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Abstract

Current genomic screens for non-coding RNAs (ncRNAs) predict a large num-

ber of genomic regions containing potential structural ncRNAs. The analy-

sis of this data requires highly accurate prediction of ncRNA boundaries and

discrimination of promising candidate ncRNAs from weak predictions. Exist-



S.Will. LocARNA-P 2

ing methods struggle with these goals because such comparative analysis is

based on multiple sequence alignments of orthologous regions and does not

revise these alignments based on sequence and structural similarity. To over-

come this limitation, we systematically fulfill both requirements by efficiently

computing the reliabilities of sequence-structure alignments. The reliability

profiles of alignments provide a versatile tool for the manual and automatic

analysis of ncRNAs. In particular, we improve the boundary prediction of

the widely used non-coding RNA gene finder RNAz by a factor of three from

a median deviation of 47 to 13 nucleotides. Post-processing RNAz predictions

with LocARNA-P allows much stronger discrimination between true and false-

positive RNAz predictions than RNAz’s own evaluation. This improved accuracy,

in this scenario from an AUC of 0.71 to 0.87, significantly reduces the cost of

successive analysis steps. The ready-to-use software tool LocARNA-P produces

high-quality multiple sequence-structure alignments together with associated

reliability information and prediction of accurate boundaries. We provide de-

tailed results, a web server for LocARNA/LocARNA-P, and the software package

with detailed documentation and a pipeline for refining screens for structural

ncRNA at http://www.bioinf.uni-freiburg.de/Supplements/LocARNA-P/.

1 Background

Starting with the discovery of microRNAs (24, 26, 27) and the advent of genome-wide

transcriptomics (44, 6, 2), it has become obvious that RNA’s crucial role in living cells

extends far beyond being a mere template for protein biosynthesis. Indeed, the majority of

transcripts might have primarily regulatory functions (32). Elucidating the functional roles

of many newly discovered non-coding RNAs (ncRNAs) has thus become a central research

interest in molecular biology.

The function of many ncRNAs is determined by their secondary structure rather than

their sequence. Such structural ncRNAs can therefore be detected by their stable and

evolutionary conserved secondary structures. Recent advances in computational RNomics

http://www.bioinf.uni-freiburg.de/Supplements/LocARNA-P/


S.Will. LocARNA-P 3

originated numerous approaches for this purpose (38, 49, 50, 37, 45, 48, 3, 54, 8). Among

these methods, EvoFold (37) and RNAz (50, 51, 16) are efficient enough to be applied to

genome-wide surveys in mammals (37, 51) and other metazoan clades (34, 35).

The fast approaches EvoFold and RNAz, don’t revise the given whole-genome alignment

at all. The idea of revising the alignment for RNA prediction, pioneered by MSARi (8), is

also realized in the EM-based approach CMfinder(54), which extends the idea from local

sequence motif finders such as MEME to the problem of finding local RNA structure motifs.

Due the high computational demands of structurally revising the alignment, CMfinder has

not been applied to complete eukaryotic genomes, but e.g. to a 1% fraction of the human

genome, the ENCODE region, in (47).

Whereas EvoFold applies stochastic context-free grammars (SCFGs), an approach pi-

oneered by qrna (38), RNAz is based on the evaluation of folding thermodynamics and

covariance. Both approaches classify input alignments either as unstructured or as possess-

ing a common RNA secondary structure; in the latter case, the methods predict a consensus

structure of the aligned sequences.

Mainly motivated by efficiency reasons, these approaches rely on multiple sequence

alignments that are constructed without taking structural similarity into account. However,

because RNA structure is often more conserved than sequence, sequence similarity can be

weak even within well-established RNA families. Thus, many ncRNAs cannot be aligned

well by pure sequence-alignment techniques, which fail for structured RNAs at pairwise

sequence identities below 60% (12). Various algorithmic approaches have been introduced

to determine structural similarities and to derive consensus structure patterns for structural

RNAs with low sequence identity (42, 19, 41, 13, 18, 31, 4, 21, 52).

The first practical approaches for multiple structural alignment, such as RNAforester (19)

and MARNA (42), depend on predicted or known secondary structures. In practice, however,

these approaches are limited by the low accuracy of non-comparative structure prediction.

Sankoff’s algorithm (41) provides a general solution to the problem of simultaneously com-

puting an alignment and the common secondary structure of two aligned sequences. In its

full form, the problem requires O(n6) CPU time and O(n4) memory, where n is the length
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of given RNA sequences. This complexity is prohibitive for most practical problems. There

are two variants of the Sankoff algorithms. Programs such as FoldAlign (13, 18), dynalign

(31), and Stemloc-AMA (4) implement an energy model for RNA that is evaluated during

the alignment computation. In contrast, PMcomp (21) and LocARNA (52) use a full-featured

energy model in their pre-computation step. Therefore, they determine a matrix of base

pair probabilities using McCaskill’s algorithm (33) for each input sequence. During the

alignment process, base pair probabilities are used to assess the similarity of the secondary

structures. This strategy saves time during the alignment and overall. Nevertheless the

probabilities guide the simultaneous alignment and folding precisely in accordance with the

RNA energy model.

As its potentially most important application, multiple sequence-structure alignment

suggests itself for overcoming the principle weakness of de-novo prediction of structural

ncRNA that relies on pure sequence alignment. However, there are still two caveats. First,

many approaches need to employ a sliding window technique because the boundaries of

the ncRNAs are not known in advance. This technique can result in poor structure models

due to an inaccurate folding context. Second, these approaches are too demanding on

computational resources to be used for complete genomic screens.

To overcome these limitations, we propose a new pipeline for structural ncRNA gene

finding that employs fast, sequence alignment-based ncRNA finders like RNAz as a first

filter. The found hits are then extended by genomic context and further analyzed using a

novel multiple sequence-structure alignment approach.

Our new alignment method provides a reliability measure for sequence-structure align-

ment that can be employed for several important tasks in this pipeline, namely for 1.)

detecting clusters of structural ncRNAs predicted as putative ncRNA-containing regions

by the ncRNA gene finder; 2.) determining accurate ncRNA boundaries using alignment

reliabilities based on sequence and structural similarity, and 3.) improving the predictive

power of ncRNA gene finding.

The novel method LocARNA-P computes a sequence-structure alignment and associated

local (e.g. column-wise) and global reliability measures. LocARNA-P employs the highly
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accurate scoring model of LocARNA. For determining the reliabilities for large sets of long

RNAs, it is crucial that LocARNA-P preserves the low time and space complexity of LocARNA

for its more involved task.

The low complexity of LocARNA and LocARNA-P results from their use of sparsity at the

structure level. LocARNA (52) introduced this use of sparsity to Sankoff-style approaches.

