] ∗R|(S×D) = H [D], R|(S×D) has full domain onS, and there is no isolated
vertex inD. ThenS ∗ R̃ = D, whereR̃ = R|(S×D) is the corresponding restriction ofR.

Proof. Obviously,S ∗ R̃ is an induced subgraph ofD. We have to show the reverse inclu-
sion: Givenu ∈ VD andx ∈ R−1(u), we first show that there are two possibilities:

1. x is vertex ofS.

2. x is isolated vertex ofS.

Assume that is not the case, i.e., thatx /∈ VS and thatx is either an non-isolated vertex of
S or x is in the neighborhood of some vertex ofS. In either case there isy ∈ S connected
by an edge tox. Consequently there is alsov ∈ D, such thatv ∈ R(y), connected by an
edge tou. It follows u /∈ VD, a contradiction.

Now consider a arbitrary edge(u, v) ∈ ED. We have(x, y) ∈ EG such thatu ∈ R(x)
andv ∈ R(y). It follows thatx andy are not isolated and thusx, y are vertices ofS.
ConsequentlyS ∗ R̃ has precisely the same edges asD. BecauseD has no isolated vertices
and thus every vertex is an endpoint of some edge, we know thatthe vertex set ofS ∗ R̃ is
same as the vertex set ofD.

This result is of particular practical use in the special case whereS andD consist of
a single vertex. When looking for a relationR such thatG ∗ R = H one can remove a
vertex including its neighborhood fromG as well as the prospective image including the
neighborhood fromH and solve the problem on the subgraphs.
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3 Relational Equivalence

GraphsG andH arehomomorphism equivalent(or hom-equivalent) if there exists homo-
morphismsG → H andH → G. It is well known that every equivalence class of the
homomorphism order contains a minimal representative thatis unique up to isomorphism:
thegraph core[7].

We define similar equivalences implied by the existence of (special) relations between
graphs. In this section, we require all relations to have full domain unless explicitly stated
otherwise. With this condition we will show that these equivalences produce a rich structure
closely related to but distinct from the structure of homomorphism equivalences.

This may come as a surprise: the equivalence implied by the existence of surjective
homomorphisms is not interesting. Consider two graphsG andH and suppose there are
surjective homomorphismsf : G → H andg : H → G. Since every vertex inVG has
at most one image underf , we have|VG| ≥ |VH |. Analogously|VH | ≥ |VG|, and hence
|VG| = |VH |. Thusf andg are both bijective, andG is isomorphic toH .

3.1 Reversible Relations

Definition 3.1. A relationR is reversible with respect to graphG if (G ∗ R) ∗ R+ = G.

We writeNG(x) := {z ∈ VG|(x, z) ∈ EG} for theopen neighborhoodof vertexx in
graphG.

Proposition 3.2. SupposeR = RD ◦ RC , whereRD andRC are constructed as in the
proof of Proposition 2.2. ThenR is reversible with respectG if and only if for everyα and
β satisfyingRC(α) = RC(β) we haveNG∗RD

(α) = NG∗RD
(β).

Proof. We setG1 = G ∗ RD, then from Lemma 2.1 we haveG1 ∗ RC = H . If RC(α) =
RC(β) impliesNG1

(α) = NG1
(β), thenH ∗ R+

C = G1. SinceG1 ∗ R+
D = H , we have

H ∗ R+
C ∗ R+

D = H ∗ R+ = G, i.e.,R is reversible.
Conversely, sinceR is reversible, i.e.,H ∗ R+ = G, settingG2 = H ∗ R+

C gives
G2∗R+

D = G. HenceG1∗RC ∗R+
C = G2 andG2∗R+

D ∗RD = G1. FromIG1
⊆ RC ∗R+

C

we concludeG1 ⊆ G2, and similarlyIG2
⊆ R+

D ∗ RD yieldsG1 ⊇ G2. HenceG1 = G2.
R+

C is injective, henceα, β ∈ VG2
= VG1

has the same open neighborhood whenever the
pre-image ofα andβ underR+

C coincide, i.e.RC(α) = RC(β).

RD is an injective relation, hence one can easily getNG∗RD
(α) = RD(NG(x)) pro-

vided that(x, α) ∈ RD. On the other hand, if we defineR to be the image ofRD as in
the proof of Proposition 2.2, thenRC(α) = RC(β) implies there are two distinct vertices
x, y ∈ VG, s.t. (x, u), (y, u) ∈ R, whereu = RC(α) = RC(β), and verse visa. Using
Proposition 3.2 we thus obtain

Proposition 3.3. A relationR is reversible with respect toG if and only if for every two
verticesx andy such thatR(x) ∪ R(y) 6= ∅ we haveNG(x) = NG(y).

3.2 Strong Relational Equivalence

Definition 3.4. Two graphsG andH are (strongly) relationally equivalent, G ∽ H , if
there is a relationR such thatG ∗ R = H andH ∗ R+ = G.

Lemma 3.5. Relational equivalence is an equivalence relation on graphs.
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G H Gthin = Hthin

Figure 2: Non-isomorphic graphsG andH with isomorphic thin graphs.

Proof. The relation∽ is reflexive sinceG ∗ IG = G. Symmetry also follows directly
from the definition. SupposeG ∗ R = H and H ∗ R+ = G and H ∗ Q = K and
K ∗Q+ = H , i.e.,(G ∗R) ∗Q = K and(K ∗Q+) ∗R+ = G, i.e.,G ∗ (R ◦Q) = K and
K ∗ (Q+ ◦ R+) = K ∗ (R ◦ Q)+ = G, i.e.,∽ is also transitive.

Definition 3.6. The thinness relationS of G is the equivalence relation onVG defined by
(x, y) ∈ S if and only if NG(x) = NG(y). A graphG is calledthin if every vertex forms
its own class inS.

Thin graphs are also known as “point determining graphs” [13].
We denote byS the corresponding partition ofVG, and writeRS ⊆ VG × S for the

relation that associates each vertex with itsS-equivalence class, i.e.,(x, β) ∈ RS if and
only if x ∈ β.

