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ABSTRACT

Motivation: Tiling arrays have been a mainstay of unbiased
genome-wide transcriptomics over the last decade. Currently
available approaches to identify expressed or differentially expressed
segments in tiling array data are limited in the recovery of the
underlying gene structures and require several parameters that are
intensity-related or partly dataset-specific.

Results: We have developed Ti | eShuf f | e, a statistical approach
that identifies transcribed and differentially expressed segments
as significant differences from the background distribution while
considering sequence-specific affinity biases and cross-hybridization.
It avoids dataset-specific parameters in order to provide better
comparability of different tiling array datasets, based on different
technologies or array designs. Ti | eShuffl e detects highly and
differentially expressed segments in biological data with significantly
lower false discovery rates under equal sensitivities than commonly
used methods. Also, it is clearly superior in the recovery of exon-
intron structures. It further provides window z-scores as a normalized
and robust measure for visual inspection.

Availability: The R package including documentation and examples
is freely available at http://ww. bi oi nf. uni-1eipzig.de/
Sof tware/ Ti |l eShuffle/.

Contact: joerg.hackermueller@ufz.de

Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION

in 30 distinct developmental stages as well as in 25 celkliok
Drosophila melanogastdfGraveleyet al, 2011; Cherbast al.,
2011), and to the identification of a “large complement of elov
loci” with stage-specific expression il€aenorhabditis elegans
(Wang et al, 2011). High-throughput sequencing methods have
recently shown distinct advantages over array-based appes
(Agarwal et al, 2010; Bradfordet al, 2010). However, due to
the availability of large tiling array reference datasetgy., from
ENCODE and a clear statistical understanding on how to model
differential expression in microarray data, tiling arragee an
important experimental approach in transcriptomics, dimgjarray
data analyses is a relevant topic in computational biology.

One of the most widely used methods in tiling array expressio
analysis was introduced by Kampagal. (2004) and is implemented
in the Tiling Array Software TAS). In brief, the local expression
levels of probes are estimated by calculating the pseudo-
median or Hodge-Lehmann estimator over intensities of gsob
within genomic distance dbandwidth Transcribed segments are
collections of expressed probes, i.e., probes with a snedoth
intensity above a given threshold, with maximal genomicadise
of maxgapand minimal length ofminrun TAS extends the method
of Kampa et al. by estimating the significance of differential
expression using a Wilcoxon signed-rank test. It testsifprificant
changes of probe intensities among states applied to ldodows
of given width centered around each probe. Hence, p-valoes f
differential expression are assigned to each probe.

More recently, Johnsoet al.introduced an approach that models
the expected probe behavior. It is available in the MBI (Johnson
et al, 2006). Originally, it was designed to detect regions drait

During the last decade, tiling arrays have been a mainstay oby ChIP-chip but has also been applied to detect transorigti

unbiased transcriptomics (e.g., Kaprargval,, 2002; Rinnet al,,

activity (Lee et al, 2009; Kadenert al, 2009). In contrast to

2003; Bertoneet al, 2004) and continue to contribute to novel TAS, MAT uses a mixture model to normalize probe intensities

findings. Tiling arrays have recently been applied, e.g.tha
discovery of novel long non-coding RNAs (Guttmanal., 2009),
to the identification of spatio-temporal patterns of gengression

by estimating the expected binding affinity on the basis & th
composition and copy number of their nucleotide sequence on
the corresponding genome. To identify (differentially)peessed

(Spenceeet al, 2011), to the characterization of the transcriptome probes, the score over all normalized intensities of protigsin a

*to whom correspondence should be addressed

local window, given by &andwidthparameter, is compared to a null
distribution. This distribution is composed of all non-de@ping

(© Oxford University Press 2012.
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window scores that can be calculated on the same array or thef differentially expressed segments sufficiently prediseallow

array in a different state during expression or differdrigoression

transcript annotation, andvj avoid the use of data-set specific

analysis, respectivelyHence, it uses a two-step approach with parameters which may hamper analyzing differential exgoes

different background distributions to normalize the prattensity
and assess its significance within a probe-centered winbothe
detection of (differentially) expressed segments, pasifrobes
are joined if their genomic distance is below a giveraxgap
parameter and segments enclosing more tharprobeprobes are
then reported.Ti | ePr obe is a variant of MAT, which models
residual probe effects that cannot be explained byMAE model
by incorporating publicly available datasets (Judy & Ji02pD

between arrays of different experiments. In our opiniomenof the
state-of-the-art methods sufficiently fulfills all thesgu@ements.
Here, we presenti | eShuf f | e, a novel tiling array analysis
approach that identifies transcribed and differentiallprezsed
segments in terms of significant differences from the bamlgd
distribution by using a permutation test statistic. Sigumifice is
assessed on minimal expected transcriptional units rakiagr on
a single-probe levelli | eShuf f | e does not require any dataset-

