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ABSTRACT
Motivation: Tiling arrays have been a mainstay of unbiased
genome-wide transcriptomics over the last decade. Currently
available approaches to identify expressed or differentially expressed
segments in tiling array data are limited in the recovery of the
underlying gene structures and require several parameters that are
intensity-related or partly dataset-specific.
Results: We have developed TileShuffle, a statistical approach
that identifies transcribed and differentially expressed segments
as significant differences from the background distribution while
considering sequence-specific affinity biases and cross-hybridization.
It avoids dataset-specific parameters in order to provide better
comparability of different tiling array datasets, based on different
technologies or array designs. TileShuffle detects highly and
differentially expressed segments in biological data with significantly
lower false discovery rates under equal sensitivities than commonly
used methods. Also, it is clearly superior in the recovery of exon-
intron structures. It further provides window z-scores as a normalized
and robust measure for visual inspection.
Availability: The R package including documentation and examples
is freely available at http://www.bioinf.uni-leipzig.de/

Software/TileShuffle/.
Contact: joerg.hackermueller@ufz.de
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
During the last decade, tiling arrays have been a mainstay of
unbiased transcriptomics (e.g., Kapranovet al., 2002; Rinnet al.,
2003; Bertoneet al., 2004) and continue to contribute to novel
findings. Tiling arrays have recently been applied, e.g., inthe
discovery of novel long non-coding RNAs (Guttmanet al., 2009),
to the identification of spatio-temporal patterns of gene expression
(Spenceret al., 2011), to the characterization of the transcriptome

∗to whom correspondence should be addressed

in 30 distinct developmental stages as well as in 25 cell lines of
Drosophila melanogaster(Graveleyet al., 2011; Cherbaset al.,
2011), and to the identification of a “large complement of novel
loci” with stage-specific expression inCaenorhabditis elegans
(Wang et al., 2011). High-throughput sequencing methods have
recently shown distinct advantages over array-based approaches
(Agarwal et al., 2010; Bradfordet al., 2010). However, due to
the availability of large tiling array reference datasets,e.g., from
ENCODE and a clear statistical understanding on how to model
differential expression in microarray data, tiling arraysare an
important experimental approach in transcriptomics, and tiling array
data analyses is a relevant topic in computational biology.

One of the most widely used methods in tiling array expression
analysis was introduced by Kampaet al.(2004) and is implemented
in the Tiling Array Software (TAS). In brief, the local expression
levels of probes are estimated by calculating the pseudo-
median or Hodge-Lehmann estimator over intensities of probes
within genomic distance ofbandwidth. Transcribed segments are
collections of expressed probes, i.e., probes with a smoothed
intensity above a given threshold, with maximal genomic distance
of maxgapand minimal length ofminrun. TAS extends the method
of Kampa et al. by estimating the significance of differential
expression using a Wilcoxon signed-rank test. It tests for significant
changes of probe intensities among states applied to local windows
of given width centered around each probe. Hence, p-values for
differential expression are assigned to each probe.

More recently, Johnsonet al. introduced an approach that models
the expected probe behavior. It is available in the toolMAT (Johnson
et al., 2006). Originally, it was designed to detect regions enriched
by ChIP-chip but has also been applied to detect transcriptional
activity (Lee et al., 2009; Kadeneret al., 2009). In contrast to
TAS, MAT uses a mixture model to normalize probe intensities
by estimating the expected binding affinity on the basis of the
composition and copy number of their nucleotide sequence on
the corresponding genome. To identify (differentially) expressed
probes, the score over all normalized intensities of probeswithin a
local window, given by abandwidthparameter, is compared to a null
distribution. This distribution is composed of all non-overlapping
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window scores that can be calculated on the same array or the
array in a different state during expression or differential expression
analysis, respectively.Hence, it uses a two-step approach with
different background distributions to normalize the probeintensity
and assess its significance within a probe-centered window.In the
detection of (differentially) expressed segments, positive probes
are joined if their genomic distance is below a givenmaxgap
parameter and segments enclosing more thanminprobeprobes are
then reported.TileProbe is a variant ofMAT, which models
residual probe effects that cannot be explained by theMAT model
by incorporating publicly available datasets (Judy & Ji, 2009).
TileProbe has been successfully applied to detect enriched
motifs in ChIP-chip tiling array data, but in contrast toMAT no
application to detect differential expression has been reported.HAT
uses a hypergeometric distribution to assess the probability to
observe a specific number of probes within a window. It is less
sensitive but more specific thanMAT and cannot directly be used
to detect differential expression (Taskesenet al., 2010). Lastly,
HMMTilingmodels probe-specific effects by a normal distribution
defined for each probe individually compared to a control group
(Li et al., 2005), but requires many samples in order to estimate
the variance for a probe correctly which may not be availablefor
arbitrary types of tiling arrays.
gSAM, is a powerful framework for analyzing differential

