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Abstract

Genome-wide ChIP-seq experiments on different histone marks are performed to unravel the interplay between

epigenetic regulation mechanisms. Current evaluation tools, however, allow testing of predefined hypotheses

only. Here, we present a novel method for annotation-independent exploration of epigenetic data and their inter-

correlation with other genome-wide features, e.g. gene expression patterns. We apply our method to epigenetic

patterns in mouse and find strong evidence for H3K4me3 independent mechanisms of H3K27me3 in contrast to

current knowledge.

Background

Genome-wide measurement and analysis of transcript levels have led to a different understanding of tran-

scriptional regulation in mammalian cells (ENCODE) [1, 2]. It has become obvious that the genome is

pervasively transcribed and that chromatin structure impacts transcription and the resulting transcripts

levels in various ways. In order to understand these regulatory effects of chromatin, new assays for studying
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genome-wide chromatin modification have been introduced [3, 4].

Part of the regulatory effects is ascribed to histone modifications. All types of histones, namely H2A,

H2B, H3, and H4, can be modified at multiple sites, i.e. specific amino acid residues. During modification,

chemical groups, such as acetyl and methyl groups, biotin, small proteins, or sugars become attached to

target sites. In the following, we will consider a specific modification at a specific residue of one of the

histones as an epigenetic mark.

The function of epigenetic marks can be versatile. It is known that trimethylation at histone H3

lysine 4 (H3K4me3) marks euchromatin and positively correlates with transcription [5–8]. In contrary,

trimethylation at histone H3 lysine 27 (H3K27me3) is involved in formation of heterochromatin, and tran-

scriptional silencing [8, 9]. Although the effects of H3K4me3 and H3K27me3 seem conflicting, they can be

found together at the promoters of genes for cell differentiation in ESCs [10]. Genes in bivalently marked

chromatin are in a poised state and can be activated by removing the H3K27me3 or stably repressed by re-

moving the H3K4me3 mark [11,12]. Likewise H3K27me3, trimethylation at histone H3 lysine 9 (H3K9me3)

is mainly linked to repression of transcription and repressive DNA methylation [13]. It has been shown that

the gene transcriptional activity depends on the combination of histone modification marks and sequence

specific features. In particular, histone modification pattern of H3K4me3, H3K27me3 and H3K9me3 have

been demonstrated to differ at promoters with high and low CpG-density [11, 14]. This is associated with

gene function as housekeeping genes are frequently associated with CpG-rich promoters while low levels of

CpG-density are rather found at promoters of tissues-specific genes.

In [15,16], the histone code hypothesis suggests that combinations of epigenetic marks provide a regula-

tory output that differs from the sum of the regulatory effects of individual marks. Furthermore, cross-talk

between epigenetic marks has been suggested given examples such as avoidance of H3K9me2 and phospho-

rylation of H3S10 [17]. Thus, comparative analysis of multiple modifications promises new insights into

chromatin regulation, its interplay with gene expression, chromatin structure formation.

While chromatin immunoprecipitation combined with next generation sequencing (ChIP-seq [18]) enables

fast measurement of the genome-wide distribution of various epigenetic marks in multiple cell states, most

of the existing analysis strategies do not enable a comprehensive visualization of concerted interrelations

within such data sets.

Most of the existing approaches visualize epigenetic data on the basis of the underlying DNA sequence in

a linear fashion, for example, as UCSC genome browser track. Individual gene loci, and the relative position

of peaks in the sequencing read density and gene annotation are of focal interest [19, 20]. For this type of
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analysis, several software packages are available (EpiChIP [21], Repitools [22]).While these approaches enable

powerful analysis of relationships between specific genes and associated epigenetic marks, they are naturally

limited with respect to the identification of global correlations. A thorough analysis of such higher order

patterns requires additional preprocessing of the data, in particular a systematic partitioning (segmentation)

with respect to genomic loci.

In the context of genome-wide gene expression data, similar problems arise which have been successfully

addressed by a number of techniques, e.g. self-organizing maps (SOMs) [23, 24]. In the following, we

present a method to analyze complex, high-dimensional epigenetic data by combining a versatile approach

for combinatorial segmentation of modification data with SOMs. SOMs are an unsupervised clustering

method and a convenient tool to reduce multi-dimensional data to low-dimension by condensing information

and visualization as mosaic images. This representation is easy to interpret as the SOM organizes in an

intuitive fashion. Thus, it facilitate data exploration without prior formulation of detailed hypotheses while

visual clues can still be ascribed to the associated input data points. Furthermore, the method enables

integration of auxiliary quantitative information, such as CpG-density and transcriptional activity in the

analysis.

After introducing the technical details, we apply our method to H3K4me3, H3K27me3 and H3K9me3

histone modification data in mouse embryonic stem cells (ESC), mouse embryonic fibroblasts (MEF) and

mouse neuronal progenitor cells (NPC) measured by Mikkelsen et al. [11]. We demonstrate that the method

provides new insights even into such a well-studied set of data and discuss the broad spectrum of possible

further applications.

Results and Discussion

In the following, we introduce i) a genome segmentation method based on multiple histone modification data

in different cell types and ii) a method to compress the modification pattern of the resulting thousands of

segments into two-dimensional images which allows a sample-to-sample comparison of the different modifi-

cations in the different cell types. In general, this requires data for n different modifications in m different

cell types.

Mapping and preprocessing

We downloaded ChIP-seq data on n = 3 histone modifications (i.e. H3K4me3, H3K27me3 and H3K9me3)

for m = 3 cell types, i.e. embryonic stem cells (ESCs), mouse embryonic fibroblasts (MEFs), and neuronal
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progenitor cells (NPCs) from GEO (accession number GSE12241) [11]. To ensure comparability, we reanalyze

the sequencing reads as follows.

Each ChIP-seq data set was mapped against the mm9 mouse genome download from UCSC genome

browser using segemehl [25], an in-house tool for fast mapping of short sequences with insertions, deletions

and mismatches. For further analysis we kept only those reads of length 26-36nt that had at least 90%

identity to a genomic locus. In addition to the modification ChIP-seq data, we also mapped the whole cell

extract (WCE) sequencing data for all three cell types and the H3-ChIP-seq data available only for ESCs.