The same idea is found in FoldAlignM (46) and was later picked up by RAF (10). The

approach of RAF is interesting because it combines sparsity on the structure and sequence

level (this combination first seen in Stemloc (4)) with a lightweight scoring scheme that

significantly improves its efficiency over other Sankoff-style methods (10). With LocARNA-P,

instead of improving efficiency, we introduce the calculation of match probabilities and

reliabilities as a new quality to Sankoff-style alignment.

Computing pairwise match probabilities for sequence-structure alignments has been

discussed previously by Hofacker and Stadler (20) and Harmanci et al. (17). However,

LocARNA-P improves these results in several ways.

• First, the time and space complexity of LocARNA-P is significantly lower when com-

pared to previous approaches, making the tool applicable to large-scale analysis.

• Second, the match probabilities improve the accuracy of multiple alignment and

provide column reliabilities for multiple alignments. In contrast, prior attempts at

sequence-structure match probabilities did not handle alignments with more than two

sequences.

• Third, our method has been applied to genomic-scale data and benchmarked, whereas

prior work presented only a few examples.

Although our evaluation focuses on de novo prediction of structural ncRNA, the same

method can improve experimental ncRNA detection by deep sequencing in two respects.

First, assembling correct ncRNA transcripts from short sequence reads is generally non-

trivial (e.g., see Langenberger et al. (25)). Second, ncRNAs are often transcribed as precur-

sors, which are hard to detect using deep sequencing. In both cases, one can use the same

pipeline that we propose for refining de-novo ncRNA screens. In this case, however, one an-
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alyzes genomic regions covered by short reads, after obtaining orthologous genomic regions

in related organisms from a whole genome alignment. Furthermore, since deep-sequencing

does not distinguish structural and non-structural ncRNAs and RNA motifs, this analy-

sis will yield qualitatively new information about RNA structure in and surrounding the

identified transcripts.

For evaluating our approach, we predicted the gene boundaries on a data set of 287 RNAz

hits in fly (39) that coincide with FlyBase structural ncRNA annotations of Drosophila

melanogaster. In this data set, we improved the boundary prediction of RNAz by a factor of

about three, reducing the median deviation between annotated and predicted boundaries

from 47 nucleotides to only 13 nucleotides. For the purpose of this paper, we refrained from

predicting boundaries for the unannotated loci, which would not strengthen our evaluation.

Our boundary predictions reveal additional information about the genomic context of the

ncRNAs. For instance, the 3’ or 5’ flanking regions that are conserved in sequence and

structures are detected. Visualization of the reliability profiles that underlie our automatic

predictions supports their interpretation by an expert. We study exemplarily and, for

tRNAs, systematically, predictions in flanking regions and observe that they yield true

signals in the majority of cases. Reliability profiles and boundary prediction produce a

powerful measure for discriminating false and true positives in an ncRNA screen. We

show that this measure significantly improves specificity and sensitivity over the currently

used ncRNA probability estimate of RNAz. Due to the large number of ncRNA candidate

predictions from a genomic screen, our approach is highly relevant because it identifies a

subset of best structural ncRNA candidates for subsequent expensive experimental analysis.

2 Results

2.1 Reliability plots

When visualized in the form of a reliability plot, column-wise reliabilities provide a very

intuitive view of the local reliability of the alignment. For the ease of interpretation, we

project the reliability profile to one particular reference sequence of interest. This proved
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useful in all studied applications, particularly when the annotation is known or is to be

generated for the particular sequence.

Figure 1(c) demonstrates how reliability profiles can support the manual curation of

ncRNA alignments. We show sequence and structure reliability along an automatic align-

ment of nine 7SK ncRNAs generated by LocARNA-P. The reliability plot is projected to the

RNA of Xenopus laevis and complemented by a mountain plot of the consensus structure.

The consensus structure, which fits the predicted structure reliabilities well, was obtained

from a large hand-curated alignment of 7SK ncRNAs. The general shape of the reliability

profile is in agreement with the experiences from hand curating the alignment, where the

5’ and 3’ ends of the sequences align very well and columns between positions 150 and 250

are extremely variable (14, 30).

2.2 Locating structural ncRNAs using Reliability Profiles

Given a reliability profile projected to the sequence of the reference genome, we computa-

tionally determine the location of potential ncRNAs. Therefore, we fit a two-step function

of some reliability values a and b such that a value of a indicates a predicted ncRNA locus.

Extending the idea of least squares fitting, the quality of a fit is the sum of square devi-

ations plus a penalty ∆ for each switch between the values a and b. For a given a and b,

the optimal fit is calculated by an exact DP-approach. Instead of fitting all profiles with

the same a and b values, we determine optimal values of a and b for each reliability profile

using gradient descent optimization. This approach is detailed in the Methods section.

Figure 1(a) shows the reliability plot for the microRNA-cluster from position 90800800

to 90801699 of human chromosome 13. In particular, the structural component of the

reliability profile (dark blue) correlates well with the annotated microRNAs, as indicated

by the red line. Fitting the two-step function results in a good prediction of the microRNA

locations (green line). A larger example from 5 sequences with lengths about 5000 is

given in Figure 1(b). The figure profiles the gene gas5, whose introns contain 10 C/D-box

snoRNAs in human (43). Identifying the C/D-box snoRNAs in this large genomic context is

challenging due to their weak conservation signal for both sequence and structure. However,
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Figure 1: Reliability profile plots with annotations. In each profile plot, the dark blue re-
gions indicate structure reliability, the light-blue regions represent sequence reliability, and
the blue line shows the combined column-reliability. In (a) and (b), the known annotation
is shown in red. The green lines result from automatic prediction based on the reliability
profile. a) plot for the LocARNA-P-alignment of the miRNA cluster hg18, chr13, positions
90800800 to 90801699, projected to the human sequence. One can see that the known
microRNAs are easily detected using our method b) Reliability plot for the LocARNA-P-
alignment of gene gas5, which hosts ten C/D-box snoRNAs. This is a challenging example
because C/D-box snoRNA possess only weak (non-stable) structure and poor sequence
conservation. Consequently, CD-box snoRNAs proved to be especially hard to discover
using de novo structural ncRNA-predictors like RNAz. c) plot of an alignment of 9 ncRNAs
from the 7SK ncRNA family projected to the X. laevis sequence. The profile is annotated
with a mountain plot of the consensus structure. Note how the flanks of the mountain plot
and peaks of structure reliability are in good agreement.
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we correctly predicted 8 of the 10 snoRNAs. We like to emphasize that LocARNA-P supports

the computation of these very large instances due to optimally exploiting local folding. For

details see the Supplemental Material.