Ti | eProbe has been successfully applied to detect enrichedspecific parameters, e.g., intensity-related threshalgmm@mmeters

motifs in ChIP-chip tiling array data, but in contrast MAT no
application to detect differential expression has beeonted. HAT
uses a hypergeometric distribution to assess the protyaldi

concerning collection of expressed probékhis is particularly
favorable since in common tiling array experiments neitgke-
ins to control the FDR (as in Kamp&t al. (2004)) nor sufficiently

observe a specific number of probes within a window. It is lesslarge positive and negative sets to optimally adjust thebdioc

sensitive but more specific thaviAT and cannot directly be used
to detect differential expression (Taskesenal, 2010). Lastly,

parameters might be available.
We compareTi | eShuffl e to TAS and MAT in analyzing

HWMTi | i ng models probe-specific effects by a normal distribution differential expression in one human whole genome tilinguar

defined for each probe individually compared to a controlugro

datasetsand one spike-in dataset (Sasati al, 2007). TAS is

(Li et al, 2005), but requires many samples in order to estimatehe most widely used tool in tiling array expression analysi

the variance for a probe correctly which may not be availdbte
arbitrary types of tiling arrays.

gSAM is a powerful framework for analyzing differential
response of time series tiling array data (Gheshal, 2007). It
generalizesSAM (Tusheret al, 2001) from a gene-centric view
to genomic intervals in an underlying piece-wise model. &nd
this model, the time series is subdivided into logical seue

and althoughMAT was originally designed for ChIP-chip data,
it was successfully applied to detect transcriptionalvégti All,

Ti |l eShuf fl e, TAS, and MAT, do not require replicates to
detect differentially expressed transcripts which is intipalar
favorable for studies with limited material and costd the same
false discovery rateTi | eShuf f | e achieves significantly higher
sensitivities than the other methods. Also, it detects Haties of

and differential changes are analyzed on each of these segme differentially expressed exons with higher precision tA&$ and
separatelygSAMrequires replicates which are often not available VAT.

for whole genome tiling data. Another method suitable tcedet
differential expression on tiling array data % | eMap which

assesses the significance of each probe by averaging overated
t-statistics within a pre-defined window size (Ji & Wong, 3D0

2 METHODS

Kechriset al. (2010) propose the averaging of p-values instead of2 1 Expression detection

test statistics providing a more flexible framework to eaédumore
complicated experimental designs and to overcome thegmotiiat

the length of a sliding window may not be large enough to assum

normal distribution. However, both methods again reque@icates

because probe-wise expression changes are assessed Hyebigo

tests. An HMM-based approach was introduced by Muatlal.
(2006) that adaptively models tiling array data on givencaation
and subsequently predicts expression on the genomic segjuin

does not requiread-hoc parameters but is limited to expression

analysis and hence cannot predict differential expression

Huber and colleagues presented a powerful segmentatio

approach for tiling array data, which controls for probefic
effects by normalizing probe-wise intensities to a refeeen
experiment with genomic DNA (Hubeet al, 2006) Recently,

Karpikov et al. (2011) introduced a wavelet transformation to tiling

array ChiIP-chip data in order to discriminate regions ofvigt
from noisy data.

Our aim is to use tiling array data for identifying novel ncR$\
which are differentially expressed in response to critighaling
pathways or cellular processes. For this purpose, a datgséma
method is required toi) analyze differential expression in tiling
array data for genome-wide approaches, (allow the latter
without using replicate tiling array experiments due toitations
in the availability of sample material,iii) identify boundaries

To determine transcribed segments in tiling array data, pgya
a statistical approach that differentiates expressionassgfrom
the background distribution under consideration of comrilary
array biases. Given the array design of nearly uniformlyritisted
probe sequences over the non-repetitive genome, hyhtimliza
affinity and hence signal intensity is highly dependent oa th
probe sequence itself, i.e., nucleotide composition ardeotide
positioning (Royceet al,, 2007; Johnsoet al,, 2006). Analogously,
in absence of specific transcripts, a detected probe sigagl m
solely originate from non-specific hybridization, e.g.ckground
Roise and cross-hybridization, causing single spikes @tiling
array data. Here, cross-hybridization refers to the hybaitbn of
DNA/RNA fragments to probe sequences that are similar on eve
equal to

Handling common tiling array biase€ven though transcripts are
expected to be detected by several neighboring probes iitasim
scale, non-specific hybridization and sequence-specikctsflike
nucleotide composition and positioning can largely inseséhe
detected signal intensity of single probes while having fiece
on the neighboring probes and hence roughen the signalsaitres
tiling array. For example, probes with high GC content tead t
exhibit increased signal intensities compared to probés laiv GC
content. In addition to the GC content, Royateal. highlighted the
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Fig. 1: (a) Boxplot of probe intensities on a tiling array ftifferent GC content in the probe sequence. The relativgufsacy of probes
with each GC content bin on the tiling array is shown in therlayegraph (red solid line). (b) Boxplot of probe median oiss for different
GC content in the probe sequences. The probe median z-sadeéined as the median over the z-scores of all windows eéngléise probe
where z-scores were estimatedTiyl eShuf f | e using three GC bins during permutation. Vertical dottedlieels display the boundaries

of different bins while solid red lines indicate the relativequency of

influence of position-specific effects of each nucleotidéh@probe
intensities, e.g., higher average intensities of prob#s @s towards
the probe start or Cs towards the probe end (Ratcal., 2007).
These sequence-specific biases introduce a disparity ibirldéng
affinity among different probe sequences, subsequentlgtddras
sequence-specific affinity.

