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Abstract

Recently a folding algorithm of topological RNA pseudoknot structures has been
presented [24]. This algorithm folds single stranded γ-structures, i.e. RNA struc-
tures composed by distinct motifs of bounded topological genus. In this paper,
we study the two backbone analogue of γ-structures: the RNA γ-interaction
structures. These are RNA-RNA interaction structures that are constructed by
a finite number of building blocks over two and one backbone having genus at
most γ. Properties of γ-interaction structures are of practical interest since they
are the targets of topological interaction structure folding algorithms. We show
that the generating function of γ-interaction structures is algebraic, which im-
plies that the numbers of interaction structures can be computed recursively. We
furthermore obtain simple asymptotic formulas for 0- and 1-interaction struc-
tures. The simplest class are the 0-interaction structures, which represent the
two backbone analogue of secondary structures.

Keywords: RNA-RNA interaction, γ-interaction structure, Shape, Symbolic
enumeration, Singularity analysis, RNA secondary structure
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1. Introduction

The fact that nucleic acids are capable of recognizing other nucleic acids
with very high specificity by means of complementary base pairing is the ba-
sis of many basic laboratory techniques starting from designed RNA and DNA
primers. Not surprisingly, direct interactions of nucleic acids are also an impor-
tant mechanism in gene regulation. The most prominent examples are certainly
microRNAs and siRNAs which bind their targets by forming more or less per-
fect helical regions. More complex structure of the RNA-RNA binding are the
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rule for snoRNAs and in particular for a wide variety of small bacterial sRNAs.
RNA-RNA binding is not limited to small structured RNAs addressing protein-
coding mRNAs. In many cases, the regulatory effect of bacterial sRNA-mRNA
interactions can be understood in terms of the underlying interaction structure.
Namely, depending on the location of the binding site conformational changes
can lead to the sequestration or exposure of the Shine-Dalgarno sequence and
hence disable or enable translation.

Interactions between nucleic acids can be understood to a good approxima-
tion at the level of secondary structures (patterns of base pairs) or extended
secondary structures. From a technical point of view, therefore the analysis,
prediction, and comparison of RNA-RNA and RNA-DNA interaction struc-
tures is formalized as a suite of related combinatorial (optimization) problems
that make genome-wide studies computationally feasible and sets RNA bioinfor-
matics apart from other areas of structural biology in which three-dimensional
shapes and atomic detail cannot be neglected as easily. Despite this favorable
starting point and the success of the combinatorial approach to structures of
individual nucleic acid molecules, we nevertheless lack both theoretical insights
and practical predictive power in the realm of interactions.

The simplest approach for folding RNA-RNA interaction structures con-
catenates two (or more) interacting sequences one after another remembering
the specific merge point (cut-point) and then employs the standard secondary
structure folding algorithm on a single strand. This approach falls short pre-
dicting many genuine features such as kissing-hairpin loops. The paradigm of
concatenation has also been generalized to include cross-serial interactions [25].
The resulting model, however, still does not generate all relevant interaction
structures [5]. An alternative is to neglect any internal base pairings in either
strand, i.e., to compute the minimum free energy (MFE) secondary structure of
hybridization of otherwise unstructured RNAs. [16, 15] and [6] restrict interac-
tions to a single interval that remains unpaired in the secondary structure for
each partner.

A different approach was taken independently by [23] and [1] who proposed
MFE folding algorithms for predicting the AP-structure of two interacting RNA
molecules. In this model, the intramolecular structures of each partner are
pseudoknot-free, the intermolecular binding pairs are non-crossing, and there is
an ad-hoc exclusion of so called “zig-zag” motifs. The RNA-RNA interaction
structures of [11, 1, 9, 3] have the following features: (a) when drawing the
two backbones on top of each other, all base pairs are non-crossing, i.e., no
pseudoknots formed by internal or external arcs are allowed and (b) zig-zag
motifs are disallowed.

In this paper we consider a novel filtration of RNA-RNA interaction struc-
tures. This filtration is based on the topological genus of certain motifs con-
tained therein. The classification and expansion of pseudoknotted RNA struc-
tures in terms of the topological genus of an associated fatgraph or double line
graph were first proposed by [18] and [4], although fatgraphs were applied to
RNA secondary structures already by [22] and [19]. The first enumerative re-
sults initiated by [18, 26] are an application of matrix models from theoretical
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physics. Genus as well as other topological invariants of fatgraphs were intro-
duced and studied as descriptors of proteins in [21].

In [24], RNA γ-structures were introduced. The idea of γ-structures is to
consider RNA structures obtained by building blocks, having topological genus
at most γ. From this point of view, RNA secondary structures can be seen to be
obtained by the building block that is simply an arc by means of concatenation
and nesting. Accordingly, secondary structures are equivalent to 0-structures
over one backbone. We call these blocks in case of genus greater or equal to 1
irreducible shadows. In this sense, topological genus controls the complexity of
the cross-serial interactions expressed in these irreducible shadows. In [24] but
already implicit in [27], it was proved that for any genus, there are only finitely
many irreducible shadows.