2.3 Accurate Boundaries of structural ncRNA

A common problem in the de novo prediction of ncRNA is that only approximate loca-

tions of structural RNAs can be identified. This problem is shared even by experimental

approaches for ncRNA detection such as tiling arrays and short read sequencing. We

show that the reliability profile plot combined with automated detection of high-reliability

regions yields accurate boundaries of structural RNA.

In order to verify this claim, we generated a data set of true positive predictions of

a recent RNAz (50) screen (39) in Drosophila melanogaster, which is based on a PECAN

alignment of the 12 Drosophila genomes (7). In this screen, 120 nucleotide long alignment

slices of the whole-genome alignment, called windows, at every 40 nucleotides are evaluated

with RNAz. Each set of overlapping windows with RNAzP ≥ 0.5 in either orientation is

combined into a locus. As true positives, we selected 287 out of the about predicted 42,000

loci that overlap with at least one of the FlyBase-annotated structural non-coding RNAs

in Drosophila melanogaster. For each of the loci, we selected all sequences that have at

most 25% gaps in the whole-genome alignment slice of the locus region. This filter criterion

was proposed by (39) to remove weakly aligned sequences. To enable prediction of ncRNA

boundaries that exceed the RNAz prediction and to add background signal, each sequence

was extended by genomic context. While large context increases the computational cost

of the subsequent re-alignment, its size should significantly exceed the expected deviation

between true ncRNA boundaries and RNAz prediction, which can be estimated from the

annotation (cf. Fig. 2(a)). Thus, we added 100 nucleotides up and down-stream, as long as

we stay in the same syntenic block. For only 9 of the 287 loci, we had to be content with

a shorter “available” context. These extended locus alignments consist of at average 8.5

sequences where the sequences have an average length of about 325 and a maximal length

of 560 nucleotides.
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For each locus, we re-aligned its extended sequences in both orientations and calculated

according alignment reliabilities, both performed simultaneously by LocARNA-P. This re-

sulted in a reliability profile per locus, which we projected to the Drosophila melanogaster

sequence. For predicting boundaries by fitting the two-step function to the profile, we con-

strained the fit to predict exactly one range. The predicted boundaries were then compared

to the boundaries of both the annotated ncRNA and the RNAz locus region.

We compare our predictions with the annotation in FlyBase for the assembly used by

the RNAz screen. Notably, we make a single exception to this rule for microRNAs. Since we

expect to identify their structural precursors instead of the (unstructured) mature miRNA,

we compared our predictions to the pre-miRNA annotations from mirbase.

Figure 2(a) shows the deviation of the boundaries determined by LocARNA-P from the

annotated boundaries in a notched box plot. We measure this deviation as a sum of dif-

ferences between the predicted and annotated 3’-end and 5’-end. Non-overlapping notches

indicate a significant difference in the median because a notch represents the approxi-

mate 95% confidence interval of the median (5). For understanding the dependency on

the strand-orientation, we show medians for analyzing the plus and minus strand or even

the annotated strand, finding no significant differences. However, there is a significant

difference between the RNAz boundaries, and the boundaries detected by LocARNA-P. The

median for RNAz is 47, whereas the median for our method is between 10 and 13 (depending

on the strand orientation). This indicates that significant improvements of the boundary

prediction, as shown in Figure 2(b), are common. We emphasize that this improvement is

even more important for practical applications because RNA folding is well known to be

very context-sensitive.

We investigated cases where the LocARNA-P prediction differs from the given annotation

to a greater extent. Some of these cases are plainly due to incomplete or incorrect anno-

tation. For example, for snoRNA U3 (FlyBase id snoRNA:U3:54Aa) and smnRNA:331

only partial genes are annotated. In the case of SnoRNA:3, the annotation is incorrect for

the 2004 assembly used for the RNAz-screen (39). In the current assembly, however, the

annotation matches the predicted signal.
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Figure 2: Accurate ncRNA boundaries for Drosophilids RNAz screen. a) Deviation from
annotated boundaries. We compare the deviation of RNAz with the deviation of the bound-
aries as determined with our method, predicting for + strands, - strands, or the strands as
annotated. When the notches around the medians do not overlap, there is strong evidence
that the medians differ. Panels b), c), and d) show reliability plots with annotated regions,
RNAz predictions (red) and LocARNA-P predictions (green). b) LocARNA-P precisely locates
the snoRNA:U5:38ABa annotated in FlyBase. c) For tRNA:H:48F our prediction is well
correlated with the precursor (cyan line) as described by Frendewey et al. (11) (FlyBase
annotation). d) In the case of tRNA:N5:42Af, the magenta line shows the tRNA precur-
sor, including the flanking region given by Lofquist and Sharp (29). Here, RNAz indicates
a 3’ extension, whereas LocARNA-P indicates the structure in the 5’ part of the precur-
sor. As shown by Lofquist and Sharp (29), the 5’-flanking regions of the tRNA5Asn genes
differentially arrest RNA polymerase III.
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In many cases, however, the predicted extended signals may correspond to precursors

with conserved structure, as in the case of miRNAs. For tRNAs, we analyzed this source

of incongruence between prediction and annotation in more detail. The tRNAs are known

to undergo processing after being transcribed as precursors. The annotated tRNA “genes”

are always the mature tRNAs. In contrast, the precursor is in almost all cases unknown.

There is no agreement in the literature as to the exact extend of the precursor. Morl and

Marchfelder (36) estimate a length of only 5-15 nucleotides for the 3’-trailer, while recent

deep sequencing data show that this length exceeds often 20 nucleotides (e.g., Lee et al.

(28)). Consistent with these findings, it is not surprising that our method very often pre-

dicts a signal that not only covers the complete mature tRNA, but also extends in both the

5’ and 3’ direction, indicating that the putative precursors may also form structures outside

the range of the mature products of functional importance. In the two examples given in

Figures 2(c) and (d) (respective FlyBase ids tRNA:H:48F and tRNA:N5:42Af), we compare

the predictions to precursors described in the literature. In the case of tRNA:N5:42Af, RNAz

predicts a 3’ extension, whereas LocARNA-P unveils a signal in the 5’ flanking region. The

latter is consistent with the observation (29) that the 5’-flanking regions of the tRNA5Asn

genes differentially arrest RNA polymerase III.

