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ABSTRACT

Thermodynamic folding algorithms and structure probing
experiments are commonly used to determine the
secondary structure of RNAs. Here we propose a
formal framework to reconcile information from both
prediction algorithms and probing experiments. The
thermodynamic energy parameters are adjusted using
“pseudo-energies” to minimize the discrepancy between
prediction and experiment. Our framework differs from
related approaches that used pseudo-energies in several
key aspects. (i) The energy model is only changed when
necessary and no adjustments are made if prediction
and experiment are consistent (ii) Pseudo-energies remain
biophysically interpretable and hold positional information
where experiment and model disagree (iii) The whole
thermodynamic ensemble of structures is considered thus
allowing to reconstruct mixtures of suboptimal structures
from seemingly contradicting data. (iv) The noise of
the energy model and the experimental data is explicitly
modeled leading to an intuitive weighting factor through
which the problem can be seen as folding with “soft”
constraints of different strength. We present an efficient
algorithm to iteratively calculate pseudo-energies within
this framework and demonstrate how this approach can
be used in combination with SHAPE chemical probing
data to improve secondary structure prediction. We
further demonstrate that the pseudo-energies correlate with
biophysical effects that are known to affect RNA folding
such as chemical nucleotide modifications and protein
binding.

INTRODUCTION

RNAs fulfill a large number of diverse biological functions
in the cell (1). This wide functional spectrum of RNAs is
made possible by the structural diversity of these highly
flexible molecules. Studying the structure of a novel RNA
thus is often the first step towards elucidating a possible
biological function. Resolving the complete tertiary sture

is a complex undertaking, however, so it is usually the
secondary structure that is analyzed first. In a typical
probing experiment, the RNA is enzymatically digested or
chemically modified in a manner that is specific for strudtura
context (2, 3). These experiments typically reveal which
nucleotides are contained within a double stranded heli an
which nucleotides form unpaired loops. In addition, sotven
accessibility or local flexibility can be assessed, see ¢4) f

a recent review. Structure probing experiments have been
routinely used for many years. More recently, high-thrqugh
methods have been introduced (5, 6, 7, 8) and next generation
sequencing techniques have made it possible to perform
probing experiments even on a genome-wide scale (9, 10).

All these experiments, however, only report partial
information on the structure and even a perfect experiment
does not reveal the actual base pairing patterns (11).
Therefore, the results of probing experiments need to be
combined with computational predictions. Most commonly,
programs such asrfold (12), RNAstructure (13),
or RNAfol d (14) are employed that predict secondary
structures by minimizing free energy. They are based on
an empirical energy model (15), which is based on a very
large set of thermodynamic measurements on small RNA
oligonucleotides. In the simplest case, the predictedttra
is manually adjusted to fit the measured constraints. To
automatize this process, prediction programs allow thetose
restrict the search space to only consider structures ciilniga
with certain constraints observed in the probing data.

An alternative method is to include information from
experiments as “pseudo-energies” in the energy model. This
approach was introduced by Matthews al. (16, 17) and
is implemented in the programNAst r uct ure (13). On
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chemical probing data generated by selective 2’-hydroxyl The minimum of the objective function, ed, satisfies
acylation analyzed by primer extension (SHAPE) (5) it 9F/0¢, =0 for all parameters, i.e.,

showed nearly perfect results @ coli 16s rRNA (17) and

it was successfully used to predict structure models for the

complete HIV genome (18). noq Op;
In this paper, we expand on the idea of incorporatingeu:—rﬁzj(pi(e”)—qi)—z(a 2
experimental data as pseudo-energies into energy-based i=17i ey

folding algorithms. Instead of addingd hoc modifications

to the minimum free energy calculation, we propose a

formal method to reconcile experimental information with Numerically, this can be solved by iteratively minimizirgy
the theoretical prediction in the partition function over We use a gradient descent iteration of the form

all possible structures. The partition function describies

entire ensemble of secondary structures in thermodynamic

equilibrium and allows to calculate an intuitive matrix of OF
base-pairing probabilities (19). Cp=Cn— 5"
Our approach is based on the assumption that both K )
experimental measurements and the thermodynamic energy 2as "1 Op;
parameters are imperfect, noisy approximations of the =|(1-—3 €u—2a2?(pi(a—qz‘)ae (€)
physical reality. In this setting it becomes natural to ask # i=1"1 ’

for a perturbation vector that minimizes a weighted sum of
perturbation energies and discrepancies between measured ) ) )
and predicted base pairing probabilities. In the simplaseg ~ With a step size: <0. We chose this approach because it only

this can be written as a least square approximation probfem odepends on the first order derivatives gfwith respect to
the form eu- In the following paragraphs we show that the required

partial derivativesdp;/0¢, |- can be obtained analytically
from constrained partition functions.

