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Abstract. The mass flow in a chemical reaction network is determined
by the propagation of atoms from educt to product molecules within
each of the constituent chemical reactions. The Atom Mapping Problem
for a given chemical reaction is the computational task of determining
the correspondences of the atoms between educt and product molecules.
We propose here a Constraint Programming approach to identify atom
mappings for “elementary” reactions. These feature a cyclic imaginary
transition state (ITS) imposing an additional strong constraint on the
bijection between educt and product atoms. The ongoing work presented
here identifies only chemically feasible ITSs by integrating the cyclic
structure of the chemical transformation into the search.

1 Introduction

For chemical reactions often only educt and product molecules are known. The
underlying mechanism, i.e., the chemical bonds that are broken or newly formed
to transform the educt molecule into the product is unknown. Equivalently, it
is unknown which atom in the educt corresponds to which atom in the product.
Traditionally, such knowledge is gained by isotope labeling experiments, that
is, by substituting certain atoms in an educt molecule with chemically identical
but physically recognizable variants that are then identified in the the product
molecules by means of NMR or similar methods [25]. Such approaches produce a
mapping between the atoms present in the educt and product molecules and thus
identify the chemical bonds that have changed. Knowledge of the reaction mech-
anism enables for instance the analysis and identification of metabolic pathways
[3] or the classification of reactions and enzymes in terms of the mechanisms [19,
20].

The in silico identification of correct atom mappings is computationally non-
trivial and an extensively studied task. First approaches analyzed the adjacency
information within educts and products [9] using branch-and-bound search fol-
lowing the Principle of Minimal Chemical Distance [17] or used topological index-
ing based on Morgan numbering [21]. More recent methods are working directly
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Fig. 1. Example of a Diels-Alder reaction. The ITS is an alternating cycle defined by
the bonds that are broken (in red) and the bonds that are newly formed.

on graph representations of the molecules. For instance, searching for Maximum
Common Edge Subgraphs (MCES) [8, 13, 14, 20, 23], an NP-hard problem, or the
use of specialized energetic criteria [2, 18] enables the identification of the static
parts of the reaction and successively the atom mapping. Another class of algo-
rithms successively decomposes the molecules until only isomorphic sub-graphs
remain [1, 4, 7] since it was shown by Akutsu that the MCES approaches fail for
certain reactions [1].

Here, we propose a new approach to identify chemically feasible atom map-
pings given educt and product molecules as input. This approach makes explicit
use of the observation that most reactions exhibit a cyclic transition state [16],
i.e., the chemical bonds that are broken or formed are arranged in an alternat-
ing cycle. This class of mechanisms includes in particular all pericyclic reactions
such as the Diels-Alder reaction, which is shown in Fig. 1 together with its tran-
sition state. We use this knowledge and focuse on the identification of the cyclic
imaginary transition sub-graph (ITS) because once identified the overall atom
mapping is easily derived. For the identification of cyclic ITS candidates, con-
straint satisfaction problems are formulated for different cycle lengths. A fast
graph matching approach is used successively to identify the overall atom map-
ping for each ITS solution. In the following, we will detail the problem, our
constraint programming approach to identify the cyclic ITS, and how to extend
an ITS candidate to a complete atom mapping for the chemical reaction.

2 Problem Definition

Given are two sets of molecules, the educts and products of a chemical reaction,
each with n atoms. Both educts and products are represented by a single, not
necessarily connected, undirected graph denoted I = (VI , EI) for educts/input
and O = (VO, EO) for products/output. Each molecule corresponds to a con-
nected component. Nodes in a molecule graph represent atoms labeled with the
respective atom type l(x). Edges encode covalent chemical bonds between atoms.
More precisely, it is often convenient to use a multi-graph representation in which
each bonding electron pair is represented as an edge. Non-bonding electron pairs
thus correspond to loops in the multi-graph. For the CSP formulation it will be
more convenient, however, to use an ordinary graph representation and to label



each edge {x, y} ∈ EI∪EO with its bond order: single, double or triple bonds are
represented by a single edge with labels 1, 2, or 3, respectively. The matrix ele-
ments Ix,y denote the number of shared bond electron pairs for the edge between
the atoms x and y in the educt graph I, i.e., in practice Ix,y ∈ {0, 1, 2, 3}. O is
defined accordingly. If necessary, non-bonding electron pairs can be represented
by the diagonal entries Ix,x and Oy,y. Thus, the matrices I and O encode the
adjacency information of the educt and product graphs, respectively.