This disagreement between RNAz and LocARNA-P concerning the 5’ and 3’ flanking region

motivated us to look at the length distributions of 5’ and 3’ flanking regions of tRNAs as

predicted by LocARNA-P. If these extensions were only due to random fluctuations, then one

would assume the same distribution for both 5’ and 3’ regions. However, Figure 3 shows

that the distributions are significantly different. Whereas the predicted 3’-ends coincide

well with the mature tRNA, LocARNA-P tends to detect an additional structure signal in

the 5’ region. The non-randomness of this signal strongly suggests that LocARNA-P detects

a true signal for structural conservation in the 5’ part of the tRNA precursors.

2.4 Improving Discrimination Power of ncRNA Screens

All current predictors of structural RNA suffer from a high false discovery rate. In many

cases, e.g. for experimental analysis, one is interested in selecting a small set of high-
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Figure 3: Distribution of predicted lengths of 5’ and 3’ flanking regions for tRNAs. The
figure omits four outliers with 3’-trailers longer than 100. The length distribution suggests
that LocARNA-P detects a true signal in the 5’-leader of tRNAs precursors.

confidence predictions. In an RNAz screen, the most straightforward and common method

for this purpose is to rely on RNAz’s own evaluation and increase the threshold for positive

predictions. Note that RNAz evaluates a locus by the maximal ncRNA class probability

“RNAz max. P” of the contributing windows, since RNAz originally predicts probabilities

that each single window contains “structural RNA” and then combines overlapping windows

with P ≥ 0.5 into a “locus”.

We propose an alternative strategy that re-scores each RNAz prediction based on its

LocARNA-P reliability profile and boundary prediction. We compared the resulting LocARNA-P

discriminator to the currently used RNAz max. P discriminator for discriminating RNAz loci,

which themselves are hits of the RNAz screen. To avoid confusion, we emphasize that this

differs from estimating the false discovery rates of either tool RNAz or LocARNA-P. The re-

sulting Figure 4 shows that the novel strategy retains significantly more true positives for

a given improvement in specificity.

For our experiment, we select a positive data set consisting of the 287 annotated RNAz

loci in fly determined for the previous experiment. For the negative set, we generated 250

RNAz decoy alignments that consist of windows with RNAz P-score ≥ 0.5 by shuffling. For

shuffling, we apply a greedy strategy based on the tool rnazRandomizeAln.pl of RNAz.

The details are described in Methods. We preferred this strategy over a generate and test
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Figure 4: Discriminating ncRNAs. ROC curves for discriminating RNAz loci, which are
positives of an RNAz screen, by RNAz itself (using the max. P value) and after re-scoring with
LocARNA-P by the reliability score. By post-processing de-novo ncRNA screens, LocARNA-P
significantly improves the discriminative power over RNAz.

approach, which is computationally expensive since shuffling a large locus consisting of

several windows will rarely result in a RNAz decoy locus.

The red ROC curve of Figure 4 displays the effect of using a higher RNAz threshold

between 0.5 < pthreshold < 1.0, as commonly used to reduce the false discovery rate. The

green curve shows the characteristic of our reliability based discriminator. For the negative

set, we furthermore extended the decoy loci alignments by their shuffled original alignment

context and obtained the context-extended sequences as described in the previous section

for the positive locus alignments. For positive and negative examples, we computed the

LocARNA-P reliability profile of the corresponding locus. From these profiles, we predicted

boundaries and determined the average column reliability inside and outside of the pre-

dicted boundaries. The reliability-based discriminator is defined as the difference between

average inside and outside reliability.

The discriminative power of the two measures, given as the area under the curve (AUC),

is estimated at 0.71 for RNAz max. P compared to 0.87 for the new reliability-based measure.
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Correlation of reliability The reliability of alignments, as defined in this paper1, is

a novel feature that has not been used in ncRNA-screens before. Thus, we compared

reliability to features that have been previously applied to measure the quality of sequence-

structure alignment within the prediction of ncRNAs. To this end, we investigated how well

certain features, including the average pairwise sequence identity (APSI), the structural

conservation index (SCI (50)), and our new reliability measure, correlate to alignment

quality on a benchmark set of 10-fold (reference) alignments from the Rfam database. For

each benchmark alignment, we re-aligned the sequences using LocARNA-P and compared the

produced alignment with the reference alignment using the compalign score, which refers

to a sum-of-pairs score (SPS) introduced in this specific form with Bralibase 2.1 (53).

We observed that the SCI does not correlate well with the quality of the alignments as

measured by the compalign score. APSI shows better correlation (0.69), which is expected

because sequences with high APSI are much easier to align than sequences with low APSI.

However, the highest correlation (0.78) is achieved by the reliability score. To rule out the

possibility that this correlation is observed only in LocARNA-P-generated alignments, we also

calculated the reliability scores for alignments that were produced but by a second sequence-

structure alignment method (Lara (1)). We found a very strong correlation (0.99) between

the reliabilities for the alignments of the different methods. This finding indicates that

LocARNA-P reliabilities yield a very good general model of sequence structure alignment.

3 Discussion

Finding structurally conserved regions is one of the main tasks in the analysis of non-

coding RNA. Approaches using sequence alignments as input heavily rely on alignment

quality and are thus strongly limited by the low availability of high-quality alignments.

Sankoff-style methods for the simultaneous alignment and folding of the homologous RNA

sequences overcome this limitation and are thus considered the gold standard for that

purpose. However, the biological interpretation of such alignments poses major problems

1Note that the term reliability has been used in the related context of RNA structure prediction before,
albeit obviously with a very different definition (23).
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because straightforward resampling methods, which are routine in assessing the significance

of pairwise sequence alignments, are precluded by their extensive resource consumption.

By defining sequence-structure reliability, we introduced a novel measure of the local

and global quality of sequence-structure alignments. This allows an analysis of the local

quality of computed alignments and, in particular, improves the prediction of ncRNAs.

Column-wise reliabilities that capture the confidence in specific alignment columns are

calculated from match probabilities. Computing base and base pair match reliabilities

allows structured regions to be distinguished from unstructured regions of the alignment

in the form of a reliability profile that allows visual inspection and interpretation.

A score based on reliabilities turned out to be highly correlated with the alignment

quality of sequence-structure alignments, where quality is understood in terms of similarity

to reference alignments measured by the compalign score. The correlation is independent

of whether these alignments were generated by LocARNA-P or other tools. This result

shows that reliability captures general properties of correct sequence-structure alignments.

Remarkably, the structural conservation index (SCI), reported in Gruber et al. (15) as the

best method for detecting conserved secondary structure in sequence alignments, is a much

worse measure of the alignment quality of sequence-structure alignments.

Furthermore, the reliability profiles can even be used to improve the computational

prediction of ncRNA transcripts.