Definition 3.7. Thethin graph ofG, denoted byGthin, is the quotient graphG/S, i.e.,Gthin

has vertex setS and two equivalence classesσ andτ of S are adjacent inGthin if and only
if (x, y) is an edge ofG with x ∈ σ andy ∈ τ .

As noted e.g. in [6, p.81],Gthin is itself a thin graph. Furthermore,RS is a full homo-
morphism ofG to Gthin, see [4].

Thinness and the quotients w.r.t. the thinness relation play an important role in particu-
lar in the context of product graphs, see [9]. In this contextit is well known thatG can be
reconstructed fromGthin and the knowledge of theS-equivalence classes. In fact, we have

Gthin ∗ RS
+ = G. (3.1)

Theorem 3.8. G andH are in the same equivalence class w.r.t.∽ if and only if their thin
graphs are isomorphic.

Proof. AssumeG ∽ H . From Equation(3.1) we know thatG ∽ Gthin, H ∽ Hthin, so
Gthin ∽ Hthin. Now we claim thatGthin andHthin are isomorphic. SupposeGthin∗R = Hthin,
then the pre-image ofR is unique. Otherwise, there exist distinct verticesx, y ∈ VGthin such
thatR(x) = R(y), thenNGthin(x) = NGthin(y), contradicting thinness. Likewise, the pre-
image ofR−1 is unique, i.e., the image ofR is unique. HenceR is one-to-one.

The example in Fig. 2 shows that thin graphs can be isomorphicwhile G andH them-
selves are not isomorphic. Relational equivalence thus is coarser than graph isomorphism
(surjective homomorphic equivalence) but stronger than homomorphic equivalence.
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Figure 3:G andH are weakly relationally equivalent but have non-isomorphic thin graphs.

3.3 Weak Relational Equivalence

Definition 3.9. Two graphsG andH areweak relationally equivalent, G ∽w H , if there
are relationsR andS such thatG ∗ R = H andH ∗ S = G.

Lemma 3.10. Weak relational equivalence is an equivalence relation on graphs.

Proof. By definition ∽w is symmetric. BecauseG ∗ IG = G, relation∽w is reflexive.
SupposeG ∽w G′ andG′

∽w G′′. Thus there are relationsR, S, R′, andS′, such that
G′ = G ∗ R, G′′ = G′ ∗ R′, G = G′ ∗ S, andG′ = G′′ ∗ S′. By the composition law
(Lemma 2.1) it follows thatG′′ = G ∗ (R ◦ R′) andG = G′′ ∗ (S′ ◦ S), i.e, G ∽w G′′.
Hence∽w is transitive.

Strong relational equivalence implies weak relational equivalence. To see this, simply
observe that the definition of the weak form is obtained from the strong one by setting
S = R+.

The converse is not true, as shown by the graphsG andH in Fig. 3: It is easy to see that
their thin graphs are different and thusG andH are not strongly relationally equivalent.
However, are relationally equivalent. To get relation fromG to H contract vertices 2 and 3
and keep other vertices on place, i.e.,

R = {(1, 1), (2, 2), (3, 2), (4, 4), (5, 5), (6, 6), (7, 7)}.

To get relation fromH to G, duplicate 5 and 7 and contract them together to 3,

S = {(1, 1), (2, 2), (4, 4), (5, 5), (6, 6), (7, 7), (5, 3), (7, 3)}.

Consequently, weak relational equivalence is coarser thanstrong relational equivalence.

3.4 R-cores

A graph is anR-core, if it is the smallest graph (in the number of vertices) in itsequivalence
of ∽w.

This notion is analogous to the definition of graph cores. In this section we show
properties of R-cores that are similar to the properties of graph cores. To this end we first
need to develop a simple characterization of R-cores.

Again we start from a decomposition of relations. Consider arelationR such that
G ∗ R = H . We seek for pair of relationsR1 andR2 such thatR = R1 ◦ R2. In contrast
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to Lemma 2.2, however, we now look for a decomposition so thatthe graphG′ = G ∗ R1

is smaller (in the number of vertices) thanG.

G

R1   A
AA

AA
AA

R=R1◦R2 // H

G′

R2

>>}}}}}}}}

(3.2)

The existence of such a decomposition follows from a translation of the well-known Hall
Marriage Theorem [12] to the language of relations. We say that the relationR ⊆ A × B
satisfies theHall condition, if for everyS ⊆ A we have|S| ≤ |R(S)|.

Theorem 3.11(Hall’s theorem). If G ∗ R = H andR satisfies the Hall condition, thenR
contains a monomorphismf : G → H .

Proof. The Hall Marriage Theorem is usually described on set systems. For set systems
satisfying the Hall condition, the theorem guarantees the existence of a system of distinct
representatives, see i.e. [12]. Relations can be seen as setsystems (defined by the images
of individual vertices). Furthermore, in our setting the system of distinct representatives
directly corresponds to a monomorphism contained in the relationR.

Lemma 3.12. If G ∗ R = H and relationR does not satisfy the Hall condition, then there
are relationsR1 andR2 such thatR = R1 ◦ R2, and the number of vertices of graph
G′ = G ∗ R1 is strictly smaller than the number of vertices ofG.

Proof. Without loss of generality assume thatVG ∩ VH = ∅. If R does not satisfy the Hall
condition, then there exist a vertex setS ⊂ VG such that|S| > |R(S)|. Now we define
relationsR1 andR2 as follows:

R1(x) =

{

R(x) for x ∈ S,

x otherwise,
R2(x) =

{

x for x ∈ R(S),

R(x) otherwise.
(3.3)

ObviouslyR1 ◦ R2 = R and|VG′ | = |VG| − (|S| − |R(S)|) < |VG|.

This immediately gives a necessary, but in general not sufficient, condition for a graph
to be an R-core.

Corollary 3.13. If G is an R-core, then every relationR such thatG ∗R = G satisfies the
Hall condition and thus contains a monomorphism.