Consider a function α : VI → VO mapping the nodes of I onto the nodes of
O and a matrix Q rows and columns indexed by VI . Then we denote by Q ◦ α
the matrix with entries Qα(x),α(y) with rows and columns indexed by VO. Thus
Rα = O − (I ◦ α) is well defined.
Definition. An atom mapping is a bijective mapping m : VI → VO such that

1. ∀x∈VI
: l(x) = l(m(x)) (preservation of atom types)

2. Rm−→1 = 0 (preservation of bond electrons)

The reaction matrix Rm encodes the imaginary transition state (ITS) [11, 15].
This definition of m is a slightly more formal version of the Dugundji-Ugi theory
[9]. Our notation emphasizes the central role of the (not necessarily unique)
bijection m. Since we consider I and O as given fixed input, the atom mapping
m uniquely determines Rm. The pair (m,Rm), furthermore, completely defines
the chemical reaction. It therefore makes sense to associate properties of the
chemical reaction directly with the atom map m.

Equivalently, the ITS can be represented as a graph R = (VR, ER) so that
ER consists of the edges in I that are removed in O and the edges in O that were
not present in I as well as the atom nodes x ∈ VR with at least one adjacent
edge. Each edge {x, y} ∈ ER is labeled by the changes in bond order Rmx,y 6= 0.
See Fig. 1 for an example. We note that in a slightly more general setting we
can regard R = (VR, ER) as a multi-graph consisting of all electron pairs that
are formed or removed.

It is important to note that the existence of an atom mapping m as defined
above does not necessarily imply that Rm is a chemically plausible ITS. We say
that two edges {x, y}, {y, z} ∈ ER in R are alternating if Rmx,y +Rmy,z = 0.
Definition. An atom map m is homovalent if Rmxx = 0 for all x ∈ VR. A
homovalent reaction is elementary if its ITS R is a simple alternating cycle.
Thus Rmx,y ∈ {−1, 0,+1} holds for all elementary homovalent reactions.

In the following we outline a novel algorithm for finding atom maps for el-
ementary homovalent reactions that is guaranteed to retrieve all possible map-
pings given I, O, and the atom labels l(x) for x ∈ VI ∪ VO.

Of course, not all I,O pairs that are educts and products of chemical trans-
formation admit an atom mapping m with a homovalent elementary ITS. This
will in general be the case for multi-step reactions and for the so-called am-
bivalent reactions, in which the number of non-bonding electron pairs (and thus
the oxidation number of atoms) changes in the course a reaction. Fig. 2, for
example shows an example of a reaction for which it is not possible to find a
simple circular ITS using the encoding above. It appears to be possible to extend
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Fig. 2. The Meisenheimer rearrangment [22] transforms nitroxides to hydroxylamines.
It does not admit a simple alternating cycle as ITS when molecules are represented as
graphs whose vertices are atoms. An extended representation, in which the additional
electron at the oxygen is treated a “pseudo-atom” can fix this issue. In such a repre-
sentation an additional “charge separation” rule that allows an electron and a positive
charge (here at the nitrogen in the product) to annihilate has to be introduced. This
would disturbe the bijectivity of m, however.

the formalism outlined above also to reactions with charged atoms and radicals.
This is much less well understood, however, and will require a deeper theoretical
analysis in the future.

3 Constraint Programming Approach

The central problem to find an elementary homovalent atom mapping is to iden-
tify the alternating cycle defining the ITS R given the adjacency information
of the educts I and products O. This can be done via solving the Constraint
Satisfaction Problem (CSP) as presented below. Note, due to the alternating
edge condition within the ITS, we have to consider rings with an even number
of atoms only. In practice, the ITS of elementary homovalent reactions involves
|VR| = 4, 6, or 8 atoms.

A CSP for an ITS of size k = |VR| is given by the triple (X,D,C) defining
the set of variables X, according domains Di, and the set of constraints C to be
fulfilled by any solution.

We construct an explicit encoding of the atom mapping using k variables
representing the ring in I and another set for the mapped nodes in O, i.e.,
X = {XI

1 , . . . , X
I
k} ∪ {XO

1 , . . . , X
O
k } with domains DI

i = VI and DO
i = VO.

To find a bijective mapping we have to ensure ∀i 6= j : DI
i 6= DI

j and

∀i 6= j : DO
i 6= DO

j , i.e., a distinct assignment of all variables. To enforce atom

label preservation we need ∀e ∈ DI
i : ∃p ∈ DO

i : l(e) = l(p). Homovalence is
represented by ∀e ∈ DI

i : ∃p ∈ DO
i : Ie,e − Op,p = 0. Due to the alternating

ring condition, each atom can loose or gain at most one edge during a reac-
tion. Thus, we can further constrain the variables with ∀e ∈ DI

i : ∃p ∈ DO
i :

|degree(e)− degree(p)| ≤ 1; where degree(x) gives the out-degree of node x. All
constraints can be enforced reversed too to enhance propagation.