We evaluated the two most important tasks of such an analysis. Albeit we performed

this study for an RNAz-screen, the suggested refinement would as well work for other RNA

predictors and would furthermore support the prediction of structured RNA in transcripts

assembled from RNA-seq data. First, we determined accurate transcript boundaries from

the projected profile. This is of particular importance because an incorrect boundary

prediction compromises all subsequent analysis steps that require a model of the secondary

structure. We show that LocARNA-P improves RNAz predicted boundaries by an average

factor of about three. Second, based on the profile combined with the predicted boundaries,

we computed a new discriminator for ncRNAs. Applied in the post-processing step of an

RNAz screen, this discriminator is significantly stronger in distinguishing true RNAz hits
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from false-positive predictions than the max. P discriminator that is currently proposed

by RNAz for this purpose. This improvement is of particular relevance, because it reduces

the number of ncRNA candidates for subsequent, more expensive, analysis steps.

4 Methods

4.1 Sequence-Structure Reliability

We follow the common pattern of introducing reliability for pairwise alignment, and then

extending the idea to multiple alignments. Initially, we consider two sequences, A and B,

with corresponding base pair probability matrices, PA and PB, respectively. The matri-

ces are usually calculated from the respective sequence by McCaskill’s partition function

approach (33). We are going to compute a high-quality sequence-structure alignment of A

and B together with additional information on the confidence in the individual alignment

columns and the predicted consensus structure. These column-wise reliabilities facilitate

the interpretation of the sequence-structure alignment and allow for further automated

analysis. A sequence-structure alignment is a pair consisting of a sequence alignment A of

A and B and a secondary structure S of A that maximizes a scoring function composed of

sequence similarity and structure similarity. A consists of a set of base matches written as

i ∼ k, where i is a position in A, and k a position in B. The consensus secondary structure

S for an alignment A consists of a set of arc matches (i, j) ∼ (k, l), where i ∼ k ∈ A and

j ∼ l ∈ A are two matches in A, (i, j) is a base pair on sequence A and (k, l) is a base pair

on sequence B.

Our scoring function assigns a similarity value to a pair (A,S). It combines a log-odds

score for the probabilities of matched base pairs with a Ribosum-like scoring of sequential

matches (22) and uses affine gap cost. It provides substantial improvements over the

original scoring function of LocARNA, which has been applied in (52). The scoring function

is described in detail in the Appendix.
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4.2 Match Probabilities

We are going to calculate reliabilities based on match probabilities. Probability-based

reliabilities have been introduced by Probcons (9) for sequence alignment using profile

HMMs, we extend it in the context of sequence-structure alignment. We are going to define

probabilities of single base matches and arc matches in sequence-structure alignments.

Therefore, we define probabilities of pairs (A,S) of alignment and consensus structure.

Such probabilities are defined under the assumption of a Boltzmann distribution over pairs

(A,S) that is based on the scoring of LocARNA.

Computing match probabilities via a statistical mechanics model has been successfully

introduced for sequence alignment by Probalign (40). However, the analogous approach

was not considered for multiple sequence-structure alignment. By assuming a Boltzmann

distribution, our approach differs from methods that obtain probabilities from genera-

tive models such as hidden Markov models (HMMs) or stochastic context free grammars

(SCFGs). Such methods produce structures with probabilities determined by given transi-

tion probabilities. The main advantage of the non-generative approach taken here is that

the underlying similarity scores have a very intuitive semantic.

The probability of a pair of alignment and consensus structure (A,S), written Pr[(A,S)|A,B],

is calculated by dividing the Boltzmann weight exp(−β Sc(A,S)) by ZAB, where Sc de-

notes the scoring function of the previous subsection, the inverse temperature β controls the

distribution of probabilities and the partition function ZAB is the sum over the Boltzmann

weights of all pairs (A,S). Once the probability of an alignment and consensus structure

pair is defined, we can define base match and arc match probabilities. The probability of an

arc match (i, j) ∼ (k, l), where (i, j) ∈ PA and (k, l) ∈ PB, is defined as the sum of all prob-

abilities of pairs (A,S) that contain this match. Similarly, the probability Pr[i ∼ k|A,B]

of a base match i ∼ k is defined as the sum of the probabilities of all alignment consensus

structure pairs matching the two bases Ai and Bk. For later use, we introduce an exclusive

base match probability Pr[i ∼s k|A,B] of a match i ∼ k that is not part of a structural

match.
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4.3 Efficient Calculation of Match Probabilities

The match probabilities are efficiently calculated by LocARNA-P using dynamic program-

ming for computing partition functions inside and outside of subsequence pairs Ai . . . Aj

and Bk . . . Bl. Finally, these partition functions are combined for obtaining probabilities.

The use of inside and outside algorithms for this purpose is well known from stochastic

context-free grammars. However, a naive application of this algorithm results in a very

high time complexity of O(n6) and space complexity of O(n4), where n is the length of

the input sequence. This rapid growth of space and time requirements with the input size

would limit the algorithm to only small instances. As described in detail in the Methods

section, we were able to calculate the match probabilities in a much lower complexity of

O(n4) time and O(n2) space, which is essential for the applicability of the approach in

practice.

4.4 Column Reliabilities

Based on the pairwise match probabilities, we define column reliabilities for a given or gen-

erated multiple alignment A of K sequences S1, . . . , SK . The sequence reliability seqrelA(q)

of a column q and the base pair reliability bprelA(q, q′) of a pair of columns q and q′ are

defined as the sum (over all pairwise alignments) of the base match probabilities associated

with column q, and the arc match probabilities for columns q and q′, respectively:

seqrelA(q) =
1(
K
2

) ∑
1≤a<b≤K

Pr[Āa(q) ∼s Āb(q)|Sa, Sb] (1)

bprelA(q, q′) = (2)

1(
K
2

) ∑
1≤a<b≤K

Pr[(Āa(q), Āa(q′)) ∼ (Āb(q), Āb(q
′))|Sa, Sb],

where Āa(q) is defined as the position in sequence Sa associated with column q, unless

there is no such position. Note that we implicitly ignore terms in the summations where

the functions Āa or Āb are undefined. Finally, in addition to the column-wise sequence

reliability, we define a column-wise structure reliability indicating how reliably the column is



S.Will. LocARNA-P 20

aligned and part of a base pair in the consensus structure: strrelA(q) =
∑

q′<q bprelA(q′, q)+∑
q<q′ bprelA(q, q′).

Finally, the sum seqrelA(q) + ω strrelA(q) defines an overall reliability for column q,

where we apply a factor ω to control the weight of structure. These values will be called

reliability profile of an alignment.

4.5 Predicting Boundaries from a Reliability Profile

The reliability profiles are now used to determine regions of conserved secondary structure.