Proof. Assume that there is a relationR that does not satisfy the Hall condition. Then
there is a graphG′, |VG′ | < |VG|, and relationsR1 andR2 such thatG ∗ R1 = G′ and
G′ ∗ R2 = G. ConsequentlyG′ is a smaller representative of the equivalence class of∽w,
a contradiction withG being R-core.

To see that the condition of Corollary 3.13 is not sufficient consider a graph consisting
of two independent vertices.

Next we show that R-cores are, up to isomorphism, unique representatives of the equiv-
alence classes of∽w.
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R1

R2

G

f

I ⊆ R′

1

GR-core

Figure 4: Construction of an embedding fromGR-core to G.

Proposition 3.14. If both G andH are R-cores in the same equivalence class of∽w, then
G andH are isomorphic.

Proof. Because bothG andH are R-cores, we know that|VG| = |VH |.
Consider relationsR1 andR2 such thatG∗R1 = H andH∗R2 = G. Applying Lemma

3.12 we know thatR1 satisfies the Hall condition. Otherwise there would be a graph G′

with |V ′
G| < |VG| so thatG′ is relationally equivalent to bothG andH contradicting the

fact thatG and H are R-cores. Similarly, we can show thatR2 also satisfies the Hall
condition.

From Theorem 3.11 we know that there is a monomorphismf from G to H , and
monomorphismg from H to G. It follows that number of edges ofG is not larger than
the number of edges ofH and vice versa. BecauseG andH have the same number of
edges and same number of vertices,g andh must be isomorphisms.

It thus makes sense to define a construction analogous to the core of a graph.

Definition 3.15. H is anR-core of graphG if H is an R-core andH ∽w G.

All R-cores of graphG are isomorphic as an immediate consequence of Prop. 3.14. We
denote the (up to isomorphism) unique R-core of graphG by GR-core.

Lemma 3.16. GR-core is isomorphic to a (not necessarily induced) subgraph ofG.

Proof. Take any relationR such thatGR-core∗R = G. By the same argument as in Corollary
3.13, there is a monomorphismf : GR-core → G contained inR. Consider the image off
onG.

Theorem 3.17.GR-core is isomorphic to an induced subgraph ofG.

Proof. Fix R1 andR2 such thatGR-core∗ R1 = G andG ∗ R2 = GR-core.
R = R1◦R2 is a relation such thatGR-core∗R = GR-core. By Corollary 3.13,R contains

a monomorphismf : GR-core→ GR-core. Because such a monomorphism is a permutation,
there existsn such thatfn, then-fold composition off with itself, is the identity.
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PutR′
1 = Rn−1 ◦ R1. BecauseRn contains the identity andRn = R′

1 ◦ R2, it follows
that for everyx ∈ VGR-core, there is a vertexI(x) ∈ VG such thatI(x) ∈ R′

1(x) and
x ∈ R2(I(x)).

We show that for two verticesx 6= y, we haveI(x) 6= I(y) and thus bothI andI−1

are monomorphisms. Assume, that is not the case, i.e., that there are two verticesx 6= y
such thatI(x) = I(y). Consider an arbitrary vertexz in the neighborhood ofx. It follows
thatI(z) must be in the neighborhood ofI(x) and consequentlyz is in the neighborhood
of y. Thus the neighborhoods ofx andy are the same. By Theorem 3.8, however, we know
that the R-core is a thin graph (because weak relational equivalence is coarser than strong
relational equivalence), a contradiction.

Finally observe thatI is an embedding fromGR-core to G. For every edge(x, y) ∈
EGR-core we also have edge(I(x), I(y)) ∈ EG becauseI is contained in relationR′

1. Sim-
ilarly becauseI−1 is contained in relationR′

2, every edge(I(x), I(y)) ∈ EG corresponds
to an edge(x, y) ∈ EGR-core.

We close the section with an algorithm computing the R-core of a graph. In contrast
to graph cores, where the computation is known to be NP-complete, there is a simple
polynomial algorithm for R-cores.

Observe that the R-core of a graph containing isolated vertices is isomorphic to the
disjoint union of the R-core of the same graph with the isolated vertices removed and a
single isolated vertex. The R-core of a graph without isolated vertices can be computed by
Algorithm 1.

Algorithm 1 The R-core of a graph
Input:

GraphG with loops allowed and without isolated vertices, vertex set denoted byV ,
neighborhoodsNG(i), i ∈ V .

1: for i ∈ V do
2: W (i) = ∅
3: found = FALSE
4: for j ∈ V \ {i} do
5: if N(j) ⊆ N(i) then
6: W (i) := W (i) ∪ N(j)
7: end if
8: if N(i) ⊆ N(j) then
9: found = TRUE

10: end if
11: end for
12: if W (i) = N(i) ∧ foundthen
13: deletei from V
14: N(i) = ∅
15: end if
16: end for
17: return The R-coreG[V ] of G.

The algorithm removes all verticesv ∈ G such that (1) the neighborhood ofv is union
of neighborhood of some other verticesv1, v2,≤ vn and (2) there is vertexu such that



18 Preprint

NG(v) ⊆ NG(u).
It is easy to see that the resulting graphH is relationally equivalent toG. Condition

(1) ensures the existence of a relationR1 such thatH ∗ R1 = G, while the condition (2)
ensure the existence of a relationR2 such thatG ∗ R2 = H .

We need to show thatH is isomorphic toGR-core. By Theorem 3.17 we can assume that
GR-core is an induced subgraph ofH that is constructed as an induced subgraph ofG.

We also know that there are relationsR1 and R2 such thatGR-core ∗ R1 = H and
G ∗ R2 = GR-core. By the same argument as in the proof of Theorem 3.17 we can assume
bothR1 andR2 to contain an (restriction of) identity.

Now assume that there is a vertexv ∈ VH \VGR-core. We can putu = R2(v) and because
R2 contains an identity we haveNG(v) ⊆ NG(u). We can also put{v1, v2 . . . vn} to be
set of all vertices such thatv ∈ R1(vi). It follows that the neighborhood ofv is the union
of neighborhoods ofv1, v2, . . . vn and consequently we havev /∈ VH , a contradiction.