response of time series tiling array data (Ghoshet al., 2007). It
generalizesSAM (Tusheret al., 2001) from a gene-centric view
to genomic intervals in an underlying piece-wise model. Under
this model, the time series is subdivided into logical segments
and differential changes are analyzed on each of these segments
separately.gSAM requires replicates which are often not available
for whole genome tiling data. Another method suitable to detect
differential expression on tiling array data isTileMap which
assesses the significance of each probe by averaging over moderated
t-statistics within a pre-defined window size (Ji & Wong, 2005).
Kechriset al. (2010) propose the averaging of p-values instead of
test statistics providing a more flexible framework to evaluate more
complicated experimental designs and to overcome the problem that
the length of a sliding window may not be large enough to assume
normal distribution. However, both methods again require replicates
because probe-wise expression changes are assessed by hypothesis
tests. An HMM-based approach was introduced by Munchet al.
(2006) that adaptively models tiling array data on given annotation
and subsequently predicts expression on the genomic sequence. It
does not requiread-hoc parameters but is limited to expression
analysis and hence cannot predict differential expression.

Huber and colleagues presented a powerful segmentation
approach for tiling array data, which controls for probe-specific
effects by normalizing probe-wise intensities to a reference
experiment with genomic DNA (Huberet al., 2006). Recently,
Karpikov et al. (2011) introduced a wavelet transformation to tiling
array ChIP-chip data in order to discriminate regions of activity
from noisy data.

Our aim is to use tiling array data for identifying novel ncRNAs,
which are differentially expressed in response to criticalsignaling
pathways or cellular processes. For this purpose, a data analysis
method is required to (i) analyze differential expression in tiling
array data for genome-wide approaches (ii ), allow the latter
without using replicate tiling array experiments due to limitations
in the availability of sample material, (iii ) identify boundaries

of differentially expressed segments sufficiently preciseto allow
transcript annotation, and (iv) avoid the use of data-set specific
parameters which may hamper analyzing differential expression
between arrays of different experiments. In our opinion, none of the
state-of-the-art methods sufficiently fulfills all these requirements.

Here, we presentTileShuffle, a novel tiling array analysis
approach that identifies transcribed and differentially expressed
segments in terms of significant differences from the background
distribution by using a permutation test statistic. Significance is
assessed on minimal expected transcriptional units ratherthan on
a single-probe level.TileShuffle does not require any dataset-
specific parameters, e.g., intensity-related thresholds or parameters
concerning collection of expressed probes.This is particularly
favorable since in common tiling array experiments neitherspike-
ins to control the FDR (as in Kampaet al. (2004)) nor sufficiently
large positive and negative sets to optimally adjust thesead-hoc
parameters might be available.

We compareTileShuffle to TAS and MAT in analyzing
differential expression in one human whole genome tiling array
datasetsand one spike-in dataset (Sasakiet al., 2007). TAS is
the most widely used tool in tiling array expression analysis
and althoughMAT was originally designed for ChIP-chip data,
it was successfully applied to detect transcriptional activity. All,
TileShuffle, TAS, and MAT, do not require replicates to
detect differentially expressed transcripts which is in particular
favorable for studies with limited material and costs. At the same
false discovery rate,TileShuffle achieves significantly higher
sensitivities than the other methods. Also, it detects boundaries of
differentially expressed exons with higher precision thanTAS and
MAT.

2 METHODS

2.1 Expression detection
To determine transcribed segments in tiling array data, we apply
a statistical approach that differentiates expression signals from
the background distribution under consideration of commontiling
array biases. Given the array design of nearly uniformly distributed
probe sequences over the non-repetitive genome, hybridization
affinity and hence signal intensity is highly dependent on the
probe sequence itself, i.e., nucleotide composition and nucleotide
positioning (Royceet al., 2007; Johnsonet al., 2006). Analogously,
in absence of specific transcripts, a detected probe signal may
solely originate from non-specific hybridization, e.g., background
noise and cross-hybridization, causing single spikes in the tiling
array data. Here, cross-hybridization refers to the hybridization of
DNA/RNA fragments to probe sequences that are similar or even
equal to

Handling common tiling array biases: Even though transcripts are
expected to be detected by several neighboring probes in similar
scale, non-specific hybridization and sequence-specific effects like
nucleotide composition and positioning can largely increase the
detected signal intensity of single probes while having no effect
on the neighboring probes and hence roughen the signal across the
tiling array. For example, probes with high GC content tend to
exhibit increased signal intensities compared to probes with low GC
content. In addition to the GC content, Royceet al. highlighted the
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Fig. 1: (a) Boxplot of probe intensities on a tiling array fordifferent GC content in the probe sequence. The relative frequency of probes
with each GC content bin on the tiling array is shown in the overlay graph (red solid line). (b) Boxplot of probe median z-scores for different
GC content in the probe sequences. The probe median z-score is defined as the median over the z-scores of all windows enclosing the probe
where z-scores were estimated byTileShuffle using three GC bins during permutation. Vertical dotted redlines display the boundaries
of different bins while solid red lines indicate the relative frequency of probes with the respective GC content in theirbin.

influence of position-specific effects of each nucleotide onthe probe
intensities, e.g., higher average intensities of probes with Gs towards
the probe start or Cs towards the probe end (Royceet al., 2007).
These sequence-specific biases introduce a disparity in thebinding
affinity among different probe sequences, subsequently denoted as
sequence-specific affinity.