Formally, let f : {1, . . . , n} → R denote a reliability profile of length n, i.e. f(i) =

seqrelA(q) + ω strrelA(q). We fit a two-step function g to f , such that g approximates

f as good as possible. Therefore we determine constants a and b, such that
∑n

i=1(f(i) −

g(i))2 + δ(f(i − 1), f(i))∆ is minimal for all g : 1, . . . , n → {a, b}, where δ(x, x) = 0 and

δ(x, y) = 1 for x 6= y, ∆ ∈ R is a penalty for switching between the values of g, and

g(0) := a. Basically, we perform a least square distance approximation of f extended by a

penalty term. The larger value of a and b represents the signal level, whereas the smaller

value the background.

For given constants a and b, an optimal function g can be computed by dynamic pro-

gramming. Therefore, we solve the recursion equations

A(i) = (f(i)− a)2 + min(A(i− 1), B(i− 1) + ∆)

B(i) = (f(i)− b)2 + min(A(i− 1) + ∆, B(i− 1)) (3)

with initialization A(0) = 0 and B(0) = 0 for A(n) and B(n) and obtain g by traceback.

For finding optimal constants a and b, we formulate a partition function version of these

equations. We choose to optimize the partition function ZA(n) +ZB(n) instead of the cost

A(n) + B(n), since the partition functions allows computing partial derivations. This

allows finding constants that minimize ZA(n) + ZB(n) by gradient descent optimization.

For sufficiently high β, such constants will also minimize the cost A(n)+B(n). More details

are given in the supplementary information.
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4.6 Computing the Reliability Score of an Alignment

Given is an alignment A. We build on the previous definitions of seqrelA and bprelA, which

refer to match probabilities computed by LocARNA-P from the sequences of the alignment

A.

The reliability score relscA of the multiple alignment A is maxS (relscA(S)) divided by

the length of A, where S denotes a consensus structure for the alignment A and relscA(S)

is the sum of reliabilities ω bprelA(q, q′) over all column pairs (q, q′) in S and seqrelA(q)

over all columns q that are not paired in S. We apply a fixed weight of structure ω ∈ R

in order to weigh structure reliability against sequence reliability. At a weight of ω = 2,

sequence and structure have the same influence, since each structure reliability contribution

consumes two alignment columns. In LocARNA-P, we use a default of ω = 3 to emphasize

the structural component.

The reliability score is computed efficiently by a Nussinov-style dynamic programming

algorithm. Details are given in the Supplemental Material.

4.7 Generating Decoy Locus Alignments

Rose et al. (39) define an RNAz locus alignment as a slice of the 12-flies PECAN whole

genome alignment that is covered by window alignments of at most 120 columns with RNAz

probability of P ≥ 0.5 for either the + or − strand. A decoy locus alignment is covered by

windows with RNAz probability P ≥ 0.5 and has identical length, base composition, and gap

pattern and similar conservation pattern to an existing RNAz locus alignment. However, a

decoy locus alignment is not contained in any genome alignment and therefore cannot be

true positive.

We generate such decoys from true RNAz locus alignments by gentle shuffling as described

in Rose et al. (39). Gentle shuffling randomly permutes alignment columns, but exchanges

only columns with identical gap pattern and similar sequence conservation. We apply gentle

shuffling to successive non-overlapping windows in the locus alignment, but do not shuffle

overlapping windows to maintain the locality of the base composition and conservation

pattern. To speed up the approach for larger loci, we apply a greedy strategy and allow
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several attempts per window (at most 25 times) until RNAz evaluates to P ≥ 0.5. Each

window of the resulting alignment is tested for coverage by RNAz P ≥ 0.5 windows in

exactly the way of Rose et al. Finally, decoy context is generated by gentle shuffling of

original context in the whole genome alignment.

4.8 Benchmarks

We measure the performance of LocARNA-P using the Bralibase 2.1 (53) benchmark set. We

have shown (Suppl. Fig. 4) that there is a significant improvement in the quality of multiple

alignment compared to competing methods. Furthermore, we assessed the properties of

the reliability score in detail. We found that this score is a better predictor of alignment

quality than previously used measures such as average sequence similarity and structure

conservations index (Suppl. Fig. 1). For details, we refer to supplementary material.

Availability and Supplemental Material

At http://www.bioinf.uni-freiburg.de/Supplements/LocARNA-P/, LocARNA-P can be

downloaded as part of the LocARNA software package, which is open source software and

released under the GNU general public license. Documentation and scripts for running

the refinement of an RNAz screen are provided. Furthermore, supplemental material is

available for this article. Additional results, figures and data files can be viewed and

downloaded at the same url.
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Appendix: The LocARNA-P Dynamic Programming Algo-

rithm

In this appendix, we explain dynamic programming algorithm of LocARNA-P and the nec-

essary foundations due to LocARNA in formal detail. Recall that in Methods, we defined

probabilities for matches in the alignment of two RNA sequences A and B with associ-

ated base pair probability matrices PA and PB, respectively. Suitable matrices are usually

obtained from the respective RNA sequence using McCaskill’s algorithm (RNAfold -p).

The probabilities are defined on the basis of the alignment score of LocARNA, by assuming

Boltzmann-distribution of alignment consensus structure pairs. This allows building on the

highly accurate and established LocARNA-score. After describing the LocARNA-score and the

algorithm of LocARNA, we present the algorithm of LocARNA-P, which efficiently computes

these probabilities. The use of these probabilities in a probabilistic consistency transfor-

mation for progressive multiple alignment and iterative alignment refinement is discussed

in the Supplemental Material.

A.1 Preliminaries: RNA Alignment by LocARNA

LocARNA is a Sankoff-style algorithm, which simultaneously folds and aligns RNA sequences.

The original Sankoff algorithm (41) provides a general solution to the problem of simul-

taneously computing an alignment and a common secondary structure of the two aligned

sequences. Without heuristic restrictions, the problem requires O(n6) CPU time and O(n4)

memory, where n is length of the RNA sequences to be aligned. In contrast to Sankoff-

style methods like FoldAlign (13, 18) and dynalign (31), PMcomp (21) and LocARNA em-

ploy structure models of the RNAs, which are reasonably obtained using McCaskill’s algo-

rithm (33) on the basis of a full-featured energy model.

Alignment Score. Define the single-stranded part of the alignment, denoted by As, by:

if i ∼ k ∈ As then there is no pair j ∼ l such that (i, j) ∼ (k, l) ∈ S or (j, i) ∼ (k, l) ∈ S.
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LocARNA determines the pair (A,S) that maximizes the score function

Sc(A,S) =
∑

(i,j)∼(k,l)∈S

τ(i, j; k, l) +
∑

i∼k∈As

σ(i, k)−Ngapγ, (4)

where τ(i, j; k, l) is the score for matching the arcs (i, j) and (k, l), σ(i, k) is the similarity

score for a (mis)match of positions i and k in A and B respectively, γ is the gap score

parameter and Ngap is the number of insertions and deletions in the alignment A. Although

we define and henceforth discuss only linear gap cost to ease presentation, the actual

LocARNA-score features affine gap cost, which is supported by LocARNA, as well as by our

implementation of LocARNA-P, with very moderate space and time overhead.