4 The Partial Order Rel(G, H)

4.1 Basic Properties

For fixed graphsG andH we consider partial orderRel(G, H). The vertices of this partial
order are all relationsR such thatG ∗ R = H . We putR1 ≤ R2 if and only if R1 ⊆ R2.

This definition is motivated by Hom-complexes, see [10]. In this section we show the
basic properties of this partial order and concentrate on minimal elements in the special
case ofRel(G, G).

Proposition 4.1. SupposeG ∗ R′ = H , G ∗ R′′ = H andR′ ⊆ R′′, then any relationR
with R′ ⊆ R ⊆ R′′ also satisfiesG ∗ R = H .

Proof. FromR′ ⊆ R ⊆ R′′ we concludeG∗R′ ⊆ G∗R ⊆ G∗R′′. HenceG∗R′ = G∗R′′

impliesG ∗ R = H .

Hence it is possible to describe the partial orderRel(G, H) by listing minimal and
maximal solutionsR of G ∗ R = H w.r.t. set inclusion.

For example, ifG is P3 with verticesv0, v1, v2, v3 andH is P1 with verticesx0, x1,
it is easily seen thatR′′ = {(v0, x0), (v2, x0), (v1, x1), (v3, x1)} is a maximal solution of
G∗R = H andR′ = {(v0, x0), (v1, x1)} is a minimal solution, becauseR′ ⊂ R′′, then all
the relationsR with R′ ⊆ R ⊆ R′′ satisfyG ∗R = H . We note that minimal and maximal
solutions need not be unique.

4.2 Solutions ofG ∗ R = G

For simplicity, we say that a relationR is anautomorphismof G if it is of the form R =
{(x, f(x))|x ∈ VG} andf : VG → VG is an automorphism ofG.

We shall see that conditions related to thinness again play amajor role in this context.
Recall thatG is thin if no two vertices have the same neighborhood, i.e.,NG(x) = NG(y)
impliesx = y. Here we need an even stronger condition:

Definition 4.2. A graphG satisfiescondition Nif NG(x) ⊆ NG(y) impliesx = y.

In particular, graph satisfying condition N is thin.
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Proposition 4.3. For a given graphG, the setRel(G, G) of all relations satisfyingG∗R =
G forms a monoid.

Proof. Firstly, becauseG is a finite graph, the setRel(G, G) is also finite. Furthermore,
R, S ∈ Rel(G, G) impliesG ∗ R = G andG ∗ S = G and thusG ∗ (R ◦ S) = G, so that
R◦S ∈ Rel(G, G). Finally, the identity relationIG is a left and right identity for relational
composition:IG ◦ R = R ◦ IG = R.

A relation R ⊂ VG × VG can be interpreted as a directed graph~R with vertex set
VG and a directed edgeu → v if and only if (u, v) ∈ R. Note that~R may have loops.
We say thatv ∈ VG is recurrent if and only if there exists a walk (of length at least 1)
from v to itself. LetSG be the set of all the recurrent vertices. Furthermore, we define an
equivalence relationξ on SG by setting(u, v) ∈ ξ if there is a walk in~R from u to v and
vice versa. The equivalence classes w.r.t.ξ are denoted by~R/ξ = {D1, D2, · · · , Dm}.
We furthermore define a binary relation≥ over ~R/ξ as follows: if there is a walk from a
vertexu in Di to a vertexv in Dj , then we sayu ≥ v. It is easily seen that≥ is reflexive,
antisymmetric, and transitive, hence(~R/ξ,≥) is a partially ordered set. W.l.o.g. we can
assume{D1, D2, . . . , Ds} are the maximal elements w.r.t.≥. Now letGr = G[D1 ∪ · · · ∪
Ds] be the subgraph ofG induced by these maximal elements.

In the following we writeRl for thel-fold composition ofR with itself.

Lemma 4.4. For arbitraryx ∈ VG, there existl ∈ N and a recurrent vertexv such that
(v, x) ∈ Rl.

Proof. Setx0 = x and choosexi ∈ R−1(xi−1) for all i ≥ 1. Since|VG| < ∞, there are
indicesj, k ∈ N, j < k, xj = xk. Thenxj is recurrent vertex. The lemma follows by
settingl = j andv = xi.

Lemma 4.5. For everyv ∈ VGr
, R−1(v) ⊆ VGr

.

Proof. Supposex ∈ R−1(v) is not recurrent. Lemma 4.4 implies that there isl ∈ N
and a recurrent vertexw such that(w, x) ∈ Rl. Hence the definitions ofE and≥ imply
[w] ≥ [v], where[v] denotes the equivalent class (w.r.t.E) containing the vertexv. Since
[v] is maximal w.r.t.≥, we have[v] = [w]. Consequently, there exists an indexk ∈ N such
that(v, w) ∈ Rk. On the other hand, we have(x, x) = (x, v) ◦ (v, w) ◦ (w, x) ∈ Rk+l+1.
Thus,x is recurrent, a contradiction.

Therefore, every vertexx ∈ R−1(v) is recurrent. Hence[x] ≥ [v] together with the
maximality of[v] gives[x] = [v], and thusx ∈ VH .

Lemma 4.6. For everyx ∈ VG, there isl ∈ N such that, for arbitraryi ≥ l, there exists
u ∈ VGr

satisfying(u, x) ∈ Ri.

Proof. From Lemma 4.4 and Lemma 4.5 we conclude that it is sufficient to show that for
an arbitrary recurrent vertexv there is ak ∈ N andw ∈ VGr

such that(w, v) ∈ Rk. The
lemma now follows easily from the finiteness ofVG.

From these three lemmata we can deduce

Theorem 4.7. All solutions ofG∗R = G are automorphisms if and only ifG has property
N.