2 n . . .
€ 1 .
F(azz g+z 2(1%‘(57—%)2 in 1) A'naIytlc calculation of the gradient o |
w i =1 % Since ¢, denotes the energy contribution that is added to

all secondary structures that contain a particular “stmadt
feature”u, we can subdivide the structure ensemble into those
structures that “haveg”, and those that do not. This is possible
Here € is the perturbatiol vectol anc ¢, the perturbation for any parameter of the standard energy model and for
energ) adde( for some structura elemen y. p;(é) anc ¢; ~ any additional position-dependent term. L&fi(c,) be the
are the predicter anc measure bast pairing probabilitie: for partition function over all states with positiemnpaired in the

o . . . 2 2 perturbed energy model, whil&[i](0) is the corresponding
positior i, respectively The estimate variance 7;; anc o' of partition function in the reference state. Similar{s(.)

energ parameter anc measurement respectively serve as — anqz; 1,](.) denote the partition functions over all structures
weighting factors. This optimization problem can be viewed that “havey.”, and of those that both “have” and leavei
as energy directed folding with soft constraints repladfi®  ynpaired, respectively, for each of the two energy modeis. T

hard combinatorial constraints used before. crucial observation is that the following identities holok f
We show here (i) that the pseudo-energié<an be  these constrained partition functions:

efficiently calculated by an iterative algorithm, (ii) thtite

approach combined with SHAPE data leads to improved

secondary structure predictions (iii) that the algorithm . — 710 — 7 Ti :

also can successfully handle cases of RNAs with severaIZ[Z](Eu) Z1iN0) = Z10,](0) + 21 pl(e) 4
alternative structures, and (iv) that the pseudo-energies Z(€u)=2(0)—Z[u](0)+Z[u)(€y)

have an interpretable meaning and indicate positions where

experimental data and the thermodynamic energy model

disagree. By construction, furthermore, we have
MATERIALS AND METHODS Z|p)(€u) = Z[u](0)exp(—eu/RT)
o o : : . , , ®)
Minimization of the objective function using gradient Zi,p](ep) = Z[i, p)(0) exp(—€u/RT)
descent

The objective functior in eq. 1 anc the motivatior behinc it Since pi(.)=Z]i](.)/Z(.) we can express the partial

is explainer in more detai unde “Rationale’ in the Results  yerivatives in terms of restricted partition functions. ey
section Here we show how to efficiently find the minimum  need to compute the derivates at the reference energy model
of this function. (which we take to be the energy model in each step of the
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gradient iteration). Missing data, i.e. positiongor which nog; is available, are
handled transparently by settirmg=oo resulting in position
1 being effectively being ignored in the evaluation of the

opi| o ZI0)-Z[iu0) (1—e—6~/RT) objective function (eql).
Ocule,—0  Oen Z(O)_Z[M](O)@_e—eu/RT) €, =0
_ 1 [Z[i](o) Z[p)(0)  Z[i,ul(0) Z[i](o)}
RT'L 2000 2(0) ZIio) 2 Analysis of SHAPE data
ZLM(O) [p[1](0) —p[1]] (0)] We used SHAPE reactivities for 23S and 16S rRNAs as

RT reported by Deigaret al. (17). The 23S and 16S rRNAs

(©) were split in 6 and 4 domains, respectively, of a maximum
length of 700nts as described before (21). We did not use
The probabilities of the structural patternsjy], can be  domain 4 of the 16S rRNA because it was poorly covered
obtained by McCaskill's algorithm (19) providedis a base by the SHAPE data and mainly consisted of missing data.
pair (k,l), an unpaired positiorj, or another feature that As a reference structure we used the same phylogenetically
appears implicitly in the dynamic programming recursions. derived structure as in (17). Accuracy was measured as
Sensitivitg(number of correctly predicted base-p3aisotal
Implementation for position specific perturbations number of known base-pa)rsand the positive predictive
aluePPV = (number of correctly predicted base-p3aifsotal
umber of predicted base-pajrsAs a combined measure
of sensitivity and positive predictive value we also useel th
Mathews correlation coefficient as described previousB).(2
Deigar et al. founc 16.5% anc 13.6% of the position: in the
16< anc 23< rRNA, respectively where the in vitro folded
% :Lpi(o) [;(0)—p[)(0)] (77  RNA as probec by the SHAPE dat: is different from the
€5 le;=0 RT phylogeneti structurt (correspondin the in vivao proteinized
state) Deigar et al. remover thest sites in their benchmark,