Finally, we have to encode the alternating cycle structure of the ITS in the
mapping, i.e., for the sequence of bonds with indices 1-2-..-k-1. For all ring



pair indices (i, j) we therefore require pairs with even index i to correspond the
formation of a bond, i.e., ∀e ∈ DI

i : ∃p ∈ DO
i , e

′ ∈ DI
j , p
′ ∈ DO

j : Op,p′−Ie,e′ = 1,
while all odd indices i are bond breaking Op,p′ − Ie,e′ = −1 accordingly.

In order to avoid symmetric solutions, we introduce order constraints on the
input variables: (∀i > 1 : DI

1 < DI
i ); where Di < Dj denotes ∃(x, y) ∈ Di ×Dj :

x < y using e.g. an index order on the nodes. This ties the smallest cycle node
to the first variable XI

1 and prevents the rotation-symmetric assignments of the
input variables. Note, since we constrain the bond (1, 2) to be a bond breaking
(Op,p′−Ie,e′ = −1), the direction of the cycle is fixed and all direction symmetries
are excluded as well.

Although the CSP is defined above for domains of nodes x ∈ VI ∪ VO it
can be easily reformulated using integer encodings of the atom nodes allowing
the application of standard constraint solvers such as Gecode [12]. This enables
the use of efficient propagators for most of the required constraints, such as
the algorithm of Regin [24] for globally unique assignments. Only a few binary
constraints, e.g. to ensure atom label preservation or the ring bonding, require
a dedicated implementation, which poses no serious obstacles.

All solutions for this CSP are chemically valid ITS candidates. In order to
check whether or not a true ITS is found we have to ensure that the remaining
atoms, i.e., those that do not participate in the ITS, can be mapped without
further bond formation or breaking. This is achieved using a standard graph
matching approach as discussed in the following.

4 Overall Atom Mapping Computation

Given the CSP formulation from above, we can enumerate all valid ITS can-
didates for all possible ring sizes k ∈ {4, 6, 8}. For a CSP solution we denote
with aIi and aOi the assigned values of the variables XI

i and XO
i , respectively.

Once the ITS candidate is fixed, we can reduce the problem to a general graph
isomorphism problem with a simple relabeling of the ITS edges. Thus, we de-
rive two new adjacency matrices I ′ and O′ from the original matrices I and
O, resp., as follows: For all ring pairs (i, j) within the ring sequence 1-2-..-k-
1, we change the corresponding adjacency information to a unique label using
I ′
aIi ,a

I
j

= O′
aOi ,a

O
j
∈ {f, b} encoding if a bond between the mapped ITS nodes is

formed (f) or broken (b). All other adjacency entries are kept the same as in I
and O, respectively.

Given these updated, “ITS encoding” adjacency matrices I ′ and O′, the
identification of the overall atom mapping m reduces to the graph isomorphism
problem based on I ′ and O′. Thus, all exact mappings of I ′ onto O′ are valid
atom mappings m of an elementary homovalent reaction, since the encoded ITS
respects all constraints due to the CSP formulation. The graph matching can
be done using fast and efficient algorithms as the VF2-algorithm [6], which is
among the fastest available [5]. Since almost all molecular graphs are planar,
even faster algorithms [10] might be applicable as well.



5 Discussion

We have presented here a novel constraint programming approach to identify
atom mappings for elementary homovalent reactions. The incorporation of the
cyclic ITS structure within the search ensures the chemical feasiblity of the
mapping that is not guaranteed by standard approaches that attempt to solve
Maximum Common Edge Subgraph Problems [1].

The formulation of the CSP using only the atoms involved in the ITS results
in a very small CSP that can be solved efficiently. Thus, it is well placed as
a filter for ITS candidates for the subsequent, computationally more expensive
graph matching approaches. While not described here, the CSP could be easily
extended to find the entire atom mapping by introducing additional matching
variables for all atoms participating in the reaction, all constrained to preserve
atom label, node degree, and bond valence information. The solution of such
an extended CSP are the desired chemically feasible atom mappings m. This
involves a much larger search space, however.

At present, we consider elementary homovalent reactions only, i.e., for reac-
tions in which the transition state is an elementary cycle with and even num-
ber of atoms. The CSP formulation can be easily extended to odd ITS cycles
(k ∈ {3, 5, 7}), but different ring layouts have to be considered. Furthermore,
such reactions are not homovalent, i.e., at least one atom participating in the
ITS is gaining or losing non-bonding electrons, which requires some moderate
changes in the formulation of the constraints.

Constrain programming appears to be a very promising approach to solving
atom mapping problems since it provides a very flexible framework to incorpo-
rate combinatorial constraints determined by the underlying rules of chemical
transformations.
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