RNA interaction structures of fixed topological genus [2] have, as their one
backbone counterparts, only finitely many irreducible shadows. Following the
identification of these [2] develops the concept of RNA γ-interaction structures.
Note that the genus of γ-interaction structures is not fixed. For the simplest
class, the 0-interaction structures, we already have in anticipation of folding
algorithms an unambiguous grammars [2], see Fig. 1. While genus zero struc-
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Fig. 1: An unambiguous grammar of 0-interaction structures, see [2] for details.

tures are exactly RNA secondary structure that only contain noncrossing arcs,
genus zero interaction structures exhibit crossings, see Fig. 1. Such cross serial
interactions however can only occur for exterior arcs, i.e. arcs that connect the
two backbones.

The idea of topological RNA interaction structures is a topic of considerable
practical interest, since RNA interaction structures that do not belong to the
AP-class exist. For instance, the integral RNA (hTER) of the human telomerase
ribonucleoprotein has a conserved secondary structure that contains a potential
pseudoknot [13]. There is evidence that the two conserved complementary se-
quences of one stem of the hTER pseudoknot domain can pair intermolecularly
in vitro, and that formation of this stem as part of a novel “transpseudoknot”
is required for the telomerase to be active in its dimeric form, see Fig. 2.

Our main result is the computation of the generating function of γ-interaction
structures. To prove this, we employ γ-structures over one backbone without
isolated points (γ-matchings), whose generating function, Hγ(u), was derived in
[8]. One key ingredient in the computation is a new polynomial, Ig,1(z) whose
coefficients are the numbers of irreducible shadows of genus g over one back-

3



U U U U C A C U U U
G
C G

U
C A U U C A (N)8 A A A

A GA A GU GA A A A YGU A A GU

U A U

C U

C UU (N)7 A A

A GA Y GU AA GU U U U G C

A A A C C G CC
U A

8

3705
3694

3688

43 75 105

4529
4522

4515

5’ 5’3’ 3’

3’ 5’ 3’ 5’

3’5’

5’3’

(A)

(B)

Fig. 2: (A) Homo sapiens ACA27 snoRNA. This H/ACA box RNA was cloned [12, 17]
from a HeLa cell extract immunoprecipitated with an anti-GAR1 antibody. (B) The
structure contains two crossing hybrids, which cannot be found in AP-structures.

bone. We develop here the two backbone analogues of these polynomials and
use them as cornerstones of our combinatorial constructions. In Theorem 3 we
prove that the generating function of γ-interaction structures is given by

Qγ(u) =
H2

γ(u) ·
(

uH2
γ(u) +

∑

g≤γ Ig,2

(

u·H2

γ
(u)

1−u

))

1 − uH2
γ(u) −∑g≤γ Ig,2

(

u·H2
γ
(u)

1−u

) ,

where the Ig,2(u) are the above mentioned polynomials whose coefficients count
certain diagrams of genus g over two backbones.

2. Background and notations

2.1. Diagrams

A diagram is a labeled graph over the vertex set [n] = {1, . . . , n} in which
each vertex has degree ≤ 3, represented by drawing its vertices in a horizontal
line and its edges (i, j), where i < j, in the upper half-plane. A backbone is a
sequence of consecutive integers contained in [n]. A diagram over b backbones
is a diagram together with a partition of [n] into b backbones.

An interval [i, i + 1] is a gap interval if there exists a pair of subsequent
backbones B1 and B2 such that i(j) is the rightmost(leftmost) vertex of B1(B2).
The vertex i is referred to as cut vertex. There are of course exactly (b − 1)
such cut vertices.

We call backbone edges B-arcs and any other edge simply an arc. We shall
distinguish exterior and interior arcs, where the former connect different back-
bones and the latter are within a specific one. Diagrams over multiple backbones
without exterior arcs are simply disjoint unions of diagrams over one backbone.

The vertices and arcs of a diagram correspond to nucleotides and base pairs,
respectively. For a diagram over b backbones, the leftmost vertex of each back-
bone denotes the 5′ end of the RNA sequence, while the rightmost vertex denotes
the 3′ end.
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The particular case b = 2 is referred to as RNA interaction structures [10, 11].
As mentioned above, interaction structures are oftentimes represented alterna-
tively by drawing the two backbones R and S on top of each other, indexing
the vertices R1 to be the 5′ end of R and S1 to be the 3′ of S. In the following
we shall denote the set of diagrams over one and two backbones by D and E,
respectively.

A vertex i is isolated if it is not incident to any arc (except of backbone
arcs). A diagram is connected if and only if it is connected as a combinatorial
graph (i.e. employing arcs as well as backbone arcs). A diagram that does not
contain any isolated vertices is called a matching, see Fig. 3.

An interior stack of length τ on [i, j] = {i, i+1, . . . , j−1, j} denoted by SIτ
i,j

is a maximal set (with respect to set inclusion) of exactly τ “parallel” interior
arcs, namely

((i, j), (i + 1, j − 1), . . . , (i + (τ − 1), j − (τ − 1))).