We therefore assess the significance of expression on wsdbw

probes with the respective GC content in thiair

probe sequence as the most dominant bias on hybridizafiioityaf
(see Figure 1a). In accordance with the findings of Johmrsaal.
(2006), the copy number of probes, i.e., number of perfettines

of the probe sequence to the genomic sequence and henceghe ex
of potential signal overlay, showed only a minor impact aynai
intensity (see Supplementary Figure Sla). We thereforairef
from controlling for copy number in favor of larger bins dugi

lengthi with respect to the background distribution rather than onpermutation. The described algorithm to detect expressgahaents

single probes. A scoré§.(w) is assigned to each sliding window
w by applying a scoring function (arithmetic mean trimmed by
maximal and minimal value or median) over the signal intéesi

in tiling array data is illustrated in Supplementary FigGee

of all probes within the window. Due to the robustness of the2.2 Differential expression detection

two scoring functions, window scores are less susceptibignal
intensity variation within a given window originating sblefrom

outliers. In addition, probes are subdivided into affinitpsbwith

similar expected sequence-specific affinity and bins aregased
independently from each other. Accordingly, intensitiépmbes
that belong to different affinity bins must not be interchesg
Otherwise, the expression analysis might favor windowgsirdue
to the sequence compositions of their probes, e.g., highdbnt.

Assessing significance of expressiém order to estimate the
significance of a window scorg.(w), we repeatedly permute all
probe intensities across the array while interchanginy tmbse
that belong to the same sequence-specific affinity bin, recten
the window scores, and compare them with the original o¥iéss.
use random permutations of probe intensities to remairpierigent
of any annotation or underlying gene structure.

By counting the number of permuted windows with higher
score, we estimate empirical p-values of windows. Follgwin
a Benjamini-Hochberg multiple testing correction (Benijaim&
Hochberg, 1995), all windows of high significance, i.e., tmes
with corrected p-values (g-values) below a given threshale
deemed ‘expressed’. Since permutations necessitate isuoffjc
large groups, the binning is only based on the GC contentdf ea

In many cases, tiling array data is available from differesitular
states or other biological conditions and one might be ésteed in
structural changes in the expression between differenditons.
To avoid that signal intensity variation at the detectiomitiis
classified as differential expression, we require thatediftially
expressed intervals must also be significantly expresskadivee
to the background distribution in at least one of the ingagéd
conditions, and call these intervdighdiff. This is analogous to the
frequently performed unspecific filtering in conventionatroarray
data analysis.

Assessing significance of differential expressiom the contrary
to one-state expression analyses, signal intensitiesareatized
using a quantile-normalization across each tiling arraybath
considered conditions (Bolsta al., 2003). Expression shifts are
then measured in terms of log-fold changes (i.e. differencke
log signals) between probe intensities in both cellularditions.
In consequence, sequence-specific effects cancel out éndyaf
classification as it is done for expression detection is e
unnecessary (see Supplementary Figure $3dijl changes assume
constant variance among probes, which might not be valichin a
case. However, if replicate data is not available, fold gesrare the
only applicable measure for differential signal changethe@vise,
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it is possible to use moderated t-statisticsTinl eShuf f 1 e, an
empirical Bayes method to shrink the probe-wise varianeatds
a common value. Hence, it is preferable over ordinary isttes
(Witten & Tibshirani, 2007).

Due to the two-tailed distribution of fold changes, the rastiion

used theAgilent eArrayproceduré to ensure that probe-specific
biases are minimized and designed probes of 60 mer lengtiothr

reading directions of alhighdiff regions that have been identified
by Ti | eShuf fl e and TAS. We, furthermore, verified that the
custom microarray also covers an unbiased sample of then®gi

of p-values needs to be adapted. We implemented and comparédentified byMAT (Supplemental Table S6). In addition, the custom

two different variants to detect significant changes. InardrA,
window scoresSy(w) of differential expression are calculated
following the same outline as described for the expressiaiyais
with the exception that two-tailed p-values are estimatedrder
to regard both regulation directions, up and down. The plelti
testing correction is then adjusted to account for thesdtiadél
comparisons.In variant B, it is assumed that entire windows
represent the smallest unit of expression and are eithestaxaty
or up- or downregulated between two conditions.
behavior of neighboring probes is considered a consequehce
non-specific hybridizationln order to correct for this bias, the
presumed direction of regulation is initially assigned taclke
window w on the basis of the sign of its expression score
Se(w). Subsequently, all converse probes, i.e.,
negative log-fold change within positive windows or vicersa
are ignored and neither permuted nor incorporated into tbees
calculation for differential expression. Consequentlypsifive

microarray also includes probes for genomic regions, detexd
independently of the tiling array experiment: Probes fobhaman
mRNAs, for genomic regions predicted to contain a conserved
secondary structure identified by RNAz (Washtlal., 2005) or
Evofold (Pedersemet al, 2006), and known ncRNAs from public
databases.

The custom microarray was run in triplicates and differahi
expressed probes were identified using the statisticalaodt

Conversepackage R and Bioconductor (Gentlen®tral, 2004). Expression

intensities were quantile normalized (Bolstatal, 2003) and a
linear model was fitted using the nma R package (Smyth, 2005).
Reliable variance estimations were obtained by empiricajed
moderated t-statistics and the false discovery rate wagaited

probes withby Benjamini-Hochberg adjustment (Benjamini & Hochbe!@03).