We therefore assess the significance of expression on windows of
lengthl with respect to the background distribution rather than on
single probes. A scoreSe(w) is assigned to each sliding window
w by applying a scoring function (arithmetic mean trimmed by
maximal and minimal value or median) over the signal intensities
of all probes within the window. Due to the robustness of the
two scoring functions, window scores are less susceptible to signal
intensity variation within a given window originating solely from
outliers. In addition, probes are subdivided into affinity bins with
similar expected sequence-specific affinity and bins are processed
independently from each other. Accordingly, intensities of probes
that belong to different affinity bins must not be interchanged.
Otherwise, the expression analysis might favor windows simply due
to the sequence compositions of their probes, e.g., high GC content.

Assessing significance of expression: In order to estimate the
significance of a window scoreSe(w), we repeatedly permute all
probe intensities across the array while interchanging only those
that belong to the same sequence-specific affinity bin, recompute
the window scores, and compare them with the original ones.We
use random permutations of probe intensities to remain independent
of any annotation or underlying gene structure.

By counting the number of permuted windows with higher
score, we estimate empirical p-values of windows. Following
a Benjamini-Hochberg multiple testing correction (Benjamini &
Hochberg, 1995), all windows of high significance, i.e., theones
with corrected p-values (q-values) below a given threshold, are
deemed ‘expressed’. Since permutations necessitate sufficiently
large groups, the binning is only based on the GC content of each

probe sequence as the most dominant bias on hybridization affinity
(see Figure 1a). In accordance with the findings of Johnsonet al.
(2006), the copy number of probes, i.e., number of perfect matches
of the probe sequence to the genomic sequence and hence the extent
of potential signal overlay, showed only a minor impact on signal
intensity (see Supplementary Figure S1a). We therefore refrain
from controlling for copy number in favor of larger bins during
permutation. The described algorithm to detect expressed segments
in tiling array data is illustrated in Supplementary FigureS4.

2.2 Differential expression detection
In many cases, tiling array data is available from differentcellular
states or other biological conditions and one might be interested in
structural changes in the expression between different conditions.
To avoid that signal intensity variation at the detection limit is
classified as differential expression, we require that differentially
expressed intervals must also be significantly expressed relative
to the background distribution in at least one of the investigated
conditions, and call these intervalshighdiff. This is analogous to the
frequently performed unspecific filtering in conventional microarray
data analysis.

Assessing significance of differential expression: On the contrary
to one-state expression analyses, signal intensities are normalized
using a quantile-normalization across each tiling array inboth
considered conditions (Bolstadet al., 2003). Expression shifts are
then measured in terms of log-fold changes (i.e. differences of
log signals) between probe intensities in both cellular conditions.
In consequence, sequence-specific effects cancel out and affinity
classification as it is done for expression detection is rendered
unnecessary (see Supplementary Figure S1b).Fold changes assume
constant variance among probes, which might not be valid in any
case. However, if replicate data is not available, fold changes are the
only applicable measure for differential signal changes. Otherwise,
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it is possible to use moderated t-statistics inTileShuffle, an
empirical Bayes method to shrink the probe-wise variance towards
a common value. Hence, it is preferable over ordinary t-statistics
(Witten & Tibshirani, 2007).

Due to the two-tailed distribution of fold changes, the estimation
of p-values needs to be adapted. We implemented and compared
two different variants to detect significant changes. In variant A,
window scoresSd(w) of differential expression are calculated
following the same outline as described for the expression analysis
with the exception that two-tailed p-values are estimated in order
to regard both regulation directions, up and down. The multiple
testing correction is then adjusted to account for these additional
comparisons.In variant B, it is assumed that entire windows
represent the smallest unit of expression and are either constant,
or up- or downregulated between two conditions. Converse
behavior of neighboring probes is considered a consequenceof
non-specific hybridization.In order to correct for this bias, the
presumed direction of regulation is initially assigned to each
window w on the basis of the sign of its expression score
Se(w). Subsequently, all converse probes, i.e., probes with
negative log-fold change within positive windows or vice versa,
are ignored and neither permuted nor incorporated into the score
calculation for differential expression. Consequently, positive
and negative windows are compared to different background
distributions. To assess the significance of a window scoreSd(w) of
differential expression, a one-tailed empirical p-value is estimated
(according to the corresponding background distribution)and
corrected for multiple testing, similar to the one-state analysis.
The assignment of the significance to a window in case of the
differential expression analysis with both variants is illustrated in
Supplementary Figures S5 and S6.Overall, both variants merely
differ in the window score calculation (independently fromthe
used scoring function) and multiple testing correction in differential
expression analysis. Due to their difference in treating converse
probe behavior possibly leading to more robustness of variant B,
we implemented and included both of them in our comparative
analyses.