We have extended the implementation of McCaskill's While we kep! it for the benchmark reportechere The overall
algorithm in the Vienna RNA package (version 2.0 beta) toaccuracie achieverin our benchmark are therefor¢ lower as
calculate the partition function of a sequence with add#lo  reporte by Deigar et al.
position specific energy contributions. More precisely;iy To use the SHAPE data with our algorithm we discretized
the energy evaluation step that calculates energies flerelift  the reactivities by classifying them in paired and unpaired
structural elements such as stacked pairs, hairpins,ionter positions using a cutoff of 0.25 (see also (11)). This cutoff
loops and multi-loops, we add; if position j is unpaired  corresponds to an error rate of about 25% of positions being
for the particular structural element. By adding negativeincorrectly classified. We also tried a two cutoff approach
(favorable) perturbation energies we enforce a positiobeto  and classified all positions with SHAPE reactivitie®.1 and
unpaired, while adding positive perturbation energiesledld  >1.5 as paired and unpaired, respectively. This lowers the
to a position be more likely to be paireg. can then directly  error rate to about 10% at the expense of a lower coverage
be calculated from the partition function under the perarb of around 50%, i.e. more missing data. We did not see
energy model. any significant advantage using this approach for any of the
In principle, also the termp[j|:] can be easily calculated methods (data not showrFurthermor we alsc tried more
directly from the partition function. The conditional sophisticate machine learning method to classify base as

probability that; is unpaired given thatis unpaired as well  «yaireq” anc “unpaired’ accordin to their SHAPE signal.
can be obtained by constraining the dynamic programming; :

X . s ) *Essentially we face a machin¢learning problen to parst the
recursion to structures in whichis unapalred. However, the i SHAPE si < showr in Suppl a1 Fig. 1E
partition function algorithm scale®(n°) in CPU time with continuou signa as Showrin supplemental Fg.

length n. Evaluating alln conditional probabilities renders INto discretc states In principle this enable us to consider
the whole algorithm requiring)(n?). This is too expensive alsc the contex of a bastduring classificatior However also

in terms of computational resource for practical applmadi here we did not find a significan improvemer ovel the simple
however. thresholdiniapproach.

To overcome this problem, we estimate the tepfy|i] RNAst r uct ur e (version 5.3) was run with default values
by sampling structures from the thermodynamic ensembleand with parameters ofi=2.6 andb=—0.8 there were found
We use stochastic backtracking (20) to randomly generatéo be optimal on this specific data-set (17). The “Sample +
structures proportional to their Boltzmann weight and Select” strategy described in (11) was re-implementedgusin
empirically determine|;|i] from the random structures. RNAfold, 10° structures were sampled and the structure with

To get actual structure models from the base-pairthe lowest Manhattan distance to the discretized SHAPE
probability matrix, we used the maximum-expected accuracywector was used. The results for hard constraints were
approach (21, 22) with @-parameter of 1.0. calculated withRNAf ol d and the option C.

Here we consider the simplest case of perturbations that adﬁ
positive or negative energy contributions to single posi
In that case case we can replace the generic dimepsiath
an additional index < j <n, and the gradient takes the form
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Availability of the quadratit errot functior F'(¢) is the mos natura one
All source code accompanying this paper can be downloade ffom @ mathematic: point of view since all its terms have a
here: https://github.com/wash/probing. natura interpretior as variances The minimizatior problem

thus evenly distribute: the residua deviation: betweel energy
RESULTS paramete se anc measure dat: dependin on their intrinsic

variance o7 anc 7.

In principle, both the variances’ and?2 can be estimated
Similar to previous approaches (16, 17) our algorithmfrom probing experiments and the experiments underlying
modifies the folding energy parameters (15), which are used i the standard energy model, respectively. However, in this
RNAf ol d, nf ol d, andRNAst r uct ur e. In the following,  paper we will not use explicit estimates but rather treat
we refer to these standard parameters as the “referenagyenerthem as parameters that control whether more weight is
model” and the positive or negative pseudo-energies thagiven on the experimental data or prediction of the energy
change this model as “perturbations”. L&be a vector of model. If 7>>¢ the algorithm will find a solution closest
perturbations of the reference energy model. In the mosto the experimental information, while in the other case the
generic formulation, we consider a collection of struckura experimental information will be ignored and the solutiaift w
elements whose contribution to the energy model can bée essentially the same as the prediction of the unperturbed
perturbed. We use the indexto refer to one of these degrees energy model. Note that the solutiep;,, of the optimization
of freedom, which correspond to the coordinates of the vectoproblem depends only on the ratigo, i.e., on the relative
of perturbation energies Note that these degrees of freedom accurac of the energ) mode anc measure probing data.
need not be structural elements that correspond to paramete
of the reference energy model. ) ,

Our goal is to find a vectof that changes the standard 'terative adaption of the energy parameters
energy model in the light of the experimental data. DeiganSo far we did not specify which parameterof the energy
et al. (17) chose the perturbations proportional to the model are actually considered to be subject of perturbstion
experimental signal. More precisely, for each positidhey  Since typical experiments only report data on whether a
mapped the SHAPE reactivify(i) — the experimental signal  pase is likely to be paired or unpaired, it is not useful to
for being unpaired (24) — to perturbation energies using theconsider base-pairs or any higher order structural elesnent