20 Preprint

Proof. Suppose there are distinct verticesx, y ∈ VG such thatNG(x) ⊆ NG(y). Then
R = IG ∪ (x, y), which is not functional, satisfiesG ∗ R = G. ThusG ∗ R = G is also
solved by relations that are not automorphisms ofG. This proves the ’only if’ part.

Conversely, supposeG has property N.Claim: There is ak ∈ N such thatRk∩(VGr
×

VGr
) = IGr

.
For eachvi ∈ VGr

there is a walk of lengthsi ≥ 1 from vi to itself. Hence(vi, vi) ∈
Rsi . Let s be the least common multiple of thesi. Then(vi, vi) ∈ Rs for all vi ∈ VGr

.
DefineQ := Rs ∩ (VGr

× VGr
). ThusIGr

⊆ Q and moreoverQj ⊆ Qj+1 for all j ∈ N.
SinceVGr

is finite there is ann ∈ N such thatQn+1 = Qn, and henceQ2n = Qn. Let
us writeR−i(v) := {u ∈ VG : (u, v) ∈ Ri}. For v ∈ VGr

we haveR−i(v) ∈ VGr

(from Lemma 4.5) and henceQ−n(v) = R−sn(v) for all v ∈ VGr
. If Qn 6= IGr

, then
there are two distinct verticesu, v ∈ VGr

, such that(u, v) ∈ Qn. NG(u) * NG(v) and
G = G ∗ Rsn allows us to conclude thatR−sn(u) * R−sn(v) andR−sn(v) * R−sn(u).
Hence, there is a vertexw, such that(w, u) ∈ Qn and(w, v) /∈ Qn. From(u, v) ∈ Qn

and(w, u) ∈ Qn we conclude(w, v) ∈ Qn ◦ Qn = Q2n, contradicting toQ2n = Qn.
ThereforeQn = IGr

. Settingk = sn now implies the claim.
Finally, we showVGr

= VG. For anyv ∈ VG\VGr
, Lemma 4.6 implies the existence of

w ∈ VGr
andm ∈ N such that(w, v) ∈ Rmk. However, we have claimedR−k(w) = {w},

henceR−mk(w) = {w}. This, however, impliesNG(w) ⊆ NG(v) and thus contradicts
property N. Therefore,VG = VGr

and moreoverRk = IG. This R is an automorphism.

5 R-Retraction

A particularly important special case of ordinary graph homomorphisms are homomor-
phisms to subgraphs, and in particular so-called retractions: LetH be a subgraph ofG, a
retractionof G to H is a homomorphismr : VG → VH such thatr(x) = x for all x ∈ VH .

We introduced the graph cores in section 3 as minimal representatives of the homo-
morphism equivalence classes. The classical and equivalent definition is the following: A
(graph) coreis a graph that does not retract to a proper subgraph. Every graphG has a
unique coreH (up to isomorphism), hence one can speak ofH asthe core ofG, see [7].

Here, we introduce a similar concept based on relations between graphs. Again to
obtain a structure related to graph homomorphisms, in this section we require all relations
to have full domain unless explicitly stated otherwise.

Definition 5.1. Let H be a subgraph ofG. An R-retractionof G to H is a relationR such
thatG ∗ R = H and(x, x) ∈ R for all x ∈ VH . If there is an R-retraction ofG to H we
say thatH is aretract of G.

Lemma 5.2. If H is an R-retract ofG andK is an R-retract ofH , thenK is an R-retract
of G.

Proof. SupposeT is an R-retraction ofH to K andS is an R-retraction ofG to H . Then
(G ∗ S) ∗ T = G ∗ (S ◦ T ) = K. Furthermore(x, x) ∈ T for all x ∈ VK ⊆ VH , and
(u, u) ∈ S for all u ∈ VH , hence(x, x) ∈ S ◦ T for all x ∈ Vk. ThereforeS ◦ T is an
R-retraction fromG to K.

Hence, the following definition is meaningful.
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Definition 5.3. A graph isR-reducedif there is no R-retraction to a proper subgraph.

Thus, we can also speak about “the R-reduced graph of a graphG” as the smallest
subgraph on which it can be retracted. We shall see below thatthe R-reduced graph of a
graph is always unique up to isomorphism.

We shall remark that R-reduced graphs differs from R-cores introduced in section 3,
thus we chose an alternative name used also in homomorphism setting (cores are also called
reduced graphs).

Lemma 5.4. Let G be a graph with loops ando a vertex ofG with a loop on it. Then the
R-reduced graph ofG is the subgraph induced by{o}.

Proof. Let O be the graph induced by{o}, andR = {(x, o)|x ∈ VG}, then it is easily
seenR is a R-retraction ofG to O. Moreover, sinceO has only one vertex, thus there is no
R-retraction to its subgraphs. SoO is a R-reduced graph ofG.

Conversely, letH be a R-reduced graph ofG and denote byR the R-retraction from
G to H . Then a loop ofG must generate a loop ofH via R, denote it byO. Similarly
to above, we seeO is a R-retract ofH , hence it is also a R-retract ofG (by Lemma 5.2).
Therefore the definition of R-reduced graph impliesH = O.

In the remainder of this section, therefore, we will only consider graphs without loops.

Lemma 5.5. If G is R-reduced, thenG has property N.

Proof. Suppose there are two distinct verticesx, y ∈ VG with NG(x) ⊆ NG(y) and con-
sider the induced graphG/x := G[VG \ {x}] obtained fromG by deleting the vertexx
and all edges incident withx. The relationR = {(z, z)|z ∈ VG \ {x}} ∪ {(x, y)} satisfies
G∗R = G/x: the first part is the identity onG/x and already generates all necessary edges
in G/x. The second part transforms edges of the form(x, z) ∈ EG to edges(y, z). Since
R has full domain and contains the identity relation restricted toG/x, it is an R-retraction
of graphG, and henceG is not R-reduced.

Proposition 5.6. A graphG is R-reduced if and only if it has no relation to a proper
subgraph.