Furthermore, an interior stack is τ -canonical if it contains at least τ interior
arcs. Exterior stacks on [i, j] (SEi,j) and τ -canonical exterior stacks, SEτ

i,j , can

be similarly defined. We oftentimes simply write stack, ST k
i,j, on [i, j] of length

k if its particular type is immaterial. A stack ST k
i,j on [i, j] of length k naturally

induces (k − 1) pairs of intervals of the form

([i + ℓ, i + ℓ + 1], [j − ℓ − 1, j − ℓ]) where 0 ≤ ℓ ≤ k − 2.

Any of these 2(k− 1) intervals is referred to as a P -interval. Any interval other
than a gap or P -interval is called a σ interval. Clearly, a diagram over [n],
contains (n − 1) intervals and we distinguish the three types: gap intervals,
P -intervals and σ-interval, see Fig. 3.

1 2 3 4 65 7 118 9 10 1412 13 15 16

{{ {{ { { {{{ { { { {{ {

P P P G P P P PP G

Fig. 3: The three types of intervals: gap intervals (G), σ-intervals (σ) and P -intervals
(P).

Let ≺ be the partial order on arcs given by (i, j) ≺ (i′, j′) if and only if i′ ≤ i
and j ≤ j′. Any diagram has a unique set of maximal arcs, cf. Fig. 4.

2.2. From diagrams to topological surfaces

One approach for deriving meaningful filtration of RNA structure is to pass
from diagrams to topological surfaces [14]. It is natural to make this transition
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1 2 3 4 65 7 118 9 10 1412 13

Fig. 4: Maximal arcs: the maximal arcs (1, 6), (3, 8) and (9, 14) of a diagram of [14]
(bold).

from combinatorics to topology via fatgraphs [21, 20]. A fatgraph G, sometimes
also called “ribbon graph” or “map”, is a graph G together with a collection of
cyclic orderings, called a fattening, one such ordering on the half-edges incident
on each vertex. Each fatgraph G determines an oriented surface F (G) as follows:
let V (G) be the set of G-vertices and E(G) be the set of G-edges. For each
v ∈ V (G), consider an oriented surface isomorphic to a polygon Pv with 2k
sides containing v in its interior where k is the valence of v. The incident edges
of v are also incident to a univalent vertex contained in alternating sides of Pv,
which are identified with the incident half-edges in the natural way so that the
induced counter-clockwise cyclic ordering on the boundary of Pv agrees with
the fattening of G about v. The surface F (G) is the quotient of the disjoint
union ⊔v∈V (G)Pv, where the frontier edges, which are oriented with the polygons
on their left, are identified by an orientation-reversing homeomorphism if the
corresponding half-edges lie in a common edge of G. This defines the oriented
surface F (G), which is connected if and only if G is and is uniquely determined
in this case by its genus g = g(G) ≥ 0 and number r = r(G) ≥ 1 of boundary
components. Since F (G) contains G as a deformation retract, they share the
Euler characteristic v − e, and the genus of F (G) is given by 2− 2g− r = v− e.

For an RNA diagram, we may draw a representation as usual so that the
backbone is a horizontal line oriented from left to right, and the arcs lie in the
upper half-plane. This determines a unique fattening on any diagram, cf. the
leftmost two panels in Fig. 5 for the fatgraph and its corresponding surface.
Each boundary component of F (G) determines a closed edge-path or cycle on
G, oriented with the surface lying on its left. In particular, a neighborhood
of each edge inherits an orientation from that of F (G) which combine to give
the oriented cycles as depicted in the third panel of Fig. 5. Without affecting
topological type of the constructed surface, one may collapse each backbone to
a single vertex with the induced fattening called the polygonal model of the
RNA, as illustrated in the rightmost panels in Fig. 5. It is the orientation of
each backbone from the 5’end to the 3′ end that allows us to transform the
fatgraph of an RNA-structure or RNA-interaction into a fatgraph with one or
two vertices.

This backbone-collapse preserves orientation, Euler characteristic and genus
by construction. It is reversible by inflating each vertex to form a backbone.
Using the collapsed fatgraph representation, we see that for a connected diagram
over b backbones, the genus g of the surface (with boundary) is determined by
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(A)
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Fig. 5: (A) The fatgraph of a diagram and its reduction to a single vertex. Contracting
the backbone of a diagram into a single vertex decreases the length of the boundary
components and preserves the genus. (B) Inflation of edges and vertices to ribbons
and discs, as well as walking along the boundary components. Here we have six
vertices, seven edges and one boundary component. The corresponding surface has
Euler characteristic χ = v − e = −1 and g = 1. At the last step, we collapse each
backbone into a single disc again preserving genus. The backbone of the polymer can
be recovered by inflating each disk to a backbone segment.

the number n of arcs as well as the number r of boundary components, namely,
2 − 2g − r = v − e = b − n, cf. Fig. 5.