Rationale

following rglationshim+mln[1+R(z')]- _ We therefore concentrate on the simplest case and consider
In practice, this strategy gave good results. Theoreticall only position-specific perturbations (Methods).
however, this approach is poorly justified; in particulagre We have implemented an efficient strategy to find the

does not seem to be a meaningful biophysical interpretafion minimum of the objective function in this case (Methods).
the energy model. Ideally, if experiment and the energy rhode|t is based on a gradient descent algorithm. The gradient
agree perfectlys should vanish. By setting proportional to  for the objective function can be calculated analyticatige(
the experimental signal, however, the exact opposite is theviethods).
case. Positions that show the highest signal in the expatime We first tested the algorithm on an artificial sequence
and already are predicted with high probability are asgigne that can fold in two alternative structures. The one-
the highest perturbation energies. stem-structure corresponding to the ground state of the
Here, we regard both the experimental data and thqlnperturbed energy modeE=0, is energetically highly
structure prediction based on the energy model as a noisfavorable. The less stable alternative three-stem-sireids
approximation to the physical ground truth. Therefore, ourused here as the experimentally supported structure that
goal is to find a perturbation vector that minimizes the our algorithm is supposed to recover. We considered the
discrepancy between the experimental measurement angaired/unpaired probability profile of the target struetas
computational prediction. In particular, we seek a pedtidn  perfect “experimental” data and sgtto 0.0 or 1.0 for paired
vectore that modifies the energy model only when necessary.and unpaired positions respectively. Accordingly, we chose
This is achieved by minimizing the total error of both the associated varianee® of ¢ low and seto2=0.01 and
energy model and measurements. We assume that thg2—=1.0. This example is a hard test for our approach: since
experimental data is given in form of a probabilistic sigagl  the two structures have very distinct pairing profiles, majo
a vectorg; of the probabilities that positionis unpaired and  refolding is required to correct the energy-based preaficti
an associated varian@sz?. Likewise, we assume a variance  We start with é=0. Using the exact solution for the
75 for the uncertainty of of the parameters of the standardgradient (eq.7, Methods), we observe that the algorithm
energy model. Assuming, furthermore, that individual gger finds a minimum after about 150 iterations (Fig. 1, upper
parameters as well as the measurements for each sequenledt diagram). This minimum is confirmed by the fact that
position are independent, we obtain the error function norm of the gradient (Fig. 1, below) converges to zero and is
<0.001 after 246 iterations. The corresponding base pairing

2 M probability matrices gradually change from the originagon
F@=> 5+> = wi@—a) stem-structure to the alternative three-stem structurehé
w e =% minimum, the structure is completely refolded and conforms
to the desired target structure (Fig. 1, right).
Here, p;(€) is the predicted probability that nucleotidé is We repeated the minimization calculation starting from

unpaired in the energy model perturbed 8yThe choice five different random vectorg. All five start points lead to
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Figure 1. Iterative adaption of energy parameters. A sequence @lded from a single stem structure to a three stem structinediagram on the left shows the
minimization path of the objective function (ef).and the associated norm of the gradient. The algorithm wasising different versions of the gradient (exact,
approximated by numeric differentiation, approximatedshynpling) and 5 different random initializations of thetpdsation vector. The pair probabilities and
associated structures are shown for three points in tregi@ron the right. The upper right half of the matrix showss fase-pair matrix for the target structure,
while the lower left matrix shows the matrix for the curremégiiction. The gray and black boxes in the margin, denotetbbability of being paired for each
position (gray: target structure, black: current predit}i The area of the boxes is proportional to the respectiubgbility. The green/red boxes represent the
values of the current perturbation vectofnormalized between 0 and 1). Red represents a negativgyecentribution for an unpaired position, i.e. supports a
position to be unpaired. Green represents a positive emenjyibution for an unpaired position, i.e. supports thisifion to form a base-pair.

the same minimum confirming that the procedure is robusineeded only when positiop is unpaired with a noticeable
and finds consistently the same solution. To further confirmprobability, so that fairly small samples are sufficient. We
the validity of the analytically derived gradient, we refgeh  repeated the minimization using this approximation. Samgpl
the iteration with a numerically calculated gradié?cg(_ﬁ —  the gradient from 10,000 random structures leads to the same
FEcitd)—F(Zeu—d) . s € minimum as the exact solution. In this particular example,
———5———t—. Settingd=10"", we observe that both we observe a slight deviation in the minimization paths
solutions fead to exactly the same minimization path (Fjg. 1 after about 8 iterations (Fig. 1). In most other examples,
o ) however, we observed the paths to be identical. Only when
Efficient solutions for long sequences the minimization reaches a point close to convergence, the