A probe on the custom microarray is called significant in dhse
adjusted p-value is found to ke 0.05.
In addition to the custom microarray, we tested the perfocea

and negative windows are compared to different backgroundf Ti | eShuffl e, TAS and MAT on the outcome of a spike-

distributions. To assess the significance of a window sSg(e) of
differential expression, a one-tailed empirical p-valsestimated
(according to the corresponding background distributiamyd
corrected for multiple testing, similar to the one-statalgsis.

in dataset comprising 162 full-length cDNA clones at two
concentrations, 0.00p% and 0.05%4, in the gene-dense regions
of chromosome 22 (Sasadi al., 2007).

The assignment of the significance to a window in case of the

differential expression analysis with both variants isistrated in
Supplementary Figures S5 and SBverall, both variants merely
differ in the window score calculation (independently frahe
used scoring function) and multiple testing correctioniffedential
expression analysis. Due to their difference in treatingvecse
probe behavior possibly leading to more robustness of naia

3 RESULTS AND DISCUSSION
3.1 Control of tiling array specific biases

We evaluate the capability @i | eShuf f | e to cope with the most
dominant sequence-specific affinity effects in tiling ardaya such
as GC content and nucleotide positioning of a probe. Assgiiat

we implemented and included both of them in our comparativemost probes show only non-specific hybridization, the dati@n

analyses.

2.3 Estimating z-scores

In addition to the statistical significance, a normalizedreacan be
reported for each processed window on the tiling array. &the
score distribution of the permuted windows is a sample frbm t
background distribution, a z-score of a windawis calculated by

@)

wherez is either the scoré. (w) or Sq(w), while 4 ando are
the mean and standard deviation of the permuted window score
respectively. To obtain a probe-wise measure, the probeamed

scorez(p) is defined as the median over the z-scores of all windows
enclosing the probg. In consequence, probe median z-scores maya1

be used as a normalized measure of probe expression in arder
visually inspect regions of interest.

2.4 Validation
A custom microarray based on a different manufacturer, litape

procedure, and probe length has been designed to validate th

tiling array results as an alternative experimental apgroaVe

between GC content of probe sequences and their detecteal sig
intensities % = 0.383, Figure la) indicates a measurable bias
that needs to be taken into account. Otherwise, intensitgd
analyses may favor windows simply due to their GC-richnéss.
signal smoothing as realized by windowing and calculating t
probe median z-scorgp), does not correct for the bias sufficiently
(R? = 0.266, Supplementary Figure S2a).

In theory, the use of affinity-based binning with respectie&C
content of probe sequences should reduce the generalwfieotas
the intensity of outliers and hence potentially expressezbegs
remains relatively stable. Supplementary Figure S2btitities a
strong reduction of the sequence-specific affinity bias witdrely
two GC content bins? = 0.037). Higher numbers of bins further
attenuate the correlation between GC content of probe segse
nd their probe median z-score, e@?, = 0.019 with three bins
gsee Figure 1b). In each case, the distribution of the astliglack
dots) differs from the original data only to a minor extehtcording
to these findings, three bins may already suffice to effigientl
attenuate this bias while retaining sufficiently large patation
bins.

1 https://earray.chem agil ent.conf earray/
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Fig. 2: Position-specific bias of every nucleotide in eaclhef25 positions within the probe calculated on probe sigrehsities (a) and

on probe median z-scores (b) by use of the Starr R packagé¢Zatal, 2010). The distances of probe intensities and probe median
z-scores are further normalized by dividing them by thedsaath deviation of the intensity and median z-score distidion respectively. The
probe median z-score is calculated as the median over theressof all windows enclosing the probe where z-scores estienated by

Ti | eShuf f | e using three GC content bins.

To illustrate the influence of position-specific effects afcle  starvation in GO or in G1 phase of the cell cycle. This traipseme-
nucleotide on the probe intensities, we use the R packag&ide variation study is based on the Affymetrix Human Tiling
Starr (Zacheret al, 2010) on probe intensities (see Figure 2a) 1.0 array sét It consists of 14 arrays where probes are tiled
and on probe median z-score@) after applyingTi | eShuffl e at approx. 35 bp intervals across the whole human genome with
with three GC content bins (see Figure 2b). Using Starr, wegaps of approx. 10 base pairBhe tiling array data is compared
can assess the position-specific bias of every nucleotideagh  to a custom array experiment with considerably lower FDR as a
of the 25 positions within the probe sequence for given probereference. This allows to assess the performance of theithlgs
scores (e.g, probe intensities or probe median z-scoresye M applied to real biological data and to perform statisticsadarge
precisely, for any position and nucleotide, it calculatesdifference  number of differentially expressed elements. In the sesgedario,
between the mean score of probes, where the nucleotide ligsat t we apply all three algorithms to a spike-in dataset of 162- ful
particular position within the probe sequence, and theatarean  length cDNA clones, which are hybridized at two, ten-foltfetient
probe score. To obtain comparable scales, the changes loé pro concentrations to an Affymetrix chr21/22 array (Sasdkil., 2007).
intensities and probe median z-scores are normalized bglil)y ~ In this scenario, positives and negatives are more cleaiyned
them by the standard deviation of their distributions. @ller than above, but the number of differentially expressedniate
even though position-specific biases are not explicitlysmered is comparably low and the extent of differential expresséom
in our framework, the combination of affinity-based perntiotzs complexity of the sample is more artificial.
and overlapping windows is capable of greatly reducing tjmosi For MAT and TAS, the expression and differential expression
specific biases in the tiling array data (Figure 2iQorrection  analysis is carried out independently from each othdighdiff
of this bias is not only a consequence of windowing, but alsoregions are obtained by intersecting intervals identifiesl a
depends on affinity-based permutations: Performing thdysisa differentially expressed with those intervals deemed &pressed’
on probe median z-scores after applyifig eShuf f | e with only in at least one of the compared biological stafésl eShuf f | e,
one GC bin and hence without affinity-based permutations doé  in contrast, takes regions found to be significantly exmésa at
sufficiently remove the bias (Supplementary Figure S3). least one of the compared states (one-state analysis)asfanphe