Proof. The “if” part is trivial. Now we suppose thatH is a proper induced subgraph of
graphG with the minimal number of vertices such that there is a relation R satisfying
G ∗ R = H . ThenH does not have a relation to a proper subgraph of itself. We claim that
H has property N; otherwise, one can find a vertexu ∈ VH and construct a retraction from
H to H/u as in Lemma 5.5, which causes a contradiction. DenoteR̃ = R ∩ (VH × VH),
thenK = H ∗ R̃ is a subgraph ofH . From our assumptions onH we obtainK = H . By
virtue of Theorem 4.7,̃R is induced by an automorphism ofH . HenceR ◦ R̃+ is again a
relation ofG to H that contains the identity onH , i.e., it is an R-retraction.

Since graph cores are induced subgraphs and retractions aresurjective they also imply
relations. Proposition 5.6 is also a consequence of this fact. We refer to [7] for a formal
proof.

We callR aminimal R-retractionif there is no R-retractionR′ such thatR ⊃ R′ ⊃ IH .

Lemma 5.7. Let H be an R-retract ofG. Then any minimal R-retraction ofG to H is
functional.
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Figure 5: A graphG and its core.

Proof. SupposeR is a minimal R-retraction ofG to H . If R is not functional, then there
exist distinctx, y ∈ VH such that(u, x), (u, y) ∈ R. Hence we could always pick a
vertex from{x, y} which is different ofu, w.l.o.g. suppose it isx. ThenR/(u, x) is an
R-retraction, which contradicts minimality. To see this, setR′ = R/(u, x), thenR ⊃ R′ ⊃
IH and moreoverH = G ∗ IH ⊆ G ∗ R′ ⊆ G ∗ R = H , and thusG ∗ R′ = H .

Proposition 5.8. A graph is R-reduced if and only if it is a graph core.

Proof. If H is R-reduced fromG there is an R-retraction fromG to H which can be
chosen minimal and hence by Lemma 5.7 is functional and henceis a homomorphism
retraction. Conversely, a homomorphism retraction is alsoan R-retraction. Hence the R-
reduced graphs coincide with the graph cores.

Proposition 5.9. SupposeH is the core of graphG. If H ∗ R = K then there is a relation
R′ such thatG ∗ R′ = K. If K ∗ S = G, then there is a relationS′ such thatK ∗ S′ = H .

Proof. SinceH is the core of graphG, there is a relationR1 such thatG ∗ R1 = H . If
H ∗R = K we haveG∗R1 ∗R = K andR′ = R1 ◦R satisfiesG∗R′ = K. If K ∗S = G
we haveK ∗ S ∗ R1 = H andS′ = S ◦ R1 satisfiesK ◦ S′ = G.

5.1 Cocores

In the classical setting of maps between graphs, one can onlyconsider retractions from a
graph to its subgraphs, since graph homomorphisms of an induced subgraph to the original
graph are just the identity maps. In the setting of relationsbetween graphs, however, it
appears natural to consider relations with identity restriction between a graph and an in-
duced subgraph. This gives rise to notions of R-coretraction and R-cocore in analogy with
R-retractions and R-reduced graphs.

Definition 5.10. LetH be a subgraph of graphG. An R-coretractionof H to G is a relation
R such thatH ∗R = G and(x, x) ∈ R for all x ∈ VH . We say thatH is anR-coretractof
G.

Lemma 5.11. If H is an R-coretract of graphG andK is an R-coretract ofH , thenK is
an R-coretract ofG.

Proof. SupposeT is an R-coretraction ofK to H andS is an R-coretraction ofH to G.
Then(K ∗ T ) ∗ S = K ∗ (T ◦ S) = G. Furthermore(x, x) ∈ T for all x ∈ VK ⊆ VH ,
and(v, v) ∈ S for all v ∈ VH , hence(x, x) ∈ T ◦ S for all x ∈ VK . ThereforeT ◦ S is an
R-coretraction fromK to G.
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Hence, the following definition is meaningful.

Definition 5.12. An R-coretractH of a graphG is anR-cocore ofG if H does not have a
proper subgraph that is an R-coretract ofH (and hence ofG).

G cocore(G)

Figure 6: A graph and its cocore

Clearly, the reference toG is irrelevant: A graphG is an R-cocoreif there is no
proper subgraph ofG that is an R-coretract ofG. Similarly, we callR to be aminimal
R-coretractionof H to G if there exists no R-coretractionR′, such thatR′ ⊂ R.

Lemma 5.13. Let H be an R-coretract of graphG, and letR be a minimal R-coretraction
of H to G. Then the restriction ofR to H equalsIH .

Proof. SupposeR∩ (VH × VH) 6= IH and defineR1 = R \ {(x, y) ∈ R : x, y ∈ VH , x 6=
y}. ThenH ∗ R1 ⊆ H ∗ R = G. We claim thatH ∗ R1 = H ∗ R and thusR1 is an
R-coretraction ofH to R, contradicting the minimality ofR.

To prove this claim, it is sufficient to show that any edgee ∈ EG is contained in
H ∗ R1. If e is not incident with any vertex inVH or e ∈ EH , the conclusion is trivial. So
we only need to considere = (z, u) with z ∈ EH andu ∈ VG \ VH . SinceG = H ∗ R,
one can findx1, x2 ∈ VH such that(x1, z), (x2, u) ∈ R and(x1, x2) ∈ EH . Because
H ⊆ H ∗

(

IH ∪ (x1, z))
)

⊂ H ∗
(

R ∩ (VH × VH)
)

= H , we getNH(x1) ⊆ NH(z). It
follows that(z, x2) ∈ EH and hencee = (z, u) ∈ G ∗ R1.

Like R-reduced graphs, R-cocores satisfy a stringent condition on their neighborhood
structure.

Definition 5.14. A graphG satisfies property N* if, for every vertexx ∈ VG, there is no
subsetUx ⊆ VG \ {x} such that

NG(x) =
⋃

y∈Ux

NG(y) (5.1)

In other words, no neighborhood can be represented as the union of neighborhoods of
other vertices of graphG.

Proposition 5.15. G is an R-cocore if and only ifG has property N*.