For each data set, we counted the number of reads per genomic position. In ESCs, we validated the

modification data with the H3 data and left reads for modified H3 aside when no reads from the H3 data set

could be mapped to the same site. Doing this, less than 1% of positions was not validated which kept the ESC

data comparable to the MEF and NPC data. We calculated read enrichment by dividing the positional read

counts from modification data by the corresponding counts from the WCE data. We obtained discretization

of the modification data by joining consecutive positions with a read enrichment of at least 3 into a modified

region if their distance was smaller than 100nt (less than one nucleosome). Resulting regions of length 99nt

or smaller were treated as unmodified to discard potentially erroneously mapped reads. The set of modified

regions of one data set represents the modification state (MS). We can construct a MS for each of the n

modifications and m cell types, respectively. This yields a total of p = n · m MSs (compare Figure 1a).

Genome segmentation

In order to compress the data and to compare the distribution of the n different modifications in the m

different cell types, we subdivide the genome into genomic segments. Each of them is characterized by the

coverage value for each of the n modification states in the m cell types. This results in a vector of dimension

p = n · m which we call epigenetic profile (EP) in the following.

In general, one could apply an arbitrary segmentation to the genome. A meaningful choice for segmen-

tation should reflect the types of correlations one is interested in and allow for a reasonable level of data

compression adequate for SOM-analysis. Hence, to emphasize either the variation among different marks

from the same cell type or the variation among the same marks from different cell types, we examine the

epigenome state (ES) or epigenome variation (EV), respectively, as illustrated in Figure 1.

In the following, we exemplarily explain how to obtain the EPs for examination of the ES.

1. For a cell type of reference (here, ESC), all n modification states are selected. Notice that the discretized

representation of the chosen data holds a list of modified regions specified by the genomic position of
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Figure 1: Segmentation of the whole genome. a) Given a set of modification states MS (patterns and colors
encode modifications and cell types respectively), we performed either a segmentation based on epigenome
states (ES-segmentation) or on epigenome variations (EV-segmentation). This is illustrated in b) and c).
Horizontal lines represent the genome sequence and boxes illustrate the modified regions in each of the
modification states (MSs) used. Vertical dashed lines represent the boundaries of the regions. Resulting
segments are the regions between adjacent boundaries. Segments that are too small (indicated by X) are not
kept. The combinatorial epigenetic profile (CEP) of each segment is characterized by a binary vector (e.g.
(111) when all three modifications of reference are present).
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the boundaries.

2. We then project all boundaries of modified regions from the n modification states onto the genome

(ES-segmentation). The superposition of all boundaries subdivides the genome into segments. Short

segments (here, length <200bp) are omitted in our applications since they are below the discretization

limit (characteristic length of ∼200bp DNA per nucleosome).

3. As a consequence of segmentation, each segment is covered either 0% or 100% by each of the n

modification data sets used for segmentation (see Figure 1c). It is therefore possible to describe a

segment x by an n-dimensional binary vector which we call combinatorial epigenetic profile (CEP),

e.g. CEP (x) = (MSH3K4me3, MSH3K27me3, MSH3K9me3) = (1, 0, 0). Evidently, we can observe at

most 2n different combinatorial epigenetic profiles.

4. Information from the remaining n · (m − 1), so far disregarded, modification states can be integrated.

We therefore intersect the segment x obtained in step 3 with the corresponding modified regions in the

n · (m − 1) complementary data sets overlapping x. For each of these intersections i, we calculate the

amount of modification covering the segment x. This leads to n · (m−1) coverage values in the interval

[0, 1]. Appending these values to the CEP of x, we finally obtain a p-dimensional vector (p = n · m),

which we refer to as epigenetic profile (EP) of x.

Analogously, an EV-segmentation can be performed by intersection of m modification data for a modifi-

cation of reference (here, H3K4me3) resulting in a m-dimensional CEP, and a p-dimensional EP.

Data Compression and Visualization by SOMs

For further analysis and visualization, we aim at sorting and compressing the segmentation data of dimension

p × N using self-organizing Maps (SOMs) [26]. Here, p = n · m is the dimension of the epigenetic profiles

and N the number of segments obtained during segmentation. SOMs have been applied previously to

molecular data, such as gene expression data and are reported to provide an intuitive and informative global

representation of the data [24]. SOMs are trained using an unsupervised learning algorithm and are applied

to high-dimensional data aiming at dimension reduction and a discretized representation of the input data

(based on artificial neural networks). Thereby, the large number of input data points is projected onto a grid

with a predefined geometry embedding K SOM-nodes. Specifically, we aim at projecting EPs to SOM-nodes.

Accordingly, we assign to each node k ∈ {1, . . . , K} a p-dimensional vector, further referred to as meta-EP.
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After an appropriate initialization, meta-EPs are adapted to EPs by a similarity-based learning procedure.

In addition, inclusion of the local context ensures similarity of neighboring nodes in the SOM-topology.

In particular, we use a 40 × 40 square grid (see Supplemental for details) representing 1600 meta-EPs.

We perform linear initialization of the meta-EPs to ensure deterministic SOM-procession [27]. Linear ini-

tialization extracts the two major properties (projections) structuring the data using principle component

analysis. The first two principle components are mapped onto the width and height of the SOM, respectively.

This ensures that the mean is located in the center of the SOM, while the strong effects are broken down

along the sides. After initialization, the meta-EPs are updated during competitive learning in about 200.000

iterations over all EPs. Details are described in the Materials and Methods section. In this way, the EPs

are placed on the map such that similar meta-EPs are located in close proximity while dissimilar meta-EPs

are located more distantly. As the number of input segments N (> 600.000) exceeds the number K of nodes

in the grid, each meta-EP represents a mini-cluster of, on average, about 400 segments. In our example,

the actual, individual node occupancy ranges from 0 to 2.4 · 104 and 1.5 · 105 for the EV-segmentation and

ES-segmentation, respectively.