two-state analysis, and assesses differential expressiely on the

. . expressed segments and directly repbighdiff regions.

3.2 Comparison with MAT and TAS For one-state analyses, i.e., determination of expressgdns,
We evaluate the potential @i | eShuf f | e to detect differentially  parameters folf AS have been set following Kampet al. (2004).
expressed regions in comparisonNBT and TAS, which are the  Parameters foMAT as given in Johnsost al. (2006) are geared
two most widely used algorithms for analyzing expressidingi  towards ChIP-chip analysis and not suitable for expresaiatysis.
array data and are both applicable to non-replicated datehvw Upon inspection of positive control transcripts, we idBeti
frequently the case for expensive whole genome tiling erpants.
The three algorithms are evaluated in two different scesatn the
first, we apply the different algorithms to a tiling array asgt of 2 Array data and experimental details can be accessed at GE® (s
human foreskin fibroblasts (HFF) which are synchronizeddmym Supplementary Table S1).
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Fig. 3: ROC curve after evaluating the outcomeT#S, MAT, andTi | eShuf f | e applied to the GO/G1 transition of the cell cycle tiling
array dataset (a) and to the spike-in tiling array datasepeoing hybridizations of 0.00%& and 0.05%g cDNA (b) over a range of different
p/g-value cutoffs in the differential analysis. In the agltle dataset, the positive set is obtained by conductimgesaluating verification
experiments using a custom-designed microarray in tapicin the spike-in dataset, the positive set is compri§eelgions covered by the
162 full-length cDNA clones which were spiked in. Note tha¢ tvhiskers express the variation in the outcomdidf eShuf f | e after
five repetitions, i.e., smallest and highest value on th&ig-gr y-axis) for each differential significance threshalith the median result
shown on the solid line. The inlay in the right panel magniftessarea with an x-coordinate close to zero (same units os).aRee to the
intersection of high and differential intervalsghdiff at fixed parameters for high, some intervals are never ifiethtand thus the curves
do not reach (1,1). Sensitivity versus FDR curves are gireSuipplementary Figures S7.

optimal parameters faVAT as the same or analogous values as used Analysis of differential expression was performed with saene
for TAS. In summary, we sdbandwidth= 35, i.e. on average the parameters, excepandwidth= 150 for TAS andVAT and 100 000
probe intensities are smoothed by calculating the Hodggsrlan  permutations fofTi | eShuf f | e, both aiming at accommodating
estimator over three probes, and the maximal gap betweetivpos the more rugged nature of the expression difference sitpgf¢ld
probes to be included in a positive intervabxgap = 40. The change).
minimal length or minimal probe count of segments to be rbr For the whole genome scenarfoghdiff intervals were generated
were set tominrun = 90 and minprobe = 3, for TAS and  with all three tools over a range of g-value and p-value dsitof
VAT, respectively. Perfect match (PM) and mismatch (MM) proberespectivelyThe custom microarray was run in triplicates for each
intensities were utilized iTAS using an intensity threshold of 150. of the biological conditions of the tiling array experimetd was
For expression analyses witMAT, which uses only PM used as a reference to estimate sensitivity, specificity, fatse
intensities, a p-value threshold is seft65 which yielded the best discovery rate (FDR), defined as follows:

results in terms of sensitivity and FDR in the analysis of ¢e# e TP

cycle tiling array dataset. P-value cutoffs were testetiénringe of sensitivity= —- 2
10719 t00.05. Ti | eShuf f | e was applied using only PM probes, Fp

the arithmetic mean trimmed by maximal and minimal value as specificity=1 — N (3)
scoring function, 10000 permutations, and a g-value ttulesof rp