The exact analytical solution of the 4gradient as well as theapproximated gradient fails to further improve the objeti
numerical approximation scales @n?) with the sequence function. In this example, the calculation with the sampled
length n (Methods). The form of the analytical solution 9radient stopped after 113 iterations with the norm of the
given in eq.7 (Methods), however, suggests that a major gradientin the orderof. o
speedup can be achieved if the tepfi;j] can be computed T Verify that our algorithm is capable of finding the
more efficiently. This can be done by random sampling fromsolution also for longer sequences in reasonable time we ran
the thermodynamic equilibrium since an accurate estinsate ithe algorithm on RNAs of different lengths. We used the
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same parameters as before and used the known seconddncreasing weight on the SHAPE data. However, at around
structure as “target” structure. To test if the sampledigratd  7/0=0.5 the improvement peaks for both the 23S and
gives the same solution as the exact gradient, we ran th&6S rRNA, and due to the inherent noise in the SHAPE
minimization with the exact gradient until the norm of the experiment, the accuracy drops again when more weight is
gradient was< 0.1 and with the sampled gradient until the given on the experimental data.

objective function could not be improved any more. Using We also run RNAfold with hard constraints on the same
the sampling approach, the solution was found within sesond data. Here, the accuracy does not improve and is generally
for small RNAs of about 100 nucleotides like tRNAs or the worse than RNAfold without probing data. In contrast to
5S rRNA and within minutes for longer RNAs of about 300 the soft constraint algorithm, a small number of inaccurate
nucleotides (Tab. 1). Following previous work (17, 21), the constraints introduced by the noise in the data can almost
longest sequence tested was 686 nucleotides long. Also fotompletely destroy the prediction in this case.

this length our algorithm using the sampled gradient could fi We further compared to two other methods that were used
a solution within an hour. In contrast, the exact solutioskto in combination with SHAPE data before. We ran minimum
longer than six days. The objective function was minimizgd b free energy prediction augmented with pseudo energies as
more than 95% in all cases. Despite the extreme differencedescribed in Deigan et al. (“RNAstructure+SHAPE”) (17).
in running time, the sampling approach led to essentially th We used the same parameters and b that were found

same rate of minimization as the exact approach. to be optimal on exactly the same data by Deiganal.
In addition, we also implemented the “Sample and Select”
Improved structure models using SHAPE probing data approach described in Quarrier et al. (11). This strategy

fsamples a large number of random structure from the
minimizing the objective function actually optimizes the ensemble and chooses a structure with the minimum distance

secondary structure prediction. Following Deiggtrel. (17), to the probing data under a simple distance metric (Methods)

- Fig. 2B summarizes the results for all methods averaged
Vn:%gglifbglr:ggii gﬂrlaelzgﬁtﬁg.to benchmark the structure over all domains of both rRNAs. We found that all methods

First, we considered the limiting case of perfect data,€XCePt RNAfold with hard constraints lead to improved
i.e., we used the paired/unpairedgprofile of Fhe referencdredictions over RNAfold (and the equivalent RNAstructure
structures (Methods) as input. In that case, the new iterati |mplgmentat|on) of about 15%_200./0.' 'Our soft constrained
“soft constraint” algorithm should give the same results asalgqtr_lthm adc.h;_eves IO'EEDhOIB “Ssni't';"ty . anis?—ip?iiaoé(’?c;
the “hard” combinatorial constraints that can be applied tofhosf,g’e pr? -:-CSIVIe vta ue, w Ieh o S ru&;&g‘?/o 620 ogn
classical minimum free energy folding. We ran our algorithm € >ampie+oelect approach achieve : :

with different combinations of /o and compared the results 2nd 0.62-0.07/0.65:0.08, respectively.

to RNAf ol d without constraints and with hard constraints

(Fig. 2, A). Combinations >> 1 essentially ignore the external Recovering the ensemble of a bistable structure
data resulting in similar predictions as stand&NdAf ol d.
With increasing weight on the external data (mex 7) the
accuracy increases and finally converges to the same lev
of RNAf ol d with hard constraints. This level represents the

theoretical accuracy that can be achieved by the combmatio®. g : . o - X
of thermodynamic folding with probing data. simultaneously. This is of biological significance in peutar

We next used SHAPE data (17) to test our algorithm on reaff©" rboswitches (25) and ribozymes (26, 27, 28). The signal
probing data. The SHAPE signal measures local nucleotidd"€@suredin a probing experiment, therefore, will in gerizra
flexibility. The signa is generally highel in unpairer regions a superposition Of responses from structural altem"’.‘tm
thar in pairec region: (Supplementar Fig. 1, A-C). It is tested, therefore, if our algorithm can recover the basenga
) : S ‘ ) matrix of more complex ensembles of alternative structures
importan to note however thaithereis nosimple relationship  \ye ysed a sequence that served as a starting point to design
betweei nucleotid flexibility anc basr-pair probabilitie:and g effective thermoswitch (29). The sequence can fold into
there are systemati difference betweel thes two properties  two alternative structures (a single hairpin or a two-stem
beyonc statistica noise (Supplementai Fig. 1, D anc E). For  structure). Folding witiRNAf ol d at 37°C predicts that both
example SHAPE signal: have a typical peal structurt with alternatives are roughly equally probable in the ensengele (
nucleotide in the middle of a loop bein¢ usually the most ~ base-pairing matrix labeled as “target ensemble” in Fig. 3)
reactive However the probability of thest nucleotide to be At low temperatures the single hairpin dominates. We asked
unpaire( in the thermodynami ensembl has generalh not I We can induce the mixed ensemble at low temperature by
the sam« peal shap: (Supplementai Fig. 1, E). We have tried modifying the energy parameters using a perturbation vecto