Diagrams over one and two backbones are related by gluing, i.e., we have
the mapping

α : E → D,

where α(E) is obtained by keeping all arcs in E and connecting the 3′ end of R
and the 5′ end of S, cf. Fig. 6 (A).

In addition to gluing, there is another mapping: given two diagrams over two
backbones, E1, E2 ∈ E we can insert E2 into the gap of E1 by concatenating the
backbones R2 and R1 and S1 and S2 preserving orientation.; see Figure 6 (B).
This composition is again a diagram over two backbones denoted by E1 • E2:

µ : E × E −→ E, µ(E1, E2) = E1 • E2. (2.1)

It is straightforward to see that • is an associative product with unit given by
the diagram over two empty backbones. The product • is not commutative.

2.3. Shadows

A shadow is a diagram with no non-crossing arcs or isolated vertices in which
each stack has size one. The shadow of a diagram is obtained by removing all
non-crossing arcs, deleting all isolated vertices and collapsing each induced stack
to a single arc cf. Fig. 7. We shall denote the shadow of a diagram X by sd(X),
note that sd2(X) = sd(X). Projecting into the shadow does not affect genus,
i.e., g(X) = g(sd(X)). In case there are no crossing arcs, sd(X) becomes an
empty diagram on the same number of backbones as X as in Figure 7 (C).
By definition, any empty backbone contributes one boundary component. For
example, for a diagram X over b backbones that contains no crossing arcs, sd(X)
is a sequence of b empty backbones with b boundary components.
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Fig. 6: (A) Mapping a diagram over two backbones into a diagram over one backbone
by gluing. (B) the product •.

Theorem 1. [2]. A shadow over two backbones has the following properties:
(a) a shadow of genus g ≥ 1 over two backbones contains at least (2g + 1) and
at most 6(g +1)−2 arcs; a shadow of genus 0 has at least 2 and at most 4 arcs.
in particular, the set of such shadows is finite;
(b) for any (2g + 1) ≤ ℓ ≤ 6(g + 1) − 2 in case of g ≥ 1 and 2 ≤ ℓ ≤ 4 in case
of g = 0, there exists some shadow over two backbones with genus g containing
exactly ℓ arcs.

2.4. Irreducibility

A diagram E over b backbones is called irreducible if and only if it is con-
nected and for any two arcs, α1, αk contained in E, there exists a sequence of
arcs (α1, α2, . . . , αk−1, αk) such that (αi, αi+1) are crossing. As proved in [2],
there is the following corollary of Theorem 1.

Corollary 1. An irreducible shadow having genus g = 0 over two backbones
contains at least 2 and at most 4 arcs, and for and 2 ≤ ℓ ≤ 4, there exists an
irreducible shadow of genus g = 0 over two backbones having exactly ℓ arcs. An
irreducible shadow having genus g ≥ 1 has the following properties:
(a) every irreducible shadow with genus g over two backbones contains at least
2g + 1 and at most 6(g + 1) − 2 arcs;
(b) for arbitrary genus g and any 2g+1 ≤ ℓ ≤ 6g−2, there exists an irreducible
shadow of genus g over one backbone having exactly ℓ arcs.

Let X be a diagram. We call S′ an irreducible shadow of X (irreducible X-
shadow) if and only if S′ is an irreducible shadow and any arc in S′ is contained
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( )B
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Fig. 7: Shadows: (A) a diagram over one backbone and its shadow, (B) a diagram
over two backbones whose shadow is again a diagram over two backbones and (C) a
diagram whose shadow with an empty backbone.

in X . S′ is a (g, b, m)-shadow if S′ is a diagram over b backbones having genus
g and m arcs. The set of irreducible (g, b, m)-shadows is denoted by Ig,b,m. Let
Ig,b = ∪mIg,b,m.

According to Theorem 1, the generating function Ig,b(u) =
∑

ig,b(m)um of
the combinatorial class Ig,b is a polynomial. For 0 ≤ g ≤ 1 and 1 ≤ b ≤ 2, we
explicitly list the generating polynomials for Ig,b(u) as follows.

I1,1(z) = z2 + 2z3 + z4,

I2,1(z) = 17z4 + 160z5 + 566z6 + 1004z7 + 961z8 + 476z9 + 96z10,

I0,2(u) = 3u2 + 3u3 + u4,

I1,2(u) = 11u3 + 137u4 + 656u5 + 1520u6 + 1951u7 + 1456u8 + 572u9 + 96u10.

We display the seven irreducible shadows over two backbones of genus 0 in
Fig. 8.

Fig. 8: There are exactly seven irreducible shadows over two backbones of genus 0.
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2.5. γ-structures

A diagram is a γ-structure if and only if it is connected and all its irreducible
shadows have genus at most γ. A γ-matching is a γ-structure which is also a
matching. The combinatorial classes of γ-matchings over one and two backbones
are denoted by Hγ and Qγ respectively. We also call the γ-structure over two
backbones (Qγ) γ-interaction structures. The generating function of Hγ denoted
by Hγ(u) has been derived in [8] as follows:

Theorem 2. Let R = Z[u]. Then Hγ(u), satisfies

Hγ(u)−1 = 1 −



uHγ(u) + H−1
γ (u)

∑

g≤γ

Ig,1

(

uH2
γ(u)

1 − uH2
γ(u)

)



 . (2.2)

Furthermore, eq. (2.2) determines Hγ(u) uniquely.