0.05. Ti | eShuf f1 e was applied using window sizes, 20, 200, FDR= ———— 4

and 400 and different numbers of GC bins ranging from 1 to 9, to FP+TP

assess the effect of these two parameters. The intermedizdew The number of true positives (TP) corresponds to the number

size of 200 was chosen in order to include an adequate nunfiber @f nucleotides which argighdiff in the tiling array analysis and
probes in the calculation of the window scoigsand Sy, and to  overlap with a probe that was found significantly differafiyi
ensure that the majority of known exons is spanned by ondesing expressed in the corresponding custom microarray expatime
window. The median exon length of known protein-coding genes isThe number of false positives (FP) is defined as the number of
118bp, while 90% of the exons are shorter than 228bp acaptdin  those nucleotides ihighdiff intervals that overlap a probe that is
GENCODE version 3c (Harrowt al., 2006). not significantly differentially expressed in the custoncroarray
experiment. The number of positive nucleotides (P) is ddfasthe




sum of all nucleotides gbrobes that are significantly differentially
expressed in the custom microarray experiménD® < 0.05),

artificial and different from real expression perturbatgindies as
much less noise is observed (see Supplementary Figure $22 fo

while the number of negative nucleotides (N) corresponds tcexemplary region).

the sum of all nucleotides of probes that are not signifigantl
differentially expressed in the custom microarray experm
(FDR > 0.05).

The results for each algorithm are illustrated as receiperating
characteristic (ROC) curve and as a function of sensitivéysus
FDR (seeFigure 3a and Supplementary Figure s7&®verall,

Ti | eShuf f | e in both tested variants A and B clearly outperforms
the two other algorithms. For example, at a maximal FDR@,
both variants ofli | eShuf f | e yield a sensitivity of aroun@3%,
which is an approximately 4-fold and 11-fold increase coraga
to TAS and MAT, respectively. BothTi | eShuf f | e variants
differ only to a minor extent from each other but variant B is
generally more restrictive and hence recommended as tlaeltef
choice.Evaluating the three algorithms based on counts of interval
rather than on nucleotides yields concordant results vkghlatter
(Supplementary Figure S8).

In this test scenario, we also investigated the influencehef t
number of GC bins and different window sizes on the ROC curve

Due to the resampling step Ti | eShuf f | e, results may vary
between runs with different random number generator sedfs.
therefore plot the median of five different runs where the bem
of permutations was set to 10 000 for the one-state and 1060000
the two-state analysis, and illustrate minimal and maxivadlies
as whiskers in x and y direction. Only negligible variatiam i
sensitivity and FDR is found for the most restrictive sigrafice
thresholds. This is an expected consequence of increaaitaipility
in sampling when the tails of the background distributioe ar
estimated. Hence, the numbers of required permutation 60Q
and 100000 for the one-state and two-state analysis, risggc
mark a sufficient trade-off between running time and vasiaiin
sensitivity and false discovery rate. Due to the high degree
variation observed for fold changes, the tails of the bawmkgd
distributions for two-state analysis must be well estirdatgth
an increased number of permutationde adapted the code for
the two-state analysis to ensure that a sufficiently largebear

of permutations can be computed within a feasible time scaie

The worst performance is observed for one GC bin. This shows single 2.66GHz 64-Bit Intel Xeon CPU, a one-state analgbis

that probes with low GC content tend to exhibit lower signal
intensities than probes with high GC content and hence a® le
likely to be found in the right tail of the signal intensitystfibution

(Supplementary Figure S16). A number of three GC bins result
in higher sensitivity at similar FDR, while increasing thenmber

of GC bins further yields only minor improvements at high FDR
values. Following Occam’s razor, we hence select the simple

a single array under the given parameters took around 12shour
while a single two-state analysis took approximately 9h aad
with variant A and B, respectively. Since an array comprises
sufficient information to sample from the background disttion

and hence eliminate array-wide effects, the arrays can blyzed
independently from each other.

model, and recommend to use three GC bins as the defaultdor th

one-state analysis. A window size of 400 bp leads to the b@&€ R
curve, but exhibits to fail in exon boundary detection dixsat in
section 3.3 (Supplementary Figures S17-S20). A window efze
20 bp delivers only very fevaighdiff regions, resulting in very low
sensitivities. Thus, a window size of 200 bp seems to be tlimap
trade-off between good sensitivity and good recovery ofigrtron
structures at low FDR values.

In similar manner, we estimated the sensitivity, specificind

3.3 Detection of transcript structures

One of the advantages of tiling arrays over conventionatesgioon
arrays is information on the intron—exon-structure of $raipts,

as probes are tiled in an unbiased way across the genome. We
manually inspected a small set of genes that are known to be
cell cycle regulated (Bar-Josepdt al., 2008). In several cases,
we observed thafi | eShuf f | e is capable of detecting a higher
fraction of exons of a transcript &gghdiff and identifies the intron-

FDR in case of the spike-in dataset. Therein, the positite seexon boundaries more accurately tHakS or MAT. Supplementary

comprises all genomic regions covered by the 162 full-lec@NA
clones, i.e. 877 exonic regions, which were spiked in at tifferé:nt
concentrations. The set of negative regions comprisesnadjue

Figure S21 displays examples of known cell cycle regulattkg
where the three algorithms perform remarkably different.
To substantiate this finding and to exclude that the above

protein coding exons annotated in GENCODE version 3c that donentioned observation is merely a consequence of the swiea

not overlap with any positive region. The GENCODE annotatio

sensitivity of Ti | eShuf f | e, we studied the accuracy in detecting

was converted from human genome version hgl8 to hgl7 using thintron-exon boundaries on a global scale.