Proof. Consider a vertex setUx as in Definition 5.14 and suppose that there is a vertex
x ∈ VG such thatNG(x) =

⋃

y∈Ux
NG(y). Then the relationR := I \ (x, x) ∪ {(y, x) :

y ∈ Ux} is an R-coretraction fromG/x to G. ThusG is not a R-cocore.
Conversely, suppose thatG is not an R-cocore, letH be a coretract ofG, and denote

by R a minimal R-coretraction ofH to G. Then, by Lemma 5.13,R ∩ (VH × VH) = IH .
Consider a vertexv ∈ VG \ VH and setR−1(v) = {x1, · · · , xi}. ThenN(v) =

⋃

i N(xi),
contradicting property N*.
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Proposition 5.16. The R-cocore ofG is unique up to isomorphism.

Proof. We denote byN the collection of all open neighborhoods of vertices inG, i.e.,
N = {NG(x1), NG(x2), · · · , NG(xk)}, whereVG = {x1, x2, · · · , xk}. From the defi-
nition of the R-cocore we know that the subcollectionM of N consisting of all the open
neighborhoods of vertices in R-cocore is a basis ofN , i.e., any set inN can be expressed
by the union of some sets inM. W.l.o.g., we denote the vertex set in a R-cocoreC of
G is {x1, x2, · · · , xm} wherem ≤ k, thenM = {NG(x1), NG(x2), · · · , NG(xm)}.
We claim that any element in{NG(x1), NG(x2), · · · , NG(xm)} cannot be expressed as
the union of other elements, i.e.,M is a minimal basis. Otherwise, w.l.o.g., suppose
NG(x1) = ∪xk

NG(xk), xk ∈ {x2, . . . , xm}. For any1 ≤ k ≤ m, NG(xk) = NC(xk)
or NG(xk) = NC(xk) + {xi|(xi, xk) ∈ EG, m + 1 ≤ i ≤ n}, so eitherNC(x1) =
∪xk

NC(xk), xk ∈ {x2, . . . , xm} or NC(x1) = ∪xk
NC(xk) + {xi|i ∈ 1, · · · , n}, xk ∈

{x2, . . . , xm}, the former contradicts to Proposition 5.15, which impliesany element in
{NC(x1), NC(x2), · · · , NC(xm)} cannot be expressed as the union of other elements, the
latter is impossible because{xi|i ∈ 1, · · · , n} /∈ C.

Now we prove that this minimal basis is unique. Note that inN we view any vertex
with the same neighborhood as the same, since any vertex in R-cocore has different neigh-
borhoods. Let us consider two minimal sub-collectionsA,B. Neither contains the other by
their minimality. Since everything is finite, letA ∈ A/B be an element of minimal size.
Now A can be expressed as a union of elements ofB, which all need to be of smaller cardi-
nality thanA (or same butA /∈ B), butA then contains all of them, lettingA be expressed
by a union of elements ofA contradicting the minimality ofA.

These results allow us to construct an algorithm that computes the cocore of given graph
G in polynomial time. First observe that the cocore of a graphG that contains isolated
vertices is the disjoint union of cocore of the graphG′ obtained fromG by removing
isolated vertices and the graph consisting of a single isolated vertex. It is thus sufficient to
compute cocores for graphs without isolated vertices in Algorithm 2.

Algorithm 2 The cocore of a graph
Input:

GraphG with loops and without isolated vertices specified by its vertex setV and the
neighborhoodsNG(i), i ∈ V .

1: for i ∈ V do
2: W (i) = ∅
3: for j ∈ V \ {i} do
4: if N(j) ⊆ N(i) then
5: W (i) := W (i) ∪ N(j)
6: end if
7: end for
8: if W (i) = N(i) then
9: deletei from V

10: N(i) = ∅
11: end if
12: end for
13: return G[V ], the cocore ofG.
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Proposition 5.17. SupposeH is a cocore ofG. If K ∗ R = H , then there is a relationR′

such thatK ∗ R′ = G. If G ∗ S = K, then there is a relationS′ such thatH ∗ S′ = K.

Proof. SinceH is a cocore ofG, there exists an R-coretractionR1 such thatH ∗ R1 = G.
If K ∗ R = H , then lettingR′ = R ◦ R1 impliesK ∗ R′ = G. If G ∗ S = K, we have
H ∗ R1 ∗ S = K. Let S′ = R1 ◦ S, thenH ∗ S′ = K.

6 Computational Complexity

In this section we briefly consider the complexity of computational problems related to
graph homomorphisms. Thehomomorphism problemHOM(H) takes as input some finite
G and asks whether there is a homomorphism fromG to H . The computational complexity
of the homomorphism problem is fully characterized. It is known that HOM(H) is NP-
complete if and only ifH has no loops and contains odd cycles. All the other cases are
polynomial, see [7].

The analogous problem for relations between graphs can be phrased as follows: The
full relation problemFUL-REL(H) takes as input some finiteG and asks whether there is
a relation with full domain fromG and asks whether there is a relation fromG to H . We
show that this problem can be easily converted to a related problem on surjective homo-
morphisms. Thesurjective homomorphism problemSUR-HOM(H) takes as input some
finite G and asks whether there is a surjective homomorphism fromG to H .

Let ≤Tur
P indicate polynomial time Turing reduction.

Theorem 6.1. For finiteH our relation problem sits in the following relationship.

HOM(H) ≤Tur
P FUL-REL(H) ≤Tur

P SUR-HOM(H) . (6.1)

Proof. First we show that HOM(H) is polynomially reducible to FUL-REL(H). If there is
a homomorphism fromG H , then there is also a surjective homomorphism fromG + H
to H . On the other hand, supposeG has no homomorphism toH . From Lemma 1.4 we
conclude thatG + H has no relation toH sinceG has no relation toH .

The relation problem FUL-REL(H) is polynomially reducible to SUR-HOM(H). From
Corollary 2.3 we knowG ∗ R = H if and only if there is a graphG′ = G ∗ RD which has
a full homomorphism toG and has a surjective homomorphism toH .