We use arc-match scores τ(i, j; k, l) := ΨA
ij +ΨB

kl, where ΨA
ij and ΨB

kl are base pair scores

that are derived from the base pairing probability matrices of the two individual sequences.

More precisely, we define

ΨX
ij =


log

PX
ij

pX0

/
log 1

pX0
if PX

ij ≥ p∗

−∞ otherwise,

(5)

where PX
ij is equilibrium pairing probability for sequence X ∈ {A,B} as computed by

McCaskill’s algorithm (33), pX0 is the expected probability for a pairing to occur at random

in sequence X and p∗ is the cut-off probability, below which the arcs are ignored. Formally,

this is expressed by assigning −∞ as weight in this case. We call base pairs with probability

greater or equal p∗ significant. The term logPX
ij /pX0 is the log-odds score for having a specific

base pairing against the null model of a random pairing, and log 1/pX0 is a normalization

factor that transforms the weights to a maximum of 1. This normalization is introduced

to ease balancing the sequence score against the structure score.

LocARNA-P uses exactly the same scoring function as LocARNA. However, it does not

maximize the score according to this function, but computes match probabilities based on

this scoring function. How match probabilities relate to the scoring function is detailed in

the corresponding paragraph in Methods.
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Efficient Alignment Using Base Pair Probabilities. LocARNA maximizes its score

by efficiently evaluating a recursion equation using dynamic programming. The essential

improvement of LocARNA over PMcomp is through the consideration of only significant base

pairs in predicted structures. As we argued earlier (cf. Will et al. (52)), by filtering we keep

only O(n) significant base pairs in each sequence and only O(1) that share a given right

end. Consequently, LocARNA improves the time complexity of PMcomp from O(n6) to O(n4)

and, even more importantly, the space complexity from O(n4) to O(n2). The favorable

time and space complexity of LocARNA is retained when extending the approach for the

computation of match probabilities in LocARNA-P. Because of this structural analogy of the

algorithms, we review the recursion structure of LocARNA in detail.

Both PMcomp and LocARNA define two 4-dimensional matrices M and D that are filled

recursively. Mi j;k l is defined as the maximal score of an alignment of subsequences Ai..j

and Bk..l. Di j;k l is the best score of an alignment of Ai..j and Bk..l with additional condition

that the base pairs (i, j) and (k, l) are matched. The LocARNA/PMcomp recursion can be

written in the form Mi i−1;k k−1 = 0,

Mi j;k l = max



Mi j−1;k l−1 + σ(j, l)

Mi j−1;k l + γ

Mi j;k l−1 + γ

maxj′l′Mi j′−1;k l′−1 +Dj′ j;l′ l

Di j;k l = Mi+1 j+1;k−1 l−1 + τ(i, j; k, l).

In contrast to PMcomp, LocARNA evaluates this recursion keeping only O(n2) entries in

memory at any time. Due to the restriction to significant base pairs, the fourth case of the

M recursion runs over only O(1) pairs of significant base pairs and consequently the total

algorithm has O(n4) time complexity.

Regarding the space complexity, we first observe that the D-entries are needed only for

matches (i, j) ∼ (k, l) of significant base pairs., i.e. only O(n2) many. Thus, the D-matrix

can be easily represented by a 2D-matrix indexed by base pairs. Second, due to the special
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structure of the M -recursion, which fixes the left subsequence ends i and k, we can compute

all entries Di ·;k · recursing only to entries Mi+1 ·;k+1 ·.
2 Thus, a single O(n2) sized M -matrix

is sufficient for the computation of all Di ·;k ·, since the matrix can be reused for all left ends

i and k.

An extension that explicitly incorporates base pair stacking without increasing com-

plexity is described by Bompfunewerer et al. (3).

A.2 Partition Function Version of LocARNA

The calculation of alignment match probabilities by LocARNA-P is based on calculating par-

tition functions. Recall that the probability of a pair of alignment and consensus structure

(A,S) is given by

Pr[(A,S)|A,B] = exp(−β Sc(A,S))Z−1AB

where the partition function ZAB for sequences A and B is defined as

ZAB :=
∑

(A,S) of A,B

exp(−β Sc(A,S))

and β is a parameter that controls the distribution, called the inverse temperature.

Calculating match probabilities in LocARNA-P consists of three phases, which are compa-

rable to the algorithm of Hofacker and Stadler (20), but go beyond this algorithm in terms

of complexity. First, an inside dynamic programming algorithm computes inside partition

functions. This part of the LocARNA-P algorithm has the same recursion structure as the

LocARNA algorithm. Second, a corresponding outside algorithm calculates outside partition

functions. We devise a dynamic programming algorithm that computes these values in the

given complexity envelope. Finally, we show how to obtain the single base and base pair

match probabilities. Again, this phase remains within the complexity bounds.

2We introduce notation using index · as wildcard. For example, Mi+1 ·;k+1 · refers to the matrix slice
of entries Mi+1 j;k+1 l, where i + 1 ≤ j ≤ n and k + 1 ≤ l ≤ m. We freely use analogous notation in the
following.
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A.2.1 Inside Algorithm

We define two four-dimensional matrices

ZM
i j;k l =

∑


exp(−β Sc(A,S))

A alignment of

Ai..j and Bk..l,

S consensus secondary

structure for A


and

ZD
i j;k l =

∑


exp(−β Sc(A,S))

A alignment of

Ai..j and Bk..l,

S consensus secondary

structure for A,

where (i, j) ∼ (k, l) ∈ S


.

Note that ZD
i j;k l is valid (and later has to be computed) only for significant3 base pairs

(i, j) and (k, l).

The matrix entries are recursively computed by following equations (cf. Fig. 5(a)):

ZM
i i−1;k k−1 = 1

ZM
i j;k l =

∑


ZM
i j−1;k l−1 · exp(−βσ(j, l))

ZM
i j−1;k l · exp(−βγ)

ZM
i j;k l−1 · exp(−βγ)∑
j′l′ Z

M
i j′−1;k l′−1 · ZD

j′ j;l′ l

ZD
i j;k l = ZM

i+1 j+1;k−1 l−1 · exp(−βτ(i, j; k, l)).