2.3 Estimating z-scores
In addition to the statistical significance, a normalized score can be
reported for each processed window on the tiling array. Since the
score distribution of the permuted windows is a sample from the
background distribution, a z-score of a windoww is calculated by

z(w) =
x − µ

σ
, (1)

wherex is either the scoreSe(w) or Sd(w), while µ andσ are
the mean and standard deviation of the permuted window scores,
respectively. To obtain a probe-wise measure, the probe median z-
scorez(p) is defined as the median over the z-scores of all windows
enclosing the probep. In consequence, probe median z-scores may
be used as a normalized measure of probe expression in order to
visually inspect regions of interest.

2.4 Validation
A custom microarray based on a different manufacturer, labeling
procedure, and probe length has been designed to validate the
tiling array results as an alternative experimental approach. We

used theAgilent eArrayprocedure1 to ensure that probe-specific
biases are minimized and designed probes of 60 mer length forboth
reading directions of allhighdiff regions that have been identified
by TileShuffle and TAS. We, furthermore, verified that the
custom microarray also covers an unbiased sample of the regions
identified byMAT (Supplemental Table S6). In addition, the custom
microarray also includes probes for genomic regions, determined
independently of the tiling array experiment: Probes for all human
mRNAs, for genomic regions predicted to contain a conserved
secondary structure identified by RNAz (Washietlet al., 2005) or
Evofold (Pedersenet al., 2006), and known ncRNAs from public
databases.

The custom microarray was run in triplicates and differentially
expressed probes were identified using the statistical software
package R and Bioconductor (Gentlemanet al., 2004). Expression
intensities were quantile normalized (Bolstadet al., 2003) and a
linear model was fitted using theLimma R package (Smyth, 2005).
Reliable variance estimations were obtained by empirical Bayes
moderated t-statistics and the false discovery rate was controlled
by Benjamini-Hochberg adjustment (Benjamini & Hochberg, 1995).
A probe on the custom microarray is called significant in casethe
adjusted p-value is found to be< 0.05.

In addition to the custom microarray, we tested the performance
of TileShuffle, TAS and MAT on the outcome of a spike-
in dataset comprising 162 full-length cDNA clones at two
concentrations, 0.0055µg and 0.055µg, in the gene-dense regions
of chromosome 22 (Sasakiet al., 2007).

3 RESULTS AND DISCUSSION

3.1 Control of tiling array specific biases
We evaluate the capability ofTileShuffle to cope with the most
dominant sequence-specific affinity effects in tiling arraydata such
as GC content and nucleotide positioning of a probe. Assuming that
most probes show only non-specific hybridization, the correlation
between GC content of probe sequences and their detected signal
intensities (R2 = 0.383, Figure 1a) indicates a measurable bias
that needs to be taken into account. Otherwise, intensity-based
analyses may favor windows simply due to their GC-richness.A
signal smoothing as realized by windowing and calculating the
probe median z-scorez(p), does not correct for the bias sufficiently
(R2 = 0.266, Supplementary Figure S2a).

In theory, the use of affinity-based binning with respect to the GC
content of probe sequences should reduce the general effectwhereas
the intensity of outliers and hence potentially expressed probes
remains relatively stable. Supplementary Figure S2b illustrates a
strong reduction of the sequence-specific affinity bias withmerely
two GC content bins (R2 = 0.037). Higher numbers of bins further
attenuate the correlation between GC content of probe sequences
and their probe median z-score, e.g.,R2 = 0.019 with three bins
(see Figure 1b). In each case, the distribution of the outliers (black
dots) differs from the original data only to a minor extent.According
to these findings, three bins may already suffice to efficiently
attenuate this bias while retaining sufficiently large permutation
bins.

1 https://earray.chem.agilent.com/earray/
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Fig. 2: Position-specific bias of every nucleotide in each ofthe 25 positions within the probe calculated on probe signalintensities (a) and
on probe median z-scores (b) by use of the Starr R package (Zacher et al., 2010). The distances of probe intensities and probe median
z-scores are further normalized by dividing them by the standard deviation of the intensity and median z-score distribution, respectively. The
probe median z-score is calculated as the median over the z-scores of all windows enclosing the probe where z-scores wereestimated by
TileShuffle using three GC content bins.

To illustrate the influence of position-specific effects of each
nucleotide on the probe intensities, we use the R package
Starr (Zacheret al., 2010) on probe intensities (see Figure 2a)
and on probe median z-scoresz(p) after applyingTileShuffle
with three GC content bins (see Figure 2b). Using Starr, we
can assess the position-specific bias of every nucleotide ineach
of the 25 positions within the probe sequence for given probe
scores (e.g, probe intensities or probe median z-scores). More
precisely, for any position and nucleotide, it calculates the difference
between the mean score of probes, where the nucleotide is at this
particular position within the probe sequence, and the overall mean
probe score. To obtain comparable scales, the changes of probe
intensities and probe median z-scores are normalized by dividing
them by the standard deviation of their distributions. Overall,
even though position-specific biases are not explicitly considered
in our framework, the combination of affinity-based permutations
and overlapping windows is capable of greatly reducing position-
specific biases in the tiling array data (Figure 2b).Correction
of this bias is not only a consequence of windowing, but also
depends on affinity-based permutations: Performing the analysis
on probe median z-scores after applyingTileShuffle with only
one GC bin and hence without affinity-based permutations does not
sufficiently remove the bias (Supplementary Figure S3).