UCSC liftover tool. The number of true positives (TP) cop@sds
to the number of nucleotides in positive regions which ligidiff

in the tiling array analysis. The number of false positivER) is
defined as the number of nucleotides in negative regionshndrie

in highdiff in the tiling array analysis. Accordingly, the number
of positive nucleotides (P) is defined as the sum of all nuides

in positive regions, while the number of negative nuclezgi@N)
corresponds to the sum of all nucleotides in negative regidhe
resulting ROC curves are depicted in Figure 3b and Supplamen
Figure S7b. In summary, all three methods recover the éifféally

All unique exons of all protein-coding transcripts annetht
in GENCODE version 3c (Harrovet al, 2006) were extracted,
resulting in 293 000 annotationslighdiff intervals of the GO/G1
transition of the cell cycle dataset were computed with lalee
methods. To increase comparability, significance threkhelere
adjusted to yield comparable FDR values, i.e. 18% FDR in case
of TAS (q=0.05), 17% in case oVAT (p=1e-6), and 19% and
18% in case ofTi | eShuf f | e variant A (g=0.05) and variant
B (g=0.1), respectively.For each method, the overall reported
nucleotides identified asighdiff in the GO/G1 transition of the cell

expressed exons as all reach high sensitivity values at higleycle dataset including the absolute and relative basecpa@rage

specificity or low FDR values. HoweveT,i | eShuf f | e reaches

with GENCODE version 3c annotations is given in Supplenienta

maximal sensitivity at comparable FDR values. Even though arable S5. The absolute number of reported nucleotides agid th

spike-in experiment allows precisely define TP and FP ratas,

length greatly differs among the methods (see Supplementar
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Table S3). An analogous analysis for high intervals is shawn
Supplementary Tables S4 and S2.

We calculated the overlap of all tiling array intervédsther highly
expressed intervals drighdiff intervals)with all annotated exons
no matter of the annotated reading strand direction for gxsince
strand information cannot be inferred from the Affymetrixrdan
Tiling 1.0 array setfFor each overlapping pair of tiling array interval
and annotated exon, the genomic distances between theethfer

clearly advantageous over the other methods that rely drepngse
extension only.

We finally investigated whether the observed differences in
detecting boundaries dfighdiff exons are biased by the selected
significance thresholds. Over a range of g-value thresholds
Ti | eShuf fl e displays only minor variation in the ecdf of
distances to exon boundaries and nearly constant resufts fo
distances below the window size (see Supplementary Figst@s

and annotated’- and3’-ends, respectively, are summarized in anand S13). In contrast, the ecdf GAS and MAT vary strongly

empirical cumulative distribution function (ecdf). We dotronly
include the pair with minimal distance but consider all daps
of several tiling array intervals with one exon, as well ab al
overlaps of several exons with one tiling array intervaltia ecdf.
This penalizes the distance distribution in cases whereegog is
represented by many small tiling array intervals. It alsogbees
intronic tiling array intervals that partly overlap with axon.Due
to the higher sensitivity ofi | eShuf f | e, the number of regions
included in this analysis is significantly higher compar@the other
methods. We therefore normalize the ecdf to the total nurober
overlaps of the respective method.

Ti | eShuf f | e clearly outperforms the other two methods in
detecting exon-intron boundaries lghdiff data (Figure 4). The
results are more balanced for expression analysis, whgsinds
a higher proportion of exons boundaries with an offset betlogv
window size ofTi | eShuf f | e, while overall, Ti | eShuffl e
identifies a higher proportion of boundaries (Supplemeriggure
S9). Of all window sizes tested fofi | eShuffl e, 200 bp

between the different thresholds (see Supplementary €$g844
and S15) and for significance threshold below OBS and MAT
obtain significantly lower accuracies thdm| eShuf f | e at any
g-value threshold.

4 CONCLUSION

Most published tiling array studies have focused on disgove
of novel expressed transcripts rather than unbiased dw®teof
differential expression and the choice of software for #iteel task

is limited. Variants of thenaxgap/minruralgorithm (Kampeet al.,
2004; Royceet al,, 2005) like TAS require dataset-specific cutoff
parameters anblAT has been developed for ChIP-chip data analysis
and requires adapted parameters to be applicable to ekpress
tiling array data. Both hampers the applicability of thesetimds

in different scenarios without manually inspecting a snsafl of

performs best. A window of 400 bp further extends exons and axpected positive regions.

window size of 20 bp, i.e. comprising just one probe, shartmns
remarkably. Different GC bins for the one-state analysiaakthave
a considerable impact on exon boundary detection (Supplme
Figure S17-S20).

We have presentedi | eShuffle, a method specifically
designed for expression and differential expression aimlpf
tiling array data. It implements a statistical approach &tedt
expression or differential expression in terms of diffeen

Supplementary Figures S10 and S11 further illustrate thdrom the background distribution that avoids any intenséhated

orientation in the offset to annotated exons. Both, for egpion
and differential expression analysis,| eShuf f | e has a tendency
to extend the reported region beyond the exon bounduiiitasthe
largest extension observed for long window sizes as i.e. B0
Again, if the window includes just one probe (window size et

parametersTi | eShuf f | e reduces the most dominant tiling array
biases using an affinity-dependent permutation in conjanetith a
windowing approach. A related resampling approach has bsean
by Guttmanet al. (2009), which does however not consider probe
affinities and is not applied to detection of differentiapeassion.