- . . . This represents a common situation where the experimental
various ways to may the SHAPE signa to the probability  congitions such as temperature or salt concentration are

vectol ¢;. However we founc thar converting the SHAPE  different in the experiment and in the thermodynamic model.
signa into a discrett vectol with ¢;={1.0,0.0} usinc a simple First we tried the method from Deigagt al. (17) and
thresholdiniapproac (Methods gave the bes results. set ¢;=b+mln[l+¢;]. For ¢; we used the probability of
Again, we ran our algorithm with varying values of being unpaired in the target ensemble af 3hd we set
7/o (Fig. 2A). We observed an improvement in prediction m=2.75 andb=—0.75, a combination that generally worked
accuracy over the standard RNAfold prediction with well in our implementation and that is also close to the

We next demonstrate that our algorithm in the course o

So far we only considered the case that the external pairing
e$1ignal originates from a single target structure. HoweRai
molecules typically are not present in single structureidium
an ensemble in which very different structures can be ptesen
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Figure 2. Structure prediction benchmarld) Prediction accuracy on 23S and 16S rRNAs as measured bydttaéws correlation coefficient (higher is better).
Our iterative algorithm was run with different combinatioof 7 /o on “perfect data” based on the reference structure and HAPE data. In comparison, the
results of the “RNAstructure+SHAPE” from Deigan et al. (BAd “Sample+Select” from Quarrier et al. (11) are shown. dditaonal reference points, results
from RNAfold with hard constraints and RNAfold/RNAstructuwithout any additional data is showiB)(Sensitivity and positive predictive values averaged
over all domains of the 23S and 16S rRNA are shown. For ouritthgo (“RNAfold soft constraints”) we used/o =200 for perfect data ana /o =0.5 for the
SHAPE dataThe lattel corresponc to the optimun founc for the 23S rRNA in pane A. It was chosel to ensur a fair compariso to “RNAstructure+SHAPE”
which was alsc run with parametei thar were optimizec for the 23S rRNA. Error bars show 95% confidence interval of the average.
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Table 1. Optimization efficiency for RNAs of various length

Exact gradient Sampled gradient
RNA Length No.iter. Min. Rat€. Time No. iter. Min. Raté Time
tRNA 78 15 0.99 23s 19 0.99 10s
5s rRNA 117 48 0.98 4m30s 57 0.98 49s
SRP RNA 301 104 0.98 5h8m1ls 127 0.98 12m57s
23s rRNA (15’ 514 324 0.95 5d9h38mb5s 104 0.94 43m55s
23s rRNA (25’ 686 136 0.96 6d22m7s 69 0.94 53m25s

Calculations were performed on six core AMD Opteron CPU 800 MHz
¢ Rate of minimization of the objective function afteriterations:1 — Dy /D,
b Two sub-domains of the 23s rRNA were used

published parameters. Using this approach, the resultisg-b
pair matrix only shows one hairpin structure and not the
expected ensemble of the two alternative structures (AY. 3
We also tried to systematically search for other parameter
pairsm andb but also other combinations failed to recover
the correct ensemblWe nexi usecour iterative minimization
algorithir anc se' the probability of bein¢ unpairec at 37°

a< our input vectol ¢;. Runnin¢ our algorithrr al 10° with
02=0.01anc 72=1.0 we coulc calculatt a perturbatiol vector

thar gives exactly the expecte results (Fig. 3A).

This simple example highlights a major advantage of the
present approach over both hard constraints and simplistic
bonus energies: since we consider the entire Boltzmann
ensemble and model the observable experimental signal as a
superposition of contributions from the individual menger
of the ensemble, we can also accommodate seemingly
conflicting data that arise from different subsets of stites
in the ensemble. The effect of our pseudo-energies is merely
to distort the relative frequencies of structures withie th Figure 5. Distribution of perturbation energies for modified and non-
ensemble. modified nucleotides in tRNAs. 160 tRNAs with known modifioas were

forced to fold into the canonical tRNA structure and the ealwf the

perturbation energies were analyzed. Non-zero pertarbainergies indicate

. . . . . adiscrepancy between the prediction under the standargyemedel and the
Correlation of perturbation energies with nucleotide Canonicgﬂ Strﬁcmre. P d