3.2 Comparison with MAT and TAS
We evaluate the potential ofTileShuffle to detect differentially
expressed regions in comparison toMAT andTAS, which are the
two most widely used algorithms for analyzing expression tiling
array data and are both applicable to non-replicated data which is
frequently the case for expensive whole genome tiling experiments.
The three algorithms are evaluated in two different scenarios. In the
first, we apply the different algorithms to a tiling array dataset of
human foreskin fibroblasts (HFF) which are synchronized by serum

starvation in G0 or in G1 phase of the cell cycle. This transcriptome-
wide variation study is based on the Affymetrix Human Tiling
1.0 array set2. It consists of 14 arrays where probes are tiled
at approx. 35 bp intervals across the whole human genome with
gaps of approx. 10 base pairs.The tiling array data is compared
to a custom array experiment with considerably lower FDR as a
reference. This allows to assess the performance of the algorithms
applied to real biological data and to perform statistics ona large
number of differentially expressed elements. In the secondscenario,
we apply all three algorithms to a spike-in dataset of 162 full-
length cDNA clones, which are hybridized at two, ten-fold different
concentrations to an Affymetrix chr21/22 array (Sasakiet al., 2007).
In this scenario, positives and negatives are more clearly defined
than above, but the number of differentially expressed intervals
is comparably low and the extent of differential expressionand
complexity of the sample is more artificial.

For MAT and TAS, the expression and differential expression
analysis is carried out independently from each other:Highdiff
regions are obtained by intersecting intervals identified as
differentially expressed with those intervals deemed as ‘expressed’
in at least one of the compared biological states.TileShuffle,
in contrast, takes regions found to be significantly expressed in at
least one of the compared states (one-state analysis) as input for the
two-state analysis, and assesses differential expressionsolely on the
expressed segments and directly reportshighdiff regions.

For one-state analyses, i.e., determination of expressed regions,
parameters forTAS have been set following Kampaet al. (2004).
Parameters forMAT as given in Johnsonet al. (2006) are geared
towards ChIP-chip analysis and not suitable for expressionanalysis.
Upon inspection of positive control transcripts, we identified

2 Array data and experimental details can be accessed at GEO (see
Supplementary Table S1).
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Fig. 3: ROC curve after evaluating the outcome ofTAS, MAT, andTileShuffle applied to the G0/G1 transition of the cell cycle tiling
array dataset (a) and to the spike-in tiling array dataset comparing hybridizations of 0.0055µg and 0.055µg cDNA (b) over a range of different
p/q-value cutoffs in the differential analysis. In the cellcycle dataset, the positive set is obtained by conducting and evaluating verification
experiments using a custom-designed microarray in triplicate. In the spike-in dataset, the positive set is comprised of regions covered by the
162 full-length cDNA clones which were spiked in. Note that the whiskers express the variation in the outcome ofTileShuffle after
five repetitions, i.e., smallest and highest value on the x-axis (or y-axis) for each differential significance threshold, with the median result
shown on the solid line. The inlay in the right panel magnifiesthe area with an x-coordinate close to zero (same units on axes). Due to the
intersection of high and differential intervals inhighdiff at fixed parameters for high, some intervals are never identified and thus the curves
do not reach (1,1). Sensitivity versus FDR curves are given in Supplementary Figures S7.

optimal parameters forMAT as the same or analogous values as used
for TAS. In summary, we setbandwidth= 35, i.e. on average the
probe intensities are smoothed by calculating the Hodges-Lehman
estimator over three probes, and the maximal gap between positive
probes to be included in a positive intervalmaxgap = 40. The
minimal length or minimal probe count of segments to be reported
were set tominrun = 90 and minprobe = 3, for TAS and
MAT, respectively. Perfect match (PM) and mismatch (MM) probe
intensities were utilized inTAS using an intensity threshold of 150.

For expression analyses withMAT, which uses only PM
intensities, a p-value threshold is set to0.05 which yielded the best
results in terms of sensitivity and FDR in the analysis of thecell
cycle tiling array dataset. P-value cutoffs were tested in the range of
10−10 to 0.05. TileShufflewas applied using only PM probes,
the arithmetic mean trimmed by maximal and minimal value as
scoring function, 10 000 permutations, and a q-value threshold of
0.05. TileShuffle was applied using window sizes, 20, 200,
and 400 and different numbers of GC bins ranging from 1 to 9, to
assess the effect of these two parameters. The intermediatewindow
size of 200 was chosen in order to include an adequate number of
probes in the calculation of the window scoresSe andSd, and to
ensure that the majority of known exons is spanned by one single
window.The median exon length of known protein-coding genes is
118bp, while 90% of the exons are shorter than 228bp according to
GENCODE version 3c (Harrowet al., 2006).