The resulting SOM is finally visualized by mosaic images which we further refer to as SOM-images. Each

of the tiles represents one node and its color corresponds to the respective meta-EP-value [28]. In addition

to these SOM-images we generated population maps which visualize the number of EPs in each node as

well as maps which visualize additional features such as the mean segment length. The construction of the

supporting maps is described in the Materials and Methods section.

Examples

We applied our segmentation and visualization method to the data set of Mikkelsen et al. after mapping and

preprocessing as described in the Methods section. In a first example, we used ES-segmentation to study

combinatorics of epigenetic marks in ESCs and integrated the modification data from the remaining

cell types. In a second example, we applied EV-segmentation to study epigenetic variation among cell

types with H3K4me3 as reference and integrated the modification data from the remaining epigenetic

marks. We aim at highlighting characteristic features of our method and the benefit of the genome-wide

exploration enabled.
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a) Population map b) CEP cluster map
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Figure 2: SOM-properties after ES-segmentation. a) The population map shows the number of EPs per
node. It is logarithmically scaled and ranges from 0 (blue) to 150.000 (red). b) CEP cluster map. Islands
with more than 10 EPs per node are shown in white and are labeled with their CEP. Borderlines with less
than 10 EPs per node are shown in black. EPs with the same CEP cluster together in one island, except for
ES110, ES010 and ES011 which split into two separated islands each (postfixes a,b). Colored are islands of
active chromatin (ES100, green) and poised chromatin (ES110a,b, yellow).

ES-segmentation

ES-segmentation was applied to segment the whole genome with respect to H3K4me3, H3K27me3 and

H3K9me3 modified regions in ESCs. The obtained set of EPs was subjected to SOM-learning as described

above. The population map in Figure 2a shows the number of EPs assigned to each of the 1600 SOM-nodes

after SOM-training. One can easily identify a certain number of ‘green islands’ with a density of at least

10 EPs per node that are separated from each other by sparsely populated nodes with less than 10 EPs per

node (dark blue).

We found that all EPs of each particular ‘island’ refer to the same CEP. Figure 2b assigns the CEPs to

the respective subregions of the map. All eight possible CEPs are present and allocated to eleven subregions

of the SOM. Three CEPs, namely ES110, ES010, and ES011 locate to two different subregions of the SOM

each, indicated by the postfixes “a” and “b”.

The largest island of the SOM refers to the CEP ES000 representing the unmodified state in ESCs. It

corresponds to 97% of the total chromatin. The CEP ES100 marks active chromatin in ESCs, i.e. only

H3K4me3 modified (see green island in Figure 2b), ES110 indicates poised chromatin, which is H3K4me3

and H3K27me3 modified but not H3K9me3 modified (yellow islands in Figure 2b). All other CEPs mark

different repressive states of chromatin.

Figure 3 shows the complete atlas of SOM-images after ES-segmentation, three images for each modifi-

cation and each cell type, respectively. Here, the border lines of the CEP clusters are shown in white. The
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a) ESC H3K4me3 b) ESC H3K27me3 c) ESC H3K9me3 b’) ESC H3K27me3
ES011 only

d) MEF H3K4me3 e) MEF H3K27me3 f) MEF H3K9me3 e’) MEF H3K27me3
ES011 only

g) NPC H3K4me3 h) NPC H3K27me3 i) NPC H3K9me3 h’) NPC H3K27me3
ES011 only

Figure 3: SOM-atlas after ES-segmentation. a)-i) Each tile in the mosaic images is colored by the average
coverage of the segments assigned to it by the respective modification. High and low coverage is depicted in
red and blue, respectively (linear scale). White tiles indicate the borderlines between islands with different
CEPs (see also Figure 2). De novo formation of H3K4me3 and H3K27me3 in MEFs is a frequent event
(black arrows in d and e). Many of these marks remain stable in NPCs (arrows in g and h). The arrow in
panel f indicates poised chromatin de novo formed in MEFs. It partially turns into repressed chromatin in
NPCs by H3K9me3 modification (arrow in i). b’), e’), and h’) Subregions corresponding to the same CEP,
as ES011a and ES011b, differ by their H3K27me3 status in MEF and NPC.

three SOM-images for ESCs provide the distribution of the CEPs ES1**, ES*1* and ES**1 in dark red, i.e.

the distribution of segments modified at least by either H3K4me3, H3K27me3 or H3K9me3, respectively

(compare with Figure 2b). For MEFs and NPCs, the EPs adopt continuous values due to the particular

coverage of predefined segments with the respective modification. This causes the color gradient in Figure

3d-i.
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a) length map b) CpG-density map

c) present-call map d) developmental genes map

Figure 4: Supporting maps af-
ter ES-segmentation. a) Av-
erage segment length per node
ranging from 200 (red) to
135.000bp (blue, linear color
scale). b) Average CpG-
density of the segments per
node ranging from 0 (blue) to
0.08 CpGs/bp (red, linear color
scale). c) Fraction of seg-
ments that exclusively overlap
with genes, which are signif-
icantly expressed (present) in
all three cell types (low-to-high
refers to blue-to-red). d) Frac-
tion of segments overlapping
with genes associated with the
GO-term ‘cellular developmen-
tal process’. A logarithmically
scale is used ranging from 0.004
(dark blue) to 0.3 (red). Tiles
of nodes without any overlap
are colored in white.

Figure 3 demonstrates a genome-wide reorganization of the modification patterns during specification of

ESCs into MEFs and NPCs. This reorganization includes de-modification of segments (red areas turn to

blue ones) as well as de novo modification (blue areas turn to red ones). These changes appear to follow

different rules for the different marks.

De novo trimethylation of H3K4 and/or H3K27 is observed during differentiation of ESCs into MEFs

(see arrows in Figure 3d and 3e indicating regions which turn from blue in ESCs into red in MEFs). Many

of these marks found in MEFs but not in ESCs are also observed in NPCs (see arrows in Figure 3g and

3h). Interestingly, most of the associated segments are in a poised chromatin state in MEFs (H3K4me3 and

H3K27me3 modified but not H3K9me3 modified) but in an inactive state in NPCs (additionally modified

with H3K9me3, arrows in Figure 3f and 3i). In contrast to H3K4me3 and H3K27me3, for which the amount

of modified segments is roughly constant in all three cell types, a large-scale H3K9 de-methylation is observed

in MEFs and NPCs compared to ESCs (all ES**1 islands turn, at least partly, into blue). De novo H3K9

tri-methylation of segments without H3K9me3 in ESCs (ES**0) is only rarely observed. Therefore, it turns
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out that H3K9me3 remodeling is almost exclusively restricted to segments carrying this mark in ESCs.