modifications

Another advantage of our algorithm is that it calculates
position-specific perturbation energies that are non-eatp
when they are required to reconcile the experimentallypairing partner. We thus analyzed the behavior of the mito-
observed data with the energy model. The perturbations thutRNA-Lys in silico. Folding with RNAf ol d clearly does not
identify regions along the sequence where the energy modetesult in the typical cloverleaf structure but rather ygekh
fails to accurately represent the observed data. extended stem structure (Fig. 4). This is consistent wighirth
Chemically modified nucleotides are an important sourcevitro results, which also did not show the canonical cloverleaf
of inaccuracies because they are not explicitly consideredtructure. We ran our algorithm on the sequence and imposed
in the energy model. Such posttranscriptional modification the cloverleaf structure as external constraint. The #lyor
are common in several classes of noncoding RNAs.finds a minimum after 18 iterations and leads to a refold of the
They are particularly well-studied for tRNAs (30, 31). structure. The resulting perturbation vector shows twtrtdis
Generally, tRNAs fold into the functional cloverleaf sttue  peaks strongly suggesting that the base-pair stacks betwee
spontaneouslin vitro without being modified (31). However, positions 8,9 and 61,62 is the most critical for the molectale
there is one well-known exception to this rule. The humanfold into the correct structure. The high peak that supg®ss
mitochondrial tRNA-Lys was found to be misfolded witro this base-pair stack corresponds to the methylation tisat al
while forming the canonical cloverleaf vivo. One particular ~ was shownin vitro to be responsible for the refolding. It is
base methylation is sufficient to induce the correctfolditsp ~ important to note that a simple comparison of the misfolded
in vitro (32). prediction of the standard energy model to the reference
Theoretically, our approach should be able to identify structure willnotgive the same information (see the difference
nucleotides with modifications that influence their pairing plot of p; of the initial prediction andy; of the reference
behavior. In such a situation we expect a large perturbatiorstructure in Fig. 4). Since the molecule undergoes re+igidi
energy localized at the modified nucleotide and possibly itsthe initial p; of the misfolded structure is not informative and

(kcal/mol)
0.0 0.2 04 0.6 0.8

[
—_

I I
Unmodified Modified

Absolute perturbation energy
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(A) Perturbations proportional to In(g;+1) (B) lteratively optimized perturbations
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Figure 3. Recovering the correct structure ensemble of a bistabletstie. A sequence that folds into a one and two-stem steuetith equal probabilities
at 37 C, folds predominantly into the one-stem structure &C.0Using theg; vector of the probability of being unpaired of the ensembld87ZaC, the same
bistable ensemble is attempted to be induced &C1@A) If the perturbation vector is chosen proportional to theteeg; (¢; =b+mln[1+ ¢;]), the correct
solution cannot be found and the ensemble is still dominbyetthe one-stem structureB) Using the iterative optimization algorithm a perturbatiector can
be found that recovers the bistable ensemble representihghe one-stem and two-stem structure.

only an iterative approach will identify the positions Correlation of pseudo-energies and protein binding

for the structure change. RNA binding proteins are another reason that can

We f_urther a;_ked_ if there is a general correlation of cause differences between experimentally observed and
nucleotide modifications and perturbations calculateanfro thermodynamically predicted structures (34). The 5'-efd o
our algorithm. To this end, we analyzed 160 tRNAs contalned,[he sodB mRNA irEscherichia colivas found fo change the

in the MODOMICS database (33) in exactly the same P
way as the human mito-tRNA-Lys example above. Thestructure upon binding of Hfq (35). Hfg acts as a chaperone

MODOMICS database contains experimentally determinec@nd opens a region that forms a intermolecular interaction

. o . . ith the small RNA RyhB. We ran our algorithm applying the
nucleotide modifications of various RNAs. Again, we used the g, +,re model proposed for the sodB mRNA by Geissmann
canonical cloverleaf structure as the input of our algamith

. et al. (35). We observed high energy perturbations in the
We found that the absolute value of the perturbations ; : ;
for modified bases (0.25 kcal/mol) is on average highersecond half of the analyzed region (Fig. 6) which corresgond

for modified bases than those for unmodified bases (O.l‘%ﬁﬁﬂ%to the region that shows the protein-induced sirect
kcal/mol). The difference (Fig. 5) is significant (Mann- ge-.