These equations are a direct translation of the LocARNA recursion to its partition function

variant. The translation is straightforward because the decomposition of the LocARNA

3i.e. significant according to respective base pair probability matrices PA and PB
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a)

b)

Figure 5: Inside and outside decomposition by the recursions. The blue regions correspond
to the matrix ZM and the green region to ZD. The red regions correspond to entries in
Z ′M ; the yellow region represents an entry of Z ′D. a) Inside. b) Outside.

recursion is unambiguous.

The total partition function is obtained as ZAB = ZM
1n;1m.

A good space and time complexity is achieved using the same ideas as in the original

LocARNA recursion for maximizing the score. When evaluating the recursion for ZM
1n;1m,

we compute and store the entries ZD
i j;k l for significant base pairs (i, j) and (k, l). A com-

putation order of increasing j − i avoids dependency conflicts. The entries require O(n2)

space due to the number of significant base pairs. Note that the matrix ZD is conveniently

implemented as a 2-dimensional array that is indexed with base pairs. One entry ZD
i j;k l de-

pends only on entries of the matrix slice ZM
i ·;k · and other values in ZD. Therefore, efficient

computation requires only O(n2) additional space for the matrix slice. The matrix slice

is implemented as a two-dimensional array, which is reused for the computation of each

ZD-entry. Time complexity is only O(n4), since computing one entry in ZM is performed

in time O(1/p∗) = O(1), when only significant base pairs are considered.

The outside algorithm needs to access ZD, hence this matrix is kept in memory through-

out.

A.2.2 Outside Algorithm

The outside algorithm computes partition functions of alignments outside of subsequences

Ai..j and Bk..l and corresponding consensus structures. An alignment of A and B outside

i..j and k..l is an alignment of A and B containing only edges i′ ∼ k′, where i′ < i and

k′ < k or j < i′ and l < k′.
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We define

Z ′Mi j;k l =
∑


exp(−β Sc(A,S))

A alignment of A and B

outside i..j and k..l,

S consensus secondary

structure for A.


Z ′Di j;k l is valid only for i,j,k, and l, where significant base pairs (i, j) and (k, l) exist for

PA and PB respectively. Then, it is defined as Z ′Di j;k l := Z ′Mi j;k l and is understood as the

partition function outside of the match of base pairs (i, j) and (k, l). Note that we introduce

the extra matrix Z ′D for preparing the space optimization.

The matrix entries are recursively computed after initialization Z ′Min;km = ZM
1 i−1;1 l−1 by

Z ′Mi j;k l =
∑



Z ′Mi j+1;k l+1 · exp(−βσ(j, l))

Z ′Mi j+1;k l · exp(−βγ)

Z ′Mi j;k l+1 · exp(−βγ)∑
i′<i,k′<k Z

′D
i′ j+1;k′ l+1 · ZM

i′+1 i−1;k′+1 k−1

· exp(−βτ(i′, j + 1; k′, l + 1))∑
j′>j,l′>l Z

′M
i j′;k l′ · ZD

j+1 j′;l+1 l′

and Z ′Di j;k l = Z ′Mi j;k l. An illustration of the underlying decomposition is given in Figure 5(b).

So far, the recursion follows the lines of Hofacker and Stadler (20). However, we restruc-

ture the evaluation of these recursions in LocARNA-P in order to maintain the complexity

bounds. For initialization we use the inside matrix slice ZM
1 ·;1 ·, which can be recomputed

in O(n2) time.4

Then, we compute all entries Z ′Di j;k l for significant base pairs (i, j) and (k, l) in the

order from outside to inside, i.e. for decreasing distances j − i. As in the case of the inside

partition functions, Z ′D is implemented as a two-dimensional array of size O(n2). For

4In our implementation, we skip this recomputation, since the matrix is still available from the last step
of the inside algorithm.
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obtaining all entries Z ′Di ·;k ·, we fill a matrix slice Z ′Mi ·;k ·. During this computation for fixed

i and k, we recurse to four different kind of matrix entries. First and second, we recurse

to entries of matrices Z ′D and ZD. Both are maintained in O(n2) space and dependencies

are resolved due to computation order. The same holds for the third kind of entries in the

matrix slice Z ′Mi ·;k ·, where dependencies are resolved by computation of entries Z ′Mi j;k l in the

order of decreasing j and l. However, there is a fourth kind of entry, namely those of the

form ZM
· i;· k. This matrix slice is recomputed in O(n2) time each time before we start filling

a matrix slice Z ′Mi ·;k ·. Clearly, this slice adds another space of O(n2). The space for the

matrix slices Z ′Mi ·;k · and ZM
· i;· k is reused for each left ends i and k of significant base pairs.

Despite of the necessary recomputation of slices ZM
· i;· k the time complexity is O(n4).

Here, we argue again that summations run only over pairs of significant arcs and conse-

quently take constant time.

A.2.3 Calculation of Alignment Edge Probabilities

The probability of a structural alignment edge is easily computed as

P ((i, j) ∼ (k, l)|A,B) =
1

ZAB
· ZD

i j;k l · Z ′Di j;k l

from the efficiently computed matrices ZD and Z ′D.

Computing the probabilities of base matches requires a case distinction on the “im-

mediately enclosing” arc match (i, j) ∼ (k, l) of a base match x ∼ y. P (x ∼ y|A,B) is

efficiently computed as

exp(−βσ(x, y))

ZAB


∑

(i,j)∼(k,l)


Z ′Di j;k l

· exp(−βτ(i, j; k, l))

·ZM
i+1x−1;k+1 y−1

·ZM
x+1 j−1;y+1 l−1


+ZM

1x−1;1 y−1 · ZM
x+1n;y+1m


. (6)

Note that we need to cover the case of no enclosing arc match explicitly.
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The quadratic space envelope requires recomputation of ZM
i+1 ·;k+1 · and ZM

· k−1;· l−1, for

each (i, j) ∼ (k, l). Given ZD, all ZM
i+1 ·;k+1 · can be clearly recomputed in O(n2). Note

that also all ZM
· k−1;· l−1 can be recomputed in O(n2) by a right-reducing variant of the given

left-reducing recursion for the matrix ZM .

For efficient evaluation, one regroups the computation by iterating over all (i, j) ∼ (k, l)

and accumulating the probability contributions of each arc pair to all P (x ∼ y|A,B). In

this way, recomputation causes a time complexity of O(n4) for the computation of all base

match probabilities. However, this computation is still an expensive step of the entire

algorithm. Considering only pairs of arcs with a match probability larger than or equal

to p∗ (or some independently chosen cut-off probability) is a reasonable, easily applicable

heuristic that reduces the cost of this computation step in practice.
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