Interestingly, the unmodified chromatin in ESCs (ES000) largely remains unmodified (colored in blue) also

in MEFs and NPCs. Thus, while about 97% of the total chromatin is located in this region, chromatin

remodeling with respect to H3K4me3, H3K27me3 and H3K9me3 is mainly observed in the remaining 3% of

the chromatin.

We found that SOM-training splits part of the ‘islands’ referring to a particular CEP into two subregions

distinguished with the postfixes “a” and “b” (see Figure 2b). Remarkably, all these paired subregions

(ES110a/b, ES010a/b, and ES011a/b) strongly differ in their H3K27me3 modification status in MEFs and

NPCs (see Figure 3e’ and 3h’). We labeled subregions with a high H3K27me3 coverage in MEFs and NPCs

with a and those with a low coverage with b. The finding that segments with the same CEP in ESCs can

acquire different modification states in MEFs compared to NPCs opens up interesting questions about the

underlying mechanisms. Examples are possibly different modes of recruitment of the marks in ESCs or

targeted (de-)modification events during differentiation into MEFs and NPCs. Further, these reorganization

processes may depend on other histone marks not included in the current study.

Recruitment of modifications and its regulatory consequences can be further analyzed using complemen-

tary information summarized in supporting maps. Figure 4 shows supporting maps displaying the average

segment length (a), the average CpG-density of a segment (b), the expression status of genes overlapping

with a segment (c) and the distribution of segments overlapping developmental genes (d) . Note that none

of these additional data were used for SOM-training. Instead, they were projected onto the SOM-topology

which is governed solely by the EPs (see Materials and Methods section).

In the segment length map (Figure 4a) one observes that long chromatin segments mostly accumulate

in the island referring to segments unmodified in ESC (ES000 in Figure 4a). However, a small region of

long segments is also observed in the island referring to triple-modified segments in ESCs (ES111). It has

been demonstrated that the appearance of long modified segments may refer to cooperative mechanisms

in recruitment of modifications [29, 30]. Accordingly, the appearance of long modified segments in triple-

modified ESCs suggests cooperative recruitment of H3K4me3, H3K27me3 and H3K9me3 to chromatin.

Inspection of the CpG-density map (Figure 4b) reveals that segments carrying H3K4me3 in ESCs (ES1**)

can be CpG-enriched. This has already been observed by Mikkelsen et al. [11] and is consistent with the

finding that H3K4me3-modifying complexes include a binding motif for unmethylated CpGs [31]. However,

beside in (ES1**) segments, CpG-enrichment is found for a subset of the unmodified segments (ES000) only.

In particular, it is not found for segments that become de novo modified with H3K4me3 in MEFs and NPCs
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as e.g. part of the segments of (ES011). Hence, H3K4me3 recruitment in MEFs and NPCs is obviously not

associated with high CpG-densities which suggests a different mechanism compared to the CpG-dependent

recruitment in ESCs discussed above. Note that this alternative mechanism may exist also in ESCs, since

ES111 and ES101 in part also contain segments with no CpG-enrichment. Correlations between H3K4me3

and CpG-density will be discussed later in the context of EV-segmentation.

H3K27me3 recruitment has been associated with high CpG-density as well [11]. Moreover, a H3K4me3

dependent mechanism has been suggested [32]. Indeed, in all cell types a large fraction of segments with a high

H3K27me3 coverage lies in regions of the SOM that overlap regions of high H3K4me3 coverage. However, this

overlap is not exhaustive. This is most obvious for segments of ES010 and ES011 in ESCs (see Figure 3a and

3b). Again, this observation opens up interesting research questions: it may either indicate that H3K4me3

is not necessarily required for H3K27me3 recruitment, or that previously existing H3K4me3 marks were

removed at an earlier stage of development. Moreover, all ES01* islands lack CpG-enrichment. Consequently,

H3K27me3 recruitment is also not necessarily associated with local CpG-enrichment. As the ES01* segments

are predominately short segments (<1kb), and thus cooperative binding of modifying complexes is limited, we

suggest H3K27me3 recruitment to ES01* to be sequence specific but not CpG-dependent. Different binding

motifs for segments of ES01*a and ES01*b, would explain the observed differences in their modification

status in MEFs and NPCs. However, in the case of ES110, the difference in the CpG-density (ES110a low,

ES110b high) may contribute to the different modification status in MEFs and NPCs.

The chromatin-associated information considered so far can be easily correlated with the expression

status of genes. In Figure 4c and 4d, this is demonstrated for two important classes, namely “housekeeping”

and “developmental” genes. We find that ESC chromatin associated with particularly high CpG-density,

is either active (ES100) or can be at least viewed as not actively silenced (spots in ES000). Strikingly, as

seen in Figure 4c, it associates with “active genes”, i.e. genes that are expressed in all three cell types (see

Material and Methods section for details).

According to Mikkelsen et al., genes associated with high CpG-density and monovalent H3K4me3 in ESCs

may be considered as ”housekeeping genes”. Actually, compared to all other islands in the SOM, we found

that ES100 shows a more than 10-fold enrichment in segments that have a housekeeping probability >0.75

according to De Ferrari et al. [33]. By contrast genes associated with high CpG-density and bivalent chro-

matin (H3K4me3 and H3K27me3 modified) in ESCs have been linked to genes with more complex expression

patterns among them key developmental genes [11]. Indeed, we see that segments of ES110b are associated

with developmental genes (see Figure 4d). Strong enrichment, however, is mostly found in the CpG-rich
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spots of ES000.