Analysis of differential expression was performed with thesame
parameters, exceptbandwidth= 150 for TAS andMAT and 100 000
permutations forTileShuffle, both aiming at accommodating
the more rugged nature of the expression difference signal (log-fold
change).

For the whole genome scenario,highdiff intervals were generated
with all three tools over a range of q-value and p-value cutoffs,
respectively.The custom microarray was run in triplicates for each
of the biological conditions of the tiling array experimentand was
used as a reference to estimate sensitivity, specificity, and false
discovery rate (FDR), defined as follows:

sensitivity=
TP

P
(2)

specificity= 1 −
FP

N
(3)

FDR =
FP

FP + TP
(4)

The number of true positives (TP) corresponds to the number
of nucleotides which arehighdiff in the tiling array analysis and
overlap with a probe that was found significantly differentially
expressed in the corresponding custom microarray experiment.
The number of false positives (FP) is defined as the number of
those nucleotides inhighdiff intervals that overlap a probe that is
not significantly differentially expressed in the custom microarray
experiment. The number of positive nucleotides (P) is defined as the
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sum of all nucleotides ofprobes that are significantly differentially
expressed in the custom microarray experiment (FDR < 0.05),
while the number of negative nucleotides (N) corresponds to
the sum of all nucleotides of probes that are not significantly
differentially expressed in the custom microarray experiment
(FDR ≥ 0.05).

The results for each algorithm are illustrated as receiver operating
characteristic (ROC) curve and as a function of sensitivityversus
FDR (seeFigure 3a and Supplementary Figure S7a). Overall,
TileShuffle in both tested variants A and B clearly outperforms
the two other algorithms. For example, at a maximal FDR of20%,
both variants ofTileShuffle yield a sensitivity of around23%,
which is an approximately 4-fold and 11-fold increase compared
to TAS and MAT, respectively. BothTileShuffle variants
differ only to a minor extent from each other but variant B is
generally more restrictive and hence recommended as the default
choice.Evaluating the three algorithms based on counts of intervals
rather than on nucleotides yields concordant results with the latter
(Supplementary Figure S8).

In this test scenario, we also investigated the influence of the
number of GC bins and different window sizes on the ROC curve.
The worst performance is observed for one GC bin. This shows
that probes with low GC content tend to exhibit lower signal
intensities than probes with high GC content and hence are less
likely to be found in the right tail of the signal intensity distribution
(Supplementary Figure S16). A number of three GC bins results
in higher sensitivity at similar FDR, while increasing the number
of GC bins further yields only minor improvements at high FDR
values. Following Occam’s razor, we hence select the simpler
model, and recommend to use three GC bins as the default for the
one-state analysis. A window size of 400 bp leads to the best ROC
curve, but exhibits to fail in exon boundary detection described in
section 3.3 (Supplementary Figures S17-S20). A window sizeof
20 bp delivers only very fewhighdiff regions, resulting in very low
sensitivities. Thus, a window size of 200 bp seems to be the optimal
trade-off between good sensitivity and good recovery of exon-intron
structures at low FDR values.

In similar manner, we estimated the sensitivity, specificity, and
FDR in case of the spike-in dataset. Therein, the positive set
comprises all genomic regions covered by the 162 full-length cDNA
clones, i.e. 877 exonic regions, which were spiked in at two different
concentrations. The set of negative regions comprises all unique
protein coding exons annotated in GENCODE version 3c that do
not overlap with any positive region. The GENCODE annotation
was converted from human genome version hg18 to hg17 using the
UCSC liftover tool. The number of true positives (TP) corresponds
to the number of nucleotides in positive regions which arehighdiff
in the tiling array analysis. The number of false positives (FP) is
defined as the number of nucleotides in negative regions which are
in highdiff in the tiling array analysis. Accordingly, the number
of positive nucleotides (P) is defined as the sum of all nucleotides
in positive regions, while the number of negative nucleotides (N)
corresponds to the sum of all nucleotides in negative regions. The
resulting ROC curves are depicted in Figure 3b and Supplementary
Figure S7b. In summary, all three methods recover the differentially
expressed exons as all reach high sensitivity values at high
specificity or low FDR values. However,TileShuffle reaches
maximal sensitivity at comparable FDR values. Even though a
spike-in experiment allows precisely define TP and FP rates,it is

artificial and different from real expression perturbationstudies as
much less noise is observed (see Supplementary Figure S22 for an
exemplary region).