Whitney testp<2x10~16) and implies that discrepancies

between the standard energy model and the canonical tRNA

structure can be partly attributed to nucleotide modifarati DISCUSSION

However we only founc few candidate where a nucleotide  The combination of thermodynamic folding and structure
modificatior seem to directly caus: a complet: refold. This probing experiments is currently the standard method to
confirms thai the humar mitochondria tRNA-Lys described ~ establish secondary structure models. Probing experament
in the literature is ar outstandin examplc anc mos other ~ have seen rapid development over the past years leading

tRNAs fold into the cloverlea shap: spontaneous without [0 Probing data for the complete HIV genome (18) and
modification (31) pilot studies of transcriptome wide probing in yeast (9)

and mouse (10). Scaling the problem from individual
RNAs to genome-wide data is not only an experimental
challenge. The computational analysis of probing expemime
to automatically generate reliable structure models seems
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Figure 4. Perturbation energies correlate with nucleotide modibeatin tRNAs. Human mitochondrial tRNA-Lys does not foldarihe canonical cloverleaf
using the standard energy model (top) but can be easilyldedowith perturbations calculated by our algorithm (bwtfoThe highest peak (favoring single
strand formation, red) in the perturbation vector affebs same stack as the methylation of position 9 (red arrowjvkrto be necessary and sufficient for the
correct foldingin vitro. The lowest peak (favoring base-pairing, green) corredpén the new base-pairing partners for the destroyed staidical nucleotides
for the re-folding are boxed. The dotplot coloring and aatioh scheme is the same as in Figs. 1 and 3.

equally challenging. There are many steps involved andan iterative algorithm is required in practice to find the
sophisticated methods to pre-process the data have beeaptimal pseudo-energies. We derived an analytic expnessio
developed (8, 10). Here, we addressed the last step in thifor the gradient of this optimization problem which alloves f
process, the actual folding step. effective minimization.

We proposed a novel way to incorporate experimental We testec our methoc on a SHAPE date se' of rRNAs
constraints into classical thermodynamic folding. Hard thai has beer usec for benchmarkin previously It provides
combinatorial constraints that have been used for long timegf approximatel 400¢ probe¢ positions (17) allowing

prgylyalfeRsNeXlsbe t""gen a TOdEII ist man;mllyfbuiltt fort aNfor statistically relevan comparison betweel methods.
individua ut does not scale o automatic struc ureUm‘ortunately similarly sizec date set: are not available¢ for

prediction from noisy data. Therefore, we introduced at‘sof . ; .

constraint’ approach that is based on pseudo-energies thoihe! RNAs anc it remain: to be determine how our results
favor individual positions to be paired or unpaired. We 9eneraliz acros various othei classe of RNAs. _
formulated the problem using the partition function which ©On the rRNA dataset, we found that our soft constraint
offers the most flexible description of the thermodynamics@PProach with SHAPE data clearly improves structure
properties of an RNA and allows for example to calculate Prediction compared to normal thermodynamic folding.
pair probabilities or study suboptimal structures (19ncgi  varying the weight of the probing data used for the predictio
previous pseudo-energy approaches cannot be easily dppliddentifies a maximum in accuracy, which, however, stays
in that case (see section “Rationale”), we introduced awell bel_ow the best value theorghcally possible Wl_th p(_airfe
formal framework to reconcile external constraints anddat@ (Fig. 2).AlthougF our algorithm perform: well in this
thermodynamic predictions. In this framework, pseudo-Particula benchmart it coulc not clearly outperforn for
energies have an interpretable meaning and the system shoiexample the muct simpler methoc by Deigar et al. An
some important properties such as the simple fact that irimportan observatio is thal the difference betweel the
the case of experiment and thermodynamic model being irobserve anc theoreticall possible performanc is much
perfect agreement no pseudo-energies are applied. Howevejarge thar the difference betwee! the various methods This
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Figure 6. Energy perturbations correlate with Hfg induced structciianges in the sodB mRNA. A perturbation vector for the steshénergy model was
calculated to fit the experimentally established structnoelel by Geissmanet al. (35). The dotplot and color annotations are the same as s Ej@ and 4.

suggesl! tha: substantic improvement canno be achieve: by extended to any structural element for which the probabilit
improving the folding algorithn in a genericway but rather ~ can be calculated from the partition function, including
througt more efficieni noise filtering anc pre-processin of the ~ Specific base-pairs which would allow one to analyze also the
ran-datz from the various experimente protocols Although ~ YP€ of experiments presented by Kladwai@! (36).

there is a cleal correlatior of SHAPE reactivitie: anc pair

probabilities it is not straightforwar: to find a simple model =~ ACKNOWLEDGEMENTS

to dESCI’ibl th|5 relationship ThE SHAPE reaCtiVit& measuring Th|s Work was Supported by the Austrian Fonds zur Fbrderung

the local flexibility of a nucleotide seem to be depender on der Wissenschaftlichen Forschung [Schrodinger Fellgovsh

the structura context i.e. the type of loog (hairpin bulge'and  J2966-B12 to S.W.]. We thank Michael Kertesz, Eran Segal

the positior within the loop. It is alsc influencer by tertiary ~ and Howard Chang for helpful discussions, David Mathews

interactions Systemati studie: with differeni classe of RNAs ~ for providing SHAPE data, Ronny Lorenz and Stephan
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noise in more detail Here we use( a simple tresholding

methoc to conver the SHAPE reactivitie: into discret: states
airec or unpaired as input for our algorithm.
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