In summary, ES-segmentation provides clear insights into genome-wide chromatin remodeling during cell

lineage specification and differentiation. Changes of the modification status of segments with a particular

CEP in the reference system (here ESCs) can be easily detected and be used to formulate hypotheses e.g.

on recruitment mechanisms. Supporting maps can be generated in order to evaluate or further detail these

hypotheses. Moreover, chromatin structure can be linked straight forward to gene expression and function.

EV-segmentation

a) Population map b) CEP cluster map

EV111

EV110EV100a

EV011
EV000

EV010

EV101

EV001

EV100b

Figure 5: SOM-images after EV-segmentation. a) Population map. The number of EPs per node is loga-
rithmically scaled and ranges from 1 (blue) to 24.000(red). b) CEP cluster map. Islands with more than
10 EPs per node are shown in white and are labeled with their CEP. Borderlines with less than 10 EPs per
node are shown in black. Chromatin stable marked by H3K4me3 refers to EV111 (green island).

EV-segmentation was applied to segment the whole genome with respect to the variation among ESCs,

MEFs and NPCs in the distribution of H3K4me3 modified regions. The so-obtained EP data set was

subjected to SOM-training. The structures of the obtained population map and CEP cluster map are

analogous to the corresponding maps after ES-segmentation (compare Figure 5 to Figure 2). The map

shows highly populated islands that are separated by sparsely populated border zones. Again we found that

all EPs of a particular ‘island’ refer to the same CEP (see Figure 5b for assignments) The eight possible

CEPs form nine islands where EV100 splits into two subregions labeled with “a” and “b”.

The largest part of the SOM is again occupied by unmodified segments, i.e. segments not carrying

H3K4me3 modifications in any of the three studied cell types (EV000). EV000 corresponds to 98% of the

total chromatin. Regarding the modified part of the chromatin, the CEP EV111 marks stable H3K4me3
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modifications, while all other CEPs mark dynamic H3K4me3 modifications, i.e. segments that either lose or

acquire this epigenetic mark in the course of differentiation.

Figure 6 shows the complete SOM-atlas obtained after EV-segmentation. It enables direct insights into

a) ESC H3K4me3 b) ESC H3K27me3 c) ESC H3K9me3

d) MEF H3K4me3 e) MEF H3K27me3 f) MEF H3K9me3

g) NPC H3K4me3 h) NPC H3K27me3 i) NPC H3K9me3

a’) ESC H3K4me3 b’) ESC H3K27me3 c’) ESC H3K9me3
EV100 only EV100 only EV100 only

Figure 6: SOM-atlas after EV-segmentation. Color codes as in Figure 3. a’)-c’)Segments with CEP (EV100)
locate to two islands EV100a and EV100b differing in their coverage by H3K27me3 (and H3K9me3) in ESCs.
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a) length map b) CpG-density map c) present-call map

Figure 7: Supporting maps after EV-segmentation. a) Average segment length per node ranging from 200
(red) to 31.000bp (blue). b) Average CpG-density of the segments per node ranging from 0 (blue) to 0.06
CpGs/bp (red). c) Fraction of segments that exclusively overlap with genes, which are significantly expressed
(present) in all three cell types.

the global reorganization of H3K4me3 modified chromatin during differentiation of ESCs into MEFs and

NPCs. Inspection of the atlas shows that the paired subregions (EV100a/b) exclusively carrying H3K4me3

marks in ESC can be distinguished by their combined H3K27me3 and H3K9me3 modification status in

ESCs and thus by their chromatin activity status in these cells (see Figure 6a’-6c’). Quantification of the

qualitative information demonstrate that 11065 out of 21759 (51%) segments carry repressive marks of which

6501 (48%) are in a repressed and only 685 (3%) in a poised chromatin state. An active chromatin state

(H3K4me3 only) is observed in 4652 (21%) segments. While the ‘”b”-subregion (EV100b) contains segments

with activating marks only, EV100a is associated with segments of poised and repressive chromatin states,

i.e. carrying also H3K27me3 and/or H3K9m3 marks. Having a closer look at the sub-regions in the island

EV100a that show loss of H3K27me3 or H3K9me3 in either MEFs or NPCs, we conclude that H3K4me3

de-methylation is independent of repressive marks.

The supporting maps of the EV-segmentation (Figure 7) project additional information about the segment

lengths, their CpG-density and the expression status of genes onto the SOM-topology. Long segments

mostly accumulate in the EV000 island (see Figure 7a), i.e. they remain H3K4me3 unmodified under all

conditions studied. A small amount of long segments associates with the EV110-island (see Figure 7a).

These segments refer to H3K4me3 modified chromatin in ESCs that loose H3K4me3 in NPCs but not in

MEFs.Segments of comparable length and modification status locate to island EV111 in the ES-segmentation

maps. Consistently, the long segments of EV110 are modified with H3K27me3 and H3K9me3 in ESCs.

Inspection of Figure 7b clearly shows that the associated DNA is enriched in CpGs. This suggest that the
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recruitment of the respective histone marks may thus be governed by the binding of modifying complexes

to CpG-enriched chromatin as previously proposed [11, 31]. The association between the length of the

segments, their CpG-density and histone modification status was already established using ES-segmentation,

however, the orthogonal view via EV-segmentation more clearly shows that long and CpG-rich subregions

lose H3K27me3 in NPCs when H3K4me3 is lost while the shorter and CpG-poor subregions more often stay

H3K27me3 trimethylated.

Applying ES-segmentation we observed that many segments carrying the H3K4me3 mark in ESCs are

enriched in CpGs. EV-segmentation clearly shows that such enrichment is present for EV100, EV100a and

EV100b but only for a few spots of islands EV101 and EV111. The length (Figure 7a) and CpG-density

maps (Figure 7b) clearly show that the EV111 segments are mostly short and CpG-poor. Interestingly,

EV111 is the only large island with H3K4me3 marked segments in ESCs that are CpG-poor. In addition,

EV111 is stably H3K4 methylated in all cell types. This surprising observation leads us to the conclusion

that stable maintenance of H3K4me3 is CpG-independent. Quantitative analysis of the epigenetic state of

the segments reveals that 10719 segments carry H3K4me3 in all cell types of which 6589 are either H3K9me3

or H3K27me3 marked in all cell types. Only 644 segments (about 9%) have no repressive marks either in

ESCs, MEFs, or NPCs. Consistently, the present-call map (Figure 7c) indicates that EV111 segments do

not associate with a higher fraction of active genes then other segments although being stably H3K4me3

modified in all three cell types.