Due to the resampling step inTileShuffle, results may vary
between runs with different random number generator seeds.We
therefore plot the median of five different runs where the number
of permutations was set to 10 000 for the one-state and 100 000for
the two-state analysis, and illustrate minimal and maximalvalues
as whiskers in x and y direction. Only negligible variation in
sensitivity and FDR is found for the most restrictive significance
thresholds. This is an expected consequence of increasing variability
in sampling when the tails of the background distribution are
estimated. Hence, the numbers of required permutations of 10 000
and 100 000 for the one-state and two-state analysis, respectively,
mark a sufficient trade-off between running time and variation in
sensitivity and false discovery rate. Due to the high degreeof
variation observed for fold changes, the tails of the background
distributions for two-state analysis must be well estimated with
an increased number of permutations.We adapted the code for
the two-state analysis to ensure that a sufficiently large number
of permutations can be computed within a feasible time scale. On
a single 2.66GHz 64-Bit Intel Xeon CPU, a one-state analysisof
a single array under the given parameters took around 12 hours
while a single two-state analysis took approximately 9h and14h
with variant A and B, respectively. Since an array comprises
sufficient information to sample from the background distribution
and hence eliminate array-wide effects, the arrays can be analyzed
independently from each other.

3.3 Detection of transcript structures
One of the advantages of tiling arrays over conventional expression
arrays is information on the intron–exon–structure of transcripts,
as probes are tiled in an unbiased way across the genome. We
manually inspected a small set of genes that are known to be
cell cycle regulated (Bar-Josephet al., 2008). In several cases,
we observed thatTileShuffle is capable of detecting a higher
fraction of exons of a transcript ashighdiff and identifies the intron-
exon boundaries more accurately thanTAS or MAT. Supplementary
Figure S21 displays examples of known cell cycle regulated genes
where the three algorithms perform remarkably different.

To substantiate this finding and to exclude that the above
mentioned observation is merely a consequence of the increased
sensitivity ofTileShuffle, we studied the accuracy in detecting
intron-exon boundaries on a global scale.

All unique exons of all protein-coding transcripts annotated
in GENCODE version 3c (Harrowet al., 2006) were extracted,
resulting in 293 000 annotations.Highdiff intervals of the G0/G1
transition of the cell cycle dataset were computed with all three
methods. To increase comparability, significance thresholds were
adjusted to yield comparable FDR values, i.e. 18% FDR in case
of TAS (q=0.05), 17% in case ofMAT (p=1e-6), and 19% and
18% in case ofTileShuffle variant A (q=0.05) and variant
B (q=0.1), respectively.For each method, the overall reported
nucleotides identified ashighdiff in the G0/G1 transition of the cell
cycle dataset including the absolute and relative base paircoverage
with GENCODE version 3c annotations is given in Supplemental
Table S5. The absolute number of reported nucleotides and their
length greatly differs among the methods (see Supplementary
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Table S3). An analogous analysis for high intervals is shownin
Supplementary Tables S4 and S2.

We calculated the overlap of all tiling array intervals(either highly
expressed intervals orhighdiff intervals)with all annotated exons
no matter of the annotated reading strand direction for exons, since
strand information cannot be inferred from the Affymetrix Human
Tiling 1.0 array set.For each overlapping pair of tiling array interval
and annotated exon, the genomic distances between the inferred
and annotated5′- and3′-ends, respectively, are summarized in an
empirical cumulative distribution function (ecdf). We do not only
include the pair with minimal distance but consider all overlaps
of several tiling array intervals with one exon, as well as all
overlaps of several exons with one tiling array interval in the ecdf.
This penalizes the distance distribution in cases where oneexon is
represented by many small tiling array intervals. It also penalizes
intronic tiling array intervals that partly overlap with anexon.Due
to the higher sensitivity ofTileShuffle, the number of regions
included in this analysis is significantly higher compared to the other
methods. We therefore normalize the ecdf to the total numberof
overlaps of the respective method.
TileShuffle clearly outperforms the other two methods in

detecting exon-intron boundaries inhighdiff data (Figure 4). The
results are more balanced for expression analysis, whereTAS finds
a higher proportion of exons boundaries with an offset belowthe
window size ofTileShuffle, while overall, TileShuffle
identifies a higher proportion of boundaries (Supplementary Figure
S9). Of all window sizes tested forTileShuffle, 200 bp
performs best. A window of 400 bp further extends exons and a
window size of 20 bp, i.e. comprising just one probe, shortens exons
remarkably. Different GC bins for the one-state analysis donot have
a considerable impact on exon boundary detection (Supplementary
Figure S17-S20).

Supplementary Figures S10 and S11 further illustrate the
orientation in the offset to annotated exons. Both, for expression
and differential expression analysis,TileShuffle has a tendency
to extend the reported region beyond the exon boundarieswith the
largest extension observed for long window sizes as i.e. 400bp.
Again, if the window includes just one probe (window size setto
20 bp), TileShuffle tends to shorten exons (Supplementary
Figure S17-S20).TAS and MAT tend to find exons shorter than
annotated, caused by a comparable offset at 5’- and 3’-boundaries
in the case of expression analysis (Supplementary Figure S10).
Boundaries of differentially expressed exons are hardly detected
correctly byTAS andMAT, but again with a tendency to shortening
(Supplementary Figure S11). This bias in the offset to the correct
exon boundary is not unexpected: Considering windows of length
200, TileShuffle will always extend expressed exons smaller
than the window size, which constitutes a significant proportion of
exons in the human genome.TAS andMAT extend regions probe-
wise and thus can detect exons more precisely if the signal across
the exon is smooth. On the other hand, exon signals, strongly
affected by sequence-specific affinities or cross-hybridization across
the exon, may prevent correct extension and lead to fragmentation
into several intervals or shortening. This may explain, whyoverall,
TileShuffle identifies a greater proportion of boundaries.
Probe-wise extension largely fails in detectinghighdiff exons. The
expression difference signal is rugged and can reverse signs within
one exon.TileShuffle, which combines a robust windowing
approach and scoring function with “window-wise” extension, is