We denote the generating function of a set of diagrams K by K(u) =
∑

n k(n)un, where k(n) denotes the number of K-diagrams that contain ex-
actly n arcs. In our proofs we shall recruit the following combinatorial classes:
E (neutral class which include only one element of size 0), Z (vertices) and R
(arcs).

3. γ-matchings over two backbones

Let Xγ denote the set of ordered pairs of Hγ structures. The ordering is
naturally induced by that of the respective backbones. Clearly, we have

Xγ = Hγ ×Hγ . (3.1)

Let next Aγ denote the set of γ-matchings over two backbones that contains
only exterior arcs that are noncrossing. Given a diagram s in Aγ , let s′ denote
the diagram obtained by collapsing each stack in s to a single arc.

Let Level(s) denote the number of exterior arcs s′. Since any γ-matching
s over two backbones is connected, we have Level(s) ≥ 1 for any s ∈ Aγ . Let
aγ(n) denote the number of Aγ-matchings with n arcs.

Lemma 1. The generating function Aγ(u) =
∑

n aγ(n)un is given by

Aγ(u) =
u ·H4

γ(u)

1 − u · H2
γ(u)

. (3.2)

Proof. Let Aγ,ℓ denote the set of Aγ-structures s such that Level(s) = ℓ. Let
s⋆ denote the Aγ,ℓ-matching that contains only ℓ noncrossing exterior arcs.
Any Aγ,ℓ matching s can be obtained from s⋆ through the following procedure,
cf. Fig. 9.

First, the diagram s⋆ has ℓ−1 pairs of P -intervals of the form ([i, i+1], [2ℓ−
i, 2ℓ − i + 1]) for each i ∈ {1, 2 . . . , ℓ}. Inserting nonempty γ-matchings into at
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least one of the two intervals of each pair ([i, i + 1], [2ℓ− i, 2ℓ− i+1]) we obtain
the class

Uℓ × (H2
γ − ǫ)ℓ−1.

Second we inflate any exterior arc in the so derived matching into an exterior
stack and thereby derive the class

Nγ,ℓ = (U × SEQ(U))ℓ × (H2
γ − ǫ)ℓ−1.

Since by construction,
Aγ,ℓ = Xγ • Nγ,ℓ • Xγ ,

we have
Aγ,ℓ = H2

γ × (U × SEQ(U))ℓ × (H2
γ − ǫ)ℓ−1 ×H2

γ . (3.3)

It remains to sum over all ℓ ≥ 1 and the lemma follows.

1 2 3 4 65

P

P

{ {

{ {

Fig. 9: The construction of Aγ,ℓ in case of ℓ = 3.

Theorem 3. The generating function of γ-matchings over two backbones, Qγ(u)
satisfies

Qγ(u) =
H2

γ(u) ·
(

uH2
γ(u) +

∑

g≤γ Ig,2

(

u·H2

γ
(u)

1−u

))

1 − uH2
γ(u) −∑g≤γ Ig,2

(

u·H2
γ
(u)

1−u

) . (3.4)

In Tab. 1, we tabular q0(n).

Table 1: The numbers of 0-matchings over two backbones.

n n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10

q0(n) 1 8 54 328 1882 10503 57845 316508 1725866 9392543
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Proof. Let s be an arbitraryQγ-matching. Consider the set Sh2(s) of irreducible
shadows which contain at least one exterior s-arc. We observe that there exists
exactly one element in Sh2(s) consisting of maximal arcs, i.e. all elements in
Sh2(s) are nested. This fact can be understood by noting that two diagrams
over two backbones, denoted by E1 and E2, cannot be concatenated without
generating a diagram over three backbones. It is straightforward to verify that
the only way to combine such diagrams is via •-product.
Let t = |Sh2(s)|, then

Qγ =
⋃

t=0

Qγ,t, (3.5)

where Qγ and Qγ,t denote the set of γ-matchings over two backbones and the
set of γ-matchings over two backbones containing t nested irreducible shadows
over two backbones. In case of t = 0 Qγ,0 = Aγ . Suppose next t = 1. Let φ be a
fixed irreducible shadow of genus g having m arcs and let Wφ be the set of (γ)-
matchings over two backbones, s, such that Sh2(s) = {φ}. Any Wφ-diagram
can be constructed as follows.

Let AX γ denote the set of all possible diagrams such that d ∈ AX γ is either
a Aγ-matching or a Xγ-matching

AX γ = Aγ + Xγ .

Consider all possible diagrams obtained by the construction

AX γ • φ • AX γ .