The combination of supporting maps on segment length and CpG-density also shed light on the potential

dependencies of H3K4me3 de-modification (EV100a,b). While the two islands for the CEP EV100 show no

commonalities with respect to H3K27me3 and H3K9me3 marks, the do have short segment length and high

CpG-densities in common. As a consequence, we conclude that only short, CpG-rich segments are H3K4me3

de-modified in MEFs (EV100a,b) while in NPCs also long, CpG-rich segments lose their H3K4me3 mark.

In summary, EV-segmentation enables more detailed insights into remodeling processes of the chosen

reference modification (here H3K4me3) compared to ES-segmentation. However, as functional states appear

to depend on the combinatorics of different modifications, EV-segmentation is expected to provide less

information on the link between chromatin structure and gene function.

Chromosomal distribution of epigenetic marks

Any whole genome segmentation, per definition, provides a segmentation of the individual chromosomes.

Thus, the results from the ES- and EV-segmentation can be displayed in individual SOM-images for each
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a) chr 1 b) chr X

0.062

4.75

ES001 ES100

ES110bES110a

0.062

4.75
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EV-segmentation
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4.152

0.04

4.152
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Figure 8: Chromosomal enrichment maps for chromosome 1 and X. The depict chromosomes show specific
enrichment patterns. The logarithmic color scale ranges in a) and b) from 0.1 to 4.8 and in c) and d) from
0 to 4.2.

chromosome (see Supplemental File 2 and 3). To emphasize differences in the assignment of segments from

different chromosomes to the same node, we compute chromosomal enrichment maps. We therefore calculate

the log ratio of the number of observed segments compared to the number of expected segments per node

and chromosome (see Materials and Methods section for details). Data from most autosomes are similar and

show an uniform distribution of chromosomal segments to subregions of the SOM, as depicted by Figures

8a and c for mouse chromosome 1. While SOM-images of chromosomes 12 and 14 are slightly speckled
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(see Supplemental File 2), the areas showing up in the SOM-images of chromosome X correlate with the

segmentation.

On chromosome X of a male individual, segments with the combinatorial epigenetic profiles ES100 and

ES110 that are associated with poised or active chromatin in a broader sense are rare. On the other hand,

segments with only H3K9me3 marks (ES001), associated with closed chromatin, are clearly overrepresented

(see Figure 8b). Furthermore, segments marked with H3K4me3 in MEFs only (EV010) are particularly

frequent on chromosome X with the exception of segments also associated with high amounts of H3K27me3

marks in ESCs (see Figure 8c). While a feature like the latter may be hard to explain with state of the art

knowledge about epigenetic processes, it opens new questions on the genome-wide organization of chromatin

states.

Discussion

Analysis and, in particular, visualization of histone modifications on genome-wide scale is a difficult but

promising task. Here, we present a novel SOM-based method for annotation-independent exploration of

ChIP-seq data which combines genome segmentation, clustering and visualization of the histone modification

patterns.

In the first step, our method requires the appropriate segmentation of the genome-wide data. The

particular choice depends on the available data set as well as on the question under examination. Here,

we make use of two different types of segmentations. One is based on different modification states in one

selected cell type (ES-segmentation), the other based on one selected modification state in different cell

types (EV-segmentation). While ES-segmentation mainly supports unraveling the epigenetic code relevant

for genome organization and gene regulation, EV-segmentation can assist the formulation of hypotheses on

the cross-talk between epigenetic states in the course of differentiation.

Different methods to cluster and visualize high-dimensional data have been established; among them

principal component analysis, hierarchical clustering, non-negative matrix factorization and visualization

techniques such as heatmaps, network-representations and dendrograms with particular advantages and

disadvantages [34]. One of the neuronal network-based methods is the SOM-method. We applied SOMs

because it combines clustering, multidimensional scaling and visualization in one method. Moreover, the

SOM-method provides an intuitive and global view on patterns of epigenetic marks allowing straightforward

exploration of biological hypotheses. Our examples demonstrate that visual inspection of the obtained SOM-

atlas provides detailed insights into genome-wide reorganization of the epigenome in the course of cellular
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differentiation such as de novo formation of poised and active chromatin. Moreover, our analysis challenges

the H3K4me3-dependent recruitment of H3K27me3 as we observe numerous segments that do not share

H3K4me3 and H3K4me3.

A further advantage of SOMs is the simple way to integrate additional information, e.g., on the lengths

of the segments carrying modified histones or on specific sequence motifs associated with these modifications

such as the CpG-density. This combined information is important for the evaluation of hypothesis on the

particular mechanism of recruiting histone marks. For example, our SOM-analysis suggests CpG-independent

modes of stable maintenance of H3K4me3. Moreover, recruitment of histone marks to short and CpG-

poor segments during development of ESCs must be driven by a CpG-independent, likely sequence specific,

binding of the respective modifying complexes. SOM-analysis allows identification and selection of genomic

regions potentially containing such so far unknown binding motifs. We predict that segments of the EV111-

type contain motifs enabling the recruitment of methylases to H3K4. In addition, information about gene

expression can be directly integrated into SOM-analysis. Association of the segments with the expression

levels of overlapping genes enables studying epigenetic regulation of transcription. As an example, we here

identified CEPs associated with “housekeeping” genes, e.g. ES100.