We constructG′′, by duplicating all the vertices ofG precisely|VH | times. It is easy to
see that ifG′ exists, we can also putG′ = G′′ because the surjective homomorphism can
easily undo the redundant duplications.

It remains to check whether there is surjective homomorphism from G′′ to H . This
gives the polynomial reduction from FUL-REL(H) to SUR-HOM(H).

To our knowledge, SUR-HOM(H) is not fully classified. A recent survey of the closely
related complexity problem concerning the existence of vertex surjective homomorphisms
[2] provides some arguments why the characterization of complexity is likely to be hard,
see also [5]. We observe that the existence of a homomorphismfrom G to H is equivalent
to the existence of a surjective homomorphism fromG + H to H . Thus SUR-HOM(H)
is clearly hard for all graphs for which HOM(H) is hard, i.e., for all loop-less graphs with
odd cycles.

Testing the existence of a homomorphism from a fixedG to H is polynomial (there is
only a polynomial number|VH ||VG| of possible functions fromG to H). Similarly the ex-
istence of a relation from a fixedG to H is also polynomial. In fact, an effective algorithm



26 Preprint

exists. For fixedG there are finitely many thin graphsT which G has relation to. The al-
gorithm thus first constructs the thin graph ofH and then, using a decision tree recognizes
all isomorphic copies of all thin graphsG has relation to.

7 Weak Relational Composition

In this section we will briefly discuss the “loop-free” version, i.e., equations of the form
G ⋆ R = H .

Most importantly, there is no simple composition law analogous to Lemma 2.1. The
expression

(G ⋆ R) ⋆ S = (S+ ◦ (R+ ◦ G ◦ R)ι ◦ S)ι (7.1)

does not reduce to relational composition in general. For example, letG = K3 with vertex
setV = {x, y, z} and consider the relationsR = {(x, 1), (z, 1), (y, 2)} ⊆ {x, y, z} ×
{1, 2} andS = {(1, x′)(1, z′)(2, y′)} ⊆ {1, 2} × {x′, y′, z′}. One can easily verify

(G ⋆ R) ⋆ S = P2 6= G ⋆ (R ◦ S) = K3 (7.2)

The most important consequence of the lack of a composition law is that R-retractions
cannot be meaningfully defined for the weak composition. Similarly, the results related to
R-equivalence heavily rely on the composition law.

Nevertheless, many of the results, in particular basis properties derived in section 2, re-
main valid for the weak composition operation. As the proofsare in many cases analogous,
we focus here mostly on those results where strong and weak composition differ, or where
we need different proofs. In particular, Lemma 2.2 also holds for the weak composition.
Thus, we still have a result similar to corollary 2.3, but theproof is slightly different.

Corollary 7.1. SupposeG ⋆ R = H . Then there is a setC, an injective relationRD ⊆
domR×C, and a surjective relationRC ⊆ C × img R such thatG[domR] ⋆RD ⋆RC =
H [img R].

Proof. From Proposition 2.2 we knowR = I ′ ◦RD ◦RC ◦ I ′′. And we knowG[domR] ⋆
RD = G[domR] ∗ RD. From the properties of⋆, we have

G[domR] ⋆ R = (R+ ◦ G[domR] ◦ R)l

= ((RD ◦ RC)+ ◦ G[domR] ◦ RD ◦ RC)l

= (R+
C ◦ R+

D ◦ G[domR] ◦ RD ◦ RC)l

= (R+
C ◦ (R+

D ◦ G[domR] ◦ RD) ◦ RC)l

= (R+
C ◦ G[domR] ∗ RD ◦ RC)l

= (R+
C ◦ G[domR] ⋆ RD ◦ RC)l

= G[domR] ⋆ RD ⋆ RC

= H [img R]

.

AssumeG ⋆ R = H and letH1, · · · , Hk the connected components ofH . From the
definition of⋆ and∗, if we denoteH̃ = G∗R, thenH̃ could be decomposed into the union
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of connected components̃Hi(1 ≤ i ≤ k), such that(H̃i)
ι = Hi. Hence the conclusion of

the proposition 2.4 also holds true for weak relations.
Lemma 2.6 does not hold for weak relations. For example, there is a weak relation of

K5 to K3, butχ(K5) = 5 > χ(K3) = 3.
Lemma 2.7 and Lemma 2.8 do not hold for weak relations. For example, ifG is a graph

consisting of a single isolated vertex isolated, thenP3 ⋆ R = G andC3 ⋆ R = G, but there
are no walk inG.

With respect to complete graphs, weak relational composition also behaves different
from strong composition. IfKk ⋆ R = H thenR(i) can contain more that one vertex in
VH . Compared to Proposition 2.12, we also obtain a different result:

Theorem 7.2. There is a relationR such thatKk ⋆ R = H if and only if every connected
component ofH is a complete graph, and the number of connected components of H
containing at least 2 vertices is at mostk.

Proof. If every connected component ofH is a complete graph, denoted the vertex sets of
the connected components containing at least2 vertices byH1, . . . , Hm, m ≤ k and the
vertices ofKk by 1, · · · , k. Let R = {(i, u)|i = 1, · · · , k, u ∈ VHi

} ∪ {(j, v) : 1 ≤ j ≤
k, v ∈ VH \

⋃m

i=1 VHi
}. One easily checks thatKk ⋆ R = H .

Conversely, letR be a relation satisfyingKk ⋆ R = H . Consider the setUi = {u ∈
VH |R−1(u) = {i}}. Thenu andv are not adjacent for arbitraryu, v ∈ Ui, while u is
adjacent tow for everyw ∈ VH \Ui. HenceH(Ui) is a connected component ofH , which
is also a complete graph. Givenw ∈ VH \

⋃m

i=1 Ui, R−1(w) must have at least 2 vertices in
Kk, hencew is adjacent to every vertex inH except itself; in other words,w is an isolated
vertex inH . Therefore the number of connected components ofH containing at least 2
vertices is no more thank.

The results in subsection 3.1 also remain true for weak relations.
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