Next, we we insert Hγ-matching into the (2m − 2) σ-intervals of the φ and
proceed by inflating each arc in φ into a stack. Accordingly, we arrive at

Wφ = (U × SEQ(U))
m ×H2m−2

γ × (Aγ + H2
γ)2. (3.6)

A key observation is now that eq. (3.6) recruits only the number of arcs in φ
and does not depend on their particular configuration. Thus for any other fixed
irreducible shadow ̺ of genus g over two backbones having m arcs, we have
Wφ(u) = W̺(u). Thus

Qγ,1(u) =
∑

g≤γ

∑

τ∈Ig,2

Wτ (u)

and consequently

Qγ,1(u) =
∑

g≤γ

∑

m

ig,2(m)

(

u

1 − u

)m
(

Aγ(u) + H2
γ(u)

)2 ·H2m−2
γ (u). (3.7)

Note that the summation over m is indeed finite, see Theorem 1.
In the case of t > 1, we proceed by induction on t. Let Q̂γ,t denote the subset

of Qγ-matchings s such that the maximal arcs of s form exactly an irreducible
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shadow sh in Sh2(s). In the following, we refer sh as 2-shadow of s. Clearly,
each Qγ-matching could be obtained via the •-product Q̂γ,t • AX γ . I.e.

Qγ,t = Q̂γ,t ×
(

H2
γ + Aγ

)

. (3.8)

Set ̺ to be an irreducible shadow in Ig,2,m, where g ≤ γ. Let Q̺̂
γ,t denote the

set of all possible Q̂γ,t-matchings, ŝ, with exactly one 2-shadow ̺. Any Q̺̂
γ,t-

matching, ŝ can be obtained as follows: (1) nest exactly one Qγ,t−1-matching
into ̺ via •-product, (2) insert Hγ-matchings into the (2m− 2) σ-intervals of ̺
and (3) inflate each arc in ̺ into a stack. Accordingly, we have

Q̺̂
γ,t = Qγ,t−1 × (U × SEQ(U))

m ×H2m−2
γ . (3.9)

Since eqn. (3.9) depends only on the number of arcs in ̺ we derive

Q̂γ,t = Qγ,t−1 ×
∑

g≤γ

∑

m

ig,2(m) (U × SEQ(U))
m ×H2m−2

γ . (3.10)

In view of eqn. (3.8) we obtain

Qγ,t(u) = Qγ,t−1(u) · (H2
γ(u) + Aγ(u)) · 1

H2
γ(u)

∑

g≤γ

Ig,2

(

u ·H2
γ(u)

1 − u

)

. (3.11)

Together with eqn. (3.7), we derive for t ≥ 1

Qγ,t(u) =







Ig,2

(

u·H2

γ
(u)

1−u

)

H2
γ(u)







t

· (H2
γ(u) + Aγ(u))t+1. (3.12)

In view of Qγ(u) =
∑

t=0 Qγ,t(u) and Qγ,0(u) = Aγ(u), the theorem follows.

Theorem 4. For γ = 0, 1 the coefficients of Qγ(u) are asymptotically given by

[un]Qγ(u) ∼ kγ

(

δ−1
γ

)n
(3.13)

for some constant kγ > 0. Explicitly, δ−1
0 ≈ 5.4252 and δ−1

1 ≈ 8.7266.

Proof. Suppose first γ = 0. Since H0(u) = 1−
√

1−4u
2u

, we have

Q0(u) =
P1(u) + P2(u) ·

√
1 − 4u

u2 ·P3(u)
, (3.14)

where P1(u), P1(u) and P3(u) are explicit polynomials with nonzero constants.
Let Z(f) denotes the set of zeros of the function f . Consider the complex plane
slit along the ray (1/4, +∞), then Q0(u) is analytic in the slit plane, except
perhaps at u ∈ Z(P3(u)) and u = 0. Clearly u = 0 is a removable singularity and

13



Q0(u) is extended setting Q0(0) = 0. Since Q0(u) is a combinatorial generating
function it is a power series with only nonnegative coefficients, Pringsheim’s
theorem guarantees the existence of some real dominant singularity, δ0. To
locate δ0 we observe that since P3(0) < 0 and P3(1/4) > 0, there exists a
unique smallest root of P3(u) in the interval (0, 1/4) and this root is a real
dominant singularity, τ0. By explicit computation one verifies that τ0 is indeed

unique. Furthermore since ∂P3(u)
∂u

> 0 for u ∈ [0, 1/4], this root is simple,
whence basic singularity analysis [7] implies that the subexponential factor of
asymptotic expression is 1. Using the Maple command fsolve, we compute
δ0 ≈ 0.184325, i.e.

[un]Q0(u) ≈ k0 · (5.4252)
n

, (3.15)

where k0 is some positive constant. In Fig. 10, we showcase the quality of the
asymptotic formula for γ = 0.

10 20 30 40 50 60 70 80 90
0

20

40

60

80

100

120

140

160

Fig. 10: Exact enumeration versus asymptotic formula. The number of Qγ-matchings
(black dots) versus the asymptotic formula const ·5.4252n (red asterisks). We separate
the two data-sets setting the constant to 107.