Exhaustive human epigenetic data sets are currently in preparation in large scale projects like the

Roadmap Epigenomics Project [35] and the Human Epigenome Project [36]. They comprise epigenetic

and genetic information for various cell types and for individuals of different age. The resulting combinato-

rial explosion for possible realizations of, e.g., different MSs and different combinations of supporting data

poses particular challenges for SOM-analysis. In particular, the resulting SOMs may become too complex

for a straight-forward analysis by direct visual inspection. Consequently, a comparison of epigenetic patterns

between different tissues and/or different individuals requires a method for automated comparison of SOM-

images. Such a systematic visualization of similarities between individual SOM-images enables a powerful

second level analysis of the data sets. In the field of gene expression analysis, the resulting patterns are

known as “metagene expression patterns” and have been applied to generate differentiation-related catalogs

of global gene expression states [24]. Thus, a combination of our method with this type of high-level analysis

is well suited to generate a catalog of epigenetic modification patterns for different cell types of different

ages.

Aside from histone modifications, other types of signals can be measured genome-wide using high-

throughput sequencing, e.g. transcription factor binding to DNA or the whole transcriptome. Comparing

such signals among each other and selected cell types may reveal new relations between the underlying
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processes. Such data sets can be explored with our method to provide a first, annotation-independent but

genome-wide view at the data. Hence, our method is not restricted to the exploration and analysis of cor-

relations in chromatin modifications, but can be applied to a much wider range of genomic data. Thereby,

it helps to guide studies into promising directions.

Conclusion

We presented an approach for segmentation of the genome with respect to either different epigenetic marks

in one cell type (ES-segmentation) or one epigenetic mark in different cell types (EV-Segmentation). The

approach allows lossless compression of the information about epigenetic states and is followed by sorting,

clustering and visualization via self-organizing maps. Furthermore, complementary quantitative features

obtained from the genomic sequence, localization or gene expression can be explored to detect possible

correlations with the modification states. The method is unique as it actually provides a global view of

genome-wide epigenetic information. Already in its simplest form, meaning without integration of additional

information, the exploration tool allows tracing formation and disappearance of combinations of different

histone modifications over the considered cell samples. Systematic investigation of correlations between epi-

genetic states and genomic or organizational features are likely to reveal novel modes of epigenetic regulation

and will thereby shed light on epigenome-associated information processing in living cells.

Materials and Methods
Details on the SOM-algorithm

We applied SOMs with K nodes arranged on a
√

K ×
√

K square grid. The algorithm starts with a linear

initialization of the meta-EPs assigned to SOM-nodes. Linear initialization extracts the two major properties

(projections) structuring the data using principle component analysis. The first two principle components are

mapped onto the width and height of the SOM, respectively. After initialization of the SOM the algorithm

continues with a learning procedure iterated over all EPs in a sequential manner. In each of the iterations

t, the EP of a given segment is assigned to the most similar meta-EP in the SOM according to Euclidean

distance in the p-dimensional EP-space. In addition, all K meta-EPs are adjusted as well in each iteration

using the following learning rule: Let ~e(t) be an input EP with its most similar meta-EP in SOM-node c.

Then for each meta-EP ~vk(t), k ∈ {1, . . . , K} the updated meta-EP ~vk(t + 1) is calculated by

~vk(t + 1) = ~vk(t) + η h(c, k)[~e(t) − ~vk(t)]
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with adaptation gain η (0 < η < 1) and neighborhood function h(c, k). A full number of iterations over all

EPs is called epoch. The adaption gain η is decreased steadily in a linear manner over subsequent epochs [26].

The neighborhood of a node k1 is defined according to a two-dimensional normal distribution around k1.

This so called Gaussian neighborhood is maximal for nodes adjacent to k1 and decreases asymptotically

to zero for nodes located distantly in the SOM-grid [37]. For any two nodes k1 and k2, the neighborhood

function is defined as

h(k1, k2) = exp

(

− (dk1,k2
)2

σ2

)

where σ denotes the neighborhood radius and dk1,k2
the Euclidean distance of k1 and k2 on the SOM-grid.

The neighborhood radius σ is steadily decreased over subsequent epochs.

Construction of Supporting Maps

We prepared data sets on a) the average length of segments mapped to a particular node, b) the average

CpG-density of mapped segments, c) the fraction of segments that exclusively overlap with genes which are

significantly expressed in all three cell types (present-call map) and d) the fraction of mapped segments

overlapping with developmental genes and the data set on e) the fraction of mapped segments associated

with a specific chromosome. The data are computed and integrated into SOMs in the following ways:

a) segment length map: The length of a segment is given by the number of nucleotides in the segment.

Due to the procedure described in subsection Genome Segmentation, we obtain segment lengths of

200nt or larger. SOM-nodes are colored according to the average length of segments assigned to the

node.

b) CpG-density map: We define the CpG-density of a segment as the number of CG-dinucleotides within

the segment’s DNA sequence divided by the length of the segment. For the calculation, we used the

DNA sequence obtained from the plus strand as defined in the mm9 genome. The node value, finally

represented by the color of the tile, is the average over the CpG-density of all segments assigned to a

node.

c) present-call map: In order to calculate the expression status of a segment, we first mapped the tran-

scripts from the gene expression chip, published in [11], to the segments. Therefore, we used the

ensemble data base and mouse genome mm9. Since histone modifications at promoter and enhancer

sequences upstream of the transcription start site play a major role in transcriptional regulation, we
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added 2000nt to the 5’-end of each transcript represented by the chip. The expression data sets are pre-

processed as described in [38]. In this preprocessing step, the genes are classified into present/expressed

or absent/not expressed. We assigned an expression value of 1 to expressed genes and 0 otherwise.

For each segment, we averaged over all assigned expression values. Only segments with an average

expression value of 1 are considered as “active”. In the present call map, SOM-nodes are colored

according to the fraction of segments considered as active.

d) developmental genes map: We downloaded the GO-Term annotation for all genes in the ensemble data

base and selected all genes assigned to the term “cellular developmental process” to create a list of

developmental genes. Using the assignment of genes to segments from c), we count for each node the

number of developmental genes assigned to the node and normalize this number by the total number

of assigned genes.

e) chromosome-specific population maps and chromosomal enrichment maps: For each node k, we count

the total number of segments Nk,all and the number of segments Nk,c originating from chromo-

some c. Furthermore we calculate the total number of segments originating from chromosome c,

Nall,c =
∑k

i=0
Ni,c and the total number of segments N =

∑c

j=0
Nall,j . The expected number Ek,c of

segments from chromosome c assigned to node k is therefore the expectation value of a hyper-geometric

distribution. It is given by Ek,c = Nk,allNall,c/N . The fraction of segments originating from chromo-

some c, i.e. Nk,c/Nk,all is the node value of node k in the chromosome-specific population map, while

log (Nk,c/Ek,c) is the node value of node k in the chromosomal enrichment maps for chromosome c.