clearly advantageous over the other methods that rely on probe-wise
extension only.

We finally investigated whether the observed differences in
detecting boundaries ofhighdiff exons are biased by the selected
significance thresholds. Over a range of q-value thresholds,
TileShuffle displays only minor variation in the ecdf of
distances to exon boundaries and nearly constant results for
distances below the window size (see Supplementary FiguresS12
and S13). In contrast, the ecdf ofTAS and MAT vary strongly
between the different thresholds (see Supplementary Figures S14
and S15) and for significance threshold below 0.5,TAS andMAT
obtain significantly lower accuracies thanTileShuffle at any
q-value threshold.

4 CONCLUSION
Most published tiling array studies have focused on discovery
of novel expressed transcripts rather than unbiased detection of
differential expression and the choice of software for the latter task
is limited. Variants of themaxgap/minrunalgorithm (Kampaet al.,
2004; Royceet al., 2005) likeTAS require dataset-specific cutoff
parameters andMAT has been developed for ChIP-chip data analysis
and requires adapted parameters to be applicable to expression
tiling array data. Both hampers the applicability of these methods
in different scenarios without manually inspecting a smallset of
expected positive regions.

We have presentedTileShuffle, a method specifically
designed for expression and differential expression analysis of
tiling array data. It implements a statistical approach to detect
expression or differential expression in terms of differences
from the background distribution that avoids any intensity-related
parameters.TileShuffle reduces the most dominant tiling array
biases using an affinity-dependent permutation in conjunction with a
windowing approach. A related resampling approach has beenused
by Guttmanet al. (2009), which does however not consider probe
affinities and is not applied to detection of differential expression.

We comparedTileShuffle, TAS, andMAT in two different
test scenarios. In the cell cycle dataset, where a custom array was
used for validiation,TileShuffle achieved significantly lower
false discovery rates under equal sensitivities. This testscenario has
the advantages of building on a biologically meaningful experiment
with the associated noise in expression signals and transcriptome
complexity and of calculating sensitivity and specificity on a large
number of intervals. However, the custom array data has an FDR
itself, which is better controlled and significantly lower than for the
tiling array, but still providing a surrogate for a true reference.

In the second scenario, the algorithms are compared using a
spike-in dataset (Sasakiet al., 2007). The differences between
the three algorithms are smaller than in the previous scenario.
TileShuffle, however, is the only one obtaining sensitivities
above 50%. The spike-in experiment has the advantage of a clear
definition of positve and negative intervals for calculating sensitivity
and specificty. However – though large for a spike-in experiment –
162 differentially expressed elements is a small number compared to
the cell cycle experiment, the noise is low, the basal expression level
is already high and a ten-fold differential expression a strong effect
in biological experiments. The scenario is thus rather artificial.
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Fig. 4: Empirical cumulative distribution function of the absolute distances between5′- (a) and3′-end (b), respectively, of exon and reported
interval for all overlapping pairs of unique GENCODE annotated exons and reported intervals. Overlapping here means any overlap in
genomic coordinates ignoring strand. Only every 10th data point is drawn as a symbol. For each method, the set ofhighdiff intervals in the
G0/G1 transition of the cell cycle tiling array dataset is used as input dataset. The significance thresholds of the threemethods for differential
analysis were adjusted to obtain similar FDRs as estimated before using the custom microarray, i.e., 18% FDR in case ofTAS (q=0.05),
17% in case ofMAT (p=1e-6), and 19% and 18% in case ofTileShufflewith variant A (q=0.05) and variant B (q=0.1), respectively. The
absolute number of overlaps is 15 835 and 13 479 withTileShuffle and variant A and B, respectively, 4337 withTAS, and 2381 with
MAT.

Apart from the ROCs,TileShuffle clearly outmatchesTAS
andMAT in the recovery of transcript structures by identifying the
intron-exon structure more accurately. However,TileShuffle
fails to detect very short exons because of the windowing approach.

Additionally,TileShuffle can incorporate replicate experiments
and supports input data as custom-formatted files and hence is not
dependent on any technology or tiling array design and can also
be applied to ChIP-chip data by selecting a larger window size.
The required computation time ofTileShuffle is considerably
higher than forTAS andMAT. However, it is negligible compared to
efforts for the genome-wide tiling array experiment and thus does
not constitute a bottleneck in the analysis work flow.
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