Let next γ = 1 and δ1 denote the dominant real singularity of

Q1(u) =
H2

1(u) ·
(

uH2
1(u) +

∑

g≤γ Ig,2

(

u·H2

1
(u)

1−u

))

1 − uH2
1(u) −∑g≤γ Ig,2

(

u·H2

1
(u)

1−u

) ,

whose existence is implied by Pfringsheim’s theorem. According to [8] H1(u)
has its unique dominant singularity µ1 at ≈ 0.1207 > 2/17. We set

N1(u) = uH2
γ(u) +

∑

g≤γ

Ig,2

(

u ·H2
γ(u)

1 − u

)

,

14



F1(u) = 1
1−N1(u) and L1(u) = 1

1−u
. By construction we then have

F1(u) = L1(N1(u)).

Clearly, L1(u) and N1(u) are power series with non-negative coefficients and in
addition N1(0) = 0 whence the composition is a well-defined power series. As for
a dominant real singularity of N1(u), ρN1

, we have ρN1
= ρH2

γ
(u). We observe

N1(
2
17 ) > 1 which implies that there exists some smallest δ1 ∈ (0, 2

17 ) such
that N1(δ1) = 1. Since µ1 > 2/17 > δ1 the composition power series L1(N1(u))
belongs to the supercirtical paradigm [7], i.e. its singular expansion is that of the
outer function whose dominant singularity is encountered first. This evidently is
the singular expansion of L1(u) leading (again) to the subexponential factor of
1. Using Maple command fsolve, we find δ1 ≈ 0.1145925596 < µ1 and derive

[un]F1(u) = c1 · δ−n
1 ≈ c1 · (8.7266)

n
, (3.16)

for some c1 > 0 and consequently

[un]Q1(u)k1 · δ−n
1 ≈ k1 · (8.7266)

n
, (3.17)

where k1,2 is some positive constant. This completes the proof of the theorem.

4. γ-interaction structures

The enumeration of γ-interaction structures is obtained using shapes : A
matching X is a shape if each stack in X is of length exactly one. Given an
arbitrary matching s, its shape is obtained by iteratively collapsing each stack to
a single arc and then removing any isolated vertices from the obtained diagram
as illustrated in Fig. 11.

Collapse stack-

Remove isolated vertices

Collapse stack-

Remove isolated vertices

shape

Fig. 11: From a diagram to its shape.

Let Sγ denote the set of shapes that are Qγ-matchings and let Qγ(n, m)
denote the combinatorial class of Qγ-matchings over 2n vertices with m interior
arcs of length 1 (1-arcs). Furthermore, let Sγ(n, m) denote the class of all Sγ-
shapes over 2n vertices with m 1-arcs with generating function Sγ(u, e).
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Lemma 2. For any γ ≥ 0, we have

Sγ(u, e) =
(1 + u)2

(1 + 2u − ue)2
Qγ

(

u(1 + u)

(1 + 2u − ue)2

)

. (4.1)

Proof. We first claim that

Qγ(x, y) =
1

(x + 1 − yx)2
Qγ

(

x

(x + 1 − yx)2

)

. (4.2)

Consider the number of all possible Qγ(s + 1, m + 1)-matchings with exactly
one labeled 1-arc. There are two ways to enumerate this. On one hand, choose
an arbitrary ξ ∈ Qγ(s + 1, m + 1) and label one of its 1-arcs. Since we can label
any of the (m + 1) 1-arcs of ξ, (m + 1) hγ(s + 1, m + 1) different such labeled
linear arc diagrams arise. On the other hand, to produce ξ with this labeling, we
can add one labeled 1-arc to an element of Qγ(s, m + 1) by inserting a parallel
copy of an existing 1-arc or by inserting a new labeled 1-arc into an element of
Qγ(s, m), where we may only insert the 1-arc between two vertices not already
forming a 1-arc. It follows that we have the recursion

(m + 1) qγ(n + 1, m + 1) = (m + 1) qγ(n, m + 1) + (2n + 2 − m) qγ(n, m)

or equivalently the PDE

∂Qγ(x, y)

∂y
= x

∂Qγ(x, y)

∂y
+ 2x2 ∂Qγ(x, y)

∂x
+ 2xQγ(x, y) − xy

∂Qγ(x, y)

∂y
, (4.3)

which is thus satisfied by Qγ(x, y).
On the other hand,

Q∗
γ(x, y) =

1

(x + 1 − yx)2
Qγ

(

x

(x + 1 − yx)2

)

is also a solution of eq. (4.3), which specializes to Qγ(x) = Q∗
γ(x, 1), and more-

over, we have q∗
γ(n, m) = [xnym]Q∗

γ(x, y) = 0, for m > n. Indeed, the first
assertion is easily verified directly, the specialization is obvious, and the fact
that y only appears in the power series Q∗

γ(x, y) in the form of products xy
implies that q∗

γ(n, m) = 0, for m > n. Thus, the coefficients q∗
γ(n, m) satisfy

the same recursion and initial conditions as qγ(n, m), and hence by induction on
n, we conclude q∗