The default color scale of the derived heat maps ranges from blue over green to red. While low values

map to cold colors (blue), high values map to warm colors (red). Due to the insufficient discrimination of

color intensities in the blue range, we inverted the color scale leading to a better perception of smaller values

in the length map.
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List of Abbreviations
CpG CG dinucleotid
ChIP Chromatin immunoprecipitation
ESC embryonic stem cell
MEF murine embryonic fibroblast
NPC neuronal progenitor cell
H3K4me3 trimethylation at histone H3 at lysine at position 4
H3K9me3 trimethylation at histone H3 at lysine at position 9
H3K27me3 trimethylation at histone H3 at lysine at position 27
WCE whole cell extract
H3 histone H3
MS modification state: set of all genomic location of one specific modification

in one specific cell type
ES epigenome state: combination of all modification states of one cell type
EV epigenetic variation: variation of one specific epigenetic mark in different

cell type
EP epigenetic profile: vector containing the coverage values for several modifi-

cation in several cell types for one genomic segment
CEP combinatorial epigenetic profile: vector containing the coverage values for

several modification in several cell types for one genomic segment with the
limitation that all coverage values are either 0 or 1

SOM self-organizing map
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Figures
Figure 1 - Segmentation of the whole genome.

a) Given a set of modification states MS (patterns and colors encode modifications and cell types respec-

tively), we performed either a segmentation based on epigenome states (ES-segmentation) or on epigenome

variations (EV-segmentation). This is illustrated in b) and c). Horizontal lines represent the genome se-

quence and boxes illustrate the modified regions in each of the modification states (MSs) used. Vertical

dashed lines represent the boundaries of the regions. Resulting segments are the regions between adjacent
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boundaries. Segments that are too small (indicated by X) are not kept. The combinatorial epigenetic pro-

file (CEP) of each segment is characterized by a binary vector (e.g. (111) when all three modifications of

reference are present).

Figure 2 - SOM-properties after ES-segmentation.

a) The population map shows the number of EPs per node. It is logarithmically scaled and ranges from 0

(blue) to 150.000 (red). b) CEP cluster map. Islands with more than 10 EPs per node are shown in white

and are labeled with their CEP. Borderlines with less than 10 EPs per node are shown in black. EPs with the

same CEP cluster together in one island, except for ES110, ES010 and ES011 which split into two separated

islands each (postfixes a,b). Colored are islands of active chromatin (ES100, green) and poised chromatin

(ES110a,b, yellow).

Figure 3 - SOM-atlas after ES-segmentation.

a)-i) Each tile in the mosaic images is colored by the average coverage of the segments assigned to it by the

respective modification. High and low coverage is depicted in red and blue, respectively (linear scale). White

tiles indicate the borderlines between islands with different CEPs (see also Figure 2). De novo formation

of H3K4me3 and H3K27me3 in MEFs is a frequent event (black arrows in d and e). Many of these marks

remain stable in NPCs (arrows in g and h). The arrow in panel f indicates poised chromatin de novo formed

in MEFs. It partially turns into repressed chromatin in NPCs by H3K9me3 modification (arrow in i). b’),

e’), and h’) Subregions corresponding to the same CEP, as ES011a and ES011b, differ by their H3K27me3

status in MEF and NPC.

Figure 4 - Supporting maps after ES-segmentation.

a) Average segment length per node ranging from 200 (red) to 135.000bp (blue, linear color scale). b) Average

CpG-density of the segments per node ranging from 0 (blue) to 0.08 CpGs/bp (red, linear color scale). c)

Fraction of segments that exclusively overlap with genes, which are significantly expressed (present) in all

three cell types (low-to-high refers to blue-to-red). d) Fraction of segments overlapping with genes associated

with the GO-term ‘cellular developmental process’. A logarithmically scale is used ranging from 0.004 (dark

blue) to 0.3 (red). Tiles of nodes without any overlap are colored in white.
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Figure 5 - SOM-images after EV-segmentation.

a) Population map. The number of EPs per node is logarithmically scaled and ranges from 1 (blue) to

24.000(red). b) CEP cluster map. Islands with more than 10 EPs per node are shown in white and are

labeled with their CEP. Borderlines with less than 10 EPs per node are shown in black. Chromatin stable

marked by H3K4me3 refers to EV111 (green island).

Figure 6 - SOM-atlas after EV-segmentation.

Color codes as in Figure 3. a’)-c’)Segments with CEP (EV100) locate to two islands EV100a and EV100b

differing in their coverage by H3K27me3 (and H3K9me3) in ESCs.

Figure 7 - Supporting maps after EV-segmentation.

a) Average segment length per node ranging from 200 (red) to 31.000bp (blue). b) Average CpG-density of

the segments per node ranging from 0 (blue) to 0.06 CpGs/bp (red). c) Fraction of segments that exclusively

overlap with genes, which are significantly expressed (present) in all three cell types.

Figure 8 - Chromosomal enrichment maps for chromosome 1 and X.

The depict chromosomes show specific enrichment patterns. The logarithmic color scale ranges in a) and b)

from 0.1 to 4.8 and in c) and d) from 0 to 4.2.

Additional Files
Additional file 1 — Parameter validation for the SOM

The arbitrary parameters for the training procedure, i.e. width and height of the SOM, are altered to

determine the correct size of SOM. Resulting SOM-atlases for both segmentations and different parameter

values are shown.

Additional file 2 — Additional SOM-images for ES-segmentation

Chromosomal-specific population map and chromosomal enrichment maps for ES-segmentation are shown

for all chromosome in the mouse genome.

Additional file 3 — Additional SOM-images for EV-segmentation

Chromosomal-specific population map and chromosomal enrichment maps for EV-segmentation are shown

for all chromosome in the mouse genome.
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