20 bp), Ti |l eShuffl e tends to shorten exons (Supplementary We comparedri | eShuf f | e, TAS, and MAT in two different

Figure S17-S20).TAS and MAT tend to find exons shorter than
annotated, caused by a comparable offset at 5'- and 3'-lzoiewd
in the case of expression analysis (Supplementary Figuf.S1
Boundaries of differentially expressed exons are hardigaed
correctly byTAS and VAT, but again with a tendency to shortening
(Supplementary Figure S11). This bias in the offset to theecd
exon boundary is not unexpected: Considering windows djtlen

test scenarios. In the cell cycle dataset, where a custcey aras
used for validiation,Ti | eShuf f | e achieved significantly lower
false discovery rates under equal sensitivities. Thisstestario has
the advantages of building on a biologically meaningfuleripent
with the associated noise in expression signals and trighscre
complexity and of calculating sensitivity and specificity a large
number of intervals. However, the custom array data has @R FD

200, Ti | eShuf f | e will always extend expressed exons smaller itself, which is better controlled and significantly lowéan for the

than the window size, which constitutes a significant proporof

tiling array, but still providing a surrogate for a true nefiace.

exons in the human genom&AS and MAT extend regions probe- In the second scenario, the algorithms are compared using a
wise and thus can detect exons more precisely if the sigmaksc spike-in dataset (Sasakit al, 2007). The differences between
the exon is smooth. On the other hand, exon signals, stronglyhe three algorithms are smaller than in the previous saenar
affected by sequence-specific affinities or cross-hyhaithn across  Ti | eShuf f | e, however, is the only one obtaining sensitivities
the exon, may prevent correct extension and lead to fragatient above 50%. The spike-in experiment has the advantage ofaa cle
into several intervals or shortening. This may explain, whgrall, definition of positve and negative intervals for calculgtsensitivity

Ti | eShuf fl e identifies a greater proportion of boundaries. and specificty. However — though large for a spike-in expenit-
Probe-wise extension largely fails in detectimghdiff exons. The 162 differentially expressed elements is a small numbeipesed to
expression difference signal is rugged and can reverss sighin the cell cycle experiment, the noise is low, the basal exgiwadevel
one exon.Ti | eShuf f | e, which combines a robust windowing is already high and a ten-fold differential expression argjreffect
approach and scoring function with “window-wise” extemsias in biological experiments. The scenario is thus ratheficidl.
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Fig. 4: Empirical cumulative distribution function of thbsolute distances betweéf: (a) and3’-end (b), respectively, of exon and reported
interval for all overlapping pairs of unique GENCODE annethexons and reported intervals. Overlapping here means\anlap in
genomic coordinates ignoring strand. Only every 10th datatps drawn as a symbol. For each method, the s&igidiff intervals in the
GO/G1 transition of the cell cycle tiling array dataset isdias input dataset. The significance thresholds of the the¢tgods for differential
analysis were adjusted to obtain similar FDRs as estimagéatd using the custom microarray, i.e., 18% FDR in cas€AS (g=0.05),
17% in case oVAT (p=1e-6), and 19% and 18% in cas€lofl eShuf f | e with variant A (q=0.05) and variant B (q=0.1), respectivdljie
absolute number of overlaps is 15835 and 13479 WwitheShuf f | e and variant A and B, respectively, 4337 witiAS, and 2381 with
VAT.

Apart from the ROCsTi | eShuf f | e clearly outmatche3AS calibration of transcriptome data from RNA-Seq and tilimgagis. BMC Genomics,
andMAT in the recovery of transcript structures by identifying the 11 383.
intron-exon structure more accurately. However,| eShuf f1 e ~ BarJoseph, Z, Siegiried, Z., Brandeis, M., Brors, B,, X Eils, R., Dynlacht, B. D.
. . . & Simon, I. (2008) Genome-wide transcriptional analysishef human cell cycle
fails to detect very short exons because of the wmdowmgcmm identifies genes differentially regulated in normal andcearcells. Proc Natl Acad
Additionally, Ti | eShuf f | e can incorporate replicate experiments sciu s A,105(3), 955-960.
and supports input data as custom-formatted files and henueti  Benjamini, Y. & Hochberg, Y. (1995) Controlling the Falsesbovery Rate: A Practical
dependent on any technology or tiling array design and csa al and Powerful Approach to Multiple Testingournal of the Royal Statistical Society.

. i . . . Series B (Methodological)57 (1), 289-300.
be applied to ChIP-chip data by selecting a larger windowe.siz o . """ 51010\ Royce, T. E.. Rozowsky, J. S., Urtsark., Zhu, X., Rinn, J. L.

T.he required computation time af | eShuf fl g.is considerably Tongprasit, W., Samanta, M., Weissman, S., Gerstein, M. §d8n M. (2004)
higher than foilTAS andVAT. However, it is negligible compared to Global identification of human transcribed sequences withoge tiling arrays.
efforts for the genome-wide tiling array experiment andstdoes Science,306(5705), 2242-2246.
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