γ(n, m) = qγ(n, m), for n, m ≥ 0. This proves that Qγ(n, m)
indeed satisfies eq. (4.2) as was claimed.
To complete the proof of eq. (4.1), we will define a projection

ϑ : Qγ → Sγ

which project an arbitrary Qγ-matching s into its unique shape s∗. Clearly, ϑ
is surjective and affects neither irreducible shadows nor the number of 1-arcs.
I.e. it can be naturally restricted to

ϑm :
⋃

n

Qγ(n, m) →
⋃

n

Sγ(n, m).
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Let us consider a fixed γ-shape, λ, having s arcs, of which t are 1-arcs and the
generating function Qλ

γ(x, y), counting γ-matchings that project into λ via ϑm.
Then

Qλ
γ(x, y) =

(

x

1 − x

)s

yt,

which shows that Qλ
γ(x, y) depends only on the total number of arcs and number

of 1-arcs in λ. Consequently,

Qγ(x, y) =
∑

s≥0

s
∑

m=0

sγ(s, m)

(

x

1 − x

)s

ym = Sγ

(

x

1 − x
, y

)

. (4.4)

Setting u = x
1−x

, i.e., x = u
1+u

, and e = y, we arrive at

Sγ(u, e) =
(1 + u)2

(1 + 2u − ue)2
Qγ

(

u(1 + u)

(1 + 2u − ue)2

)

,

as required.

Using symbolic enumeration we can conclude from Lemma 2:

Lemma 3. Let λ be a fixed γ-shape with s ≥ 1 arcs and m ≥ 0 1-arcs. Then
the generating function of τ-canonical γ-diagrams containing no 1-arc that have
shape λ is given by

Qλ
τ,γ(z) = (1 − z)−2

(

z2τ

(1 − z2)(1 − z)2 − (2z − z2)z2τ

)s

zm.

In particular, Qλ
τ,γ(z) depends only upon the number of arcs and 1-arcs in λ.

Our main result about enumerating τ -canonical γ-interaction structures fol-
lows.

Theorem 5. Suppose γ ≥ 0 and τ ≥ 1 and let uτ (z) = (z2)τ−1

z2τ−z2+1 . Then the
generating function Qτ,γ(z) is algebraic and given by

Qτ,γ(z) =
1

(uτ (z)z2 − z + 1)
2 Qγ

(

uτ (z)z2

(uτ (z)z2 − z + 1)
2

)

. (4.5)

In particular for γ = 0 we have

[zn]Q1,0(z) ∼ k1,0 (ρ−1
1,0)

n, and [zn]Q2,0(z) ∼ k2,0 (ρ−1
2,0)

n

and for γ = 1 we have

[zn]Q1,1(z) ∼ k1,1 (ρ−1
1,1)

n, and [zn]Q2,1(z) ∼ k2,1 (ρ−1
2,1)

n

for some constants k1, k2, where ρ−1
0,1 = 2.9954, ρ−1

0,2 = 2.0935, ρ−1
1,1 = 3.6825 and

ρ−1
1,2 = 2.2992.
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Proof. According to Lemma 3 and Qτ,γ(z) =
∑

λ∈Sγ
Qλ

τ,γ(z), we obtain

Qτ,γ(z) = (1 − z)−2 · Sγ

(

z2τ

(1 − z2)(1 − z)2 − (2z − z2)z2τ
, z

)

. (4.6)

Furthermore, eqn. (4.5) follows by substituting u = z2τ

(1−z2)(1−z)2−(2z−z2)z2τ and

e = z in eqn. (4.1).
Clearly Qτ,γ(z) is algebraic according to eqn. (4.1). Furthermore, since the
composition scheme is supscritical in case of 0 ≤ γ ≤ 1 and 1 ≤ τ ≤ 2, the
singularity type is that of the external function, i.e. Qγ(z), whence the theorem.

5. Discussion

Our main result opens the door to interesting research. Namely, it is of
great importance to introduce the topological genus as an additional filtration
into Qγ(u) and to thereby pass to a bivariate generating function. A result of
[2] indicates how this can be derived. There it is proved how to compute the
topological genus of a γ-interaction structure. The latter formula is in difference
to the case of a single backbone not simply the sum of the genera of its irreducible
shadows. This computation can be weaved into the combinatorial construction
presented here in order to refine our results by the topological genus.

The derivation of such bivariate algebraic equations is instrumental for ob-
taining recursions for computing shadows of genus g from those of smaller gen-
era. Similar to the Zagier-Harer generating function [27] it is a fascinating
prospect to derive a recursion for the polynomials Ig,2(z). Here it will be vital
to obtain hints for bijective proof hidden in the algebraic formulas. Common
factors of these polynomials whose coefficients count numbers of irreducible
shadows of fixed genus will be the key for deeper understanding. Accordingly
it is of importance to compute the polynomials Ig,2(z) explicitly for all relevant
genera. Once the algebraic recursions for these polynomials are obtained it is
of importance to derive bijective proofs. Results along these lines will have
profound algorithmic impact and offer novel insights in how to fold interaction
structures faster.
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