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1.1 INTRODUCTION

Formation of base pairs between complementary nucleic acids are the key for both
the structure formation of individual RNAs as well as for interactions between RNA
and/or DNA molecules. The patterns of base pairing constitute the secondary

structures. They characterize functional classes of ncRNAs and are often well-
conserved over large evolutionary time-scales, reviewed by Bompfünewerer et al.

(2005, 2007).
It should not be ignored, that specific base pairing also contibutes to the tertiary

structure of the RNA and is recognized by proteins interacting specifically with a
particular RNA species.

The importance of specific base pairing is not limited to the structure of a single
RNA, however. On the one hand, it has a crucial impact on the tertiary (3D)
structure of the RNA and thus way in which it is recognized by its protein partners;
on the other hand, secondary structures are also formed by interacting RNAs, thus
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determining both strength and exact position of hybridization between two or more
partners.

In this brief survey we focus on how ncRNAs interact with their partners in a
large number of different molecular and functional contexts. Base-pairing patterns
play a central role because of their large impact on the structure of binding sites for
proteins, or – more directly – because the interaction consists of intermolecular base
pairs. We organize our contribution by the composition of the players: RNA with
DNA, RNA with RNA, and RNA with proteins. Our presentation does not strive
to be exhaustive and attempts to give a broad overview rather than an in-depth
discussion of specific examples. Wherever possible, we thus cite recent reviews
rather than the original literature.

1.2 NCRNA-DNA INTERACTION

RNA:DNA hybrids play a crucial role in transcription termination in bacteria: the
formation of the terminator hairpin in the nascent RNA transcripts shortens the
RNA:DNA duplex associated with the polymerase complex and facilitates dissoci-
ation (Komissarova et al., 2002). Another important case are the RNA primers
of the Okazaki fragment on the lagging strand during DNA replication (MacNeill,
2001).

Despite their use in biotechnology (Nadal et al., 2005; Suzuki, 2008), very little is
known about the potential of triple-helices as form of direct RNA:DNA interaction.

1.2.1 Chromatin Regulation

Comprehensive surveys such as the ENCODE and FANTOM projects (The EN-
CODE Project Consortium, 2007; The FANTOM Consortium, 2005) demonstrated
that the genomes of higher Eukaryotes are pervasively transcribed. In mammals,
many of these large intergenic noncoding RNAs associate with chromatin-modifying
complexes and affect gene expression (Khalil et al., 2009; Sheik et al., 2010; Mattick
et al., 2009). Apparently, there are diverse roles for lincRNAs in processes from em-
bryonic stem cell pluripotency to cell proliferation, based on the observation that
these transcripts are differentially regulated by key transcription factors such as
p53, NFkappaB, or Nanog. Similar mechanisms are at work also in the yeast Sac-

charomyces cerevisiae (Harrison et al., 2009) and in plants (Swiezewski et al., 2009;
Matzke et al., 2009). A significant fraction of long non-coding RNAs are subject to
at least moderate stabilizing selection on the exon (Marques and Ponting, 2009),
corroborating the functionality of these transcripts. Even transcripts with little or
no sequence conservation may be functional as shown by the deep conservation of
the gene structure itself (Hiller et al., 2009).

At present, multiple models for the mode of action of these long ncRNA tran-
scripts have been proposed, reviewed e.g. in (Hekimoglu and Ringrose, 2009), and
there is at least circumstantial evidence that different transcripts may be governed
by different mechanisms, Fig. 1.1.
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Figure 1.1 Putative mechanisms of chromatin-associated RNAs (modified from
(Hekimoglu and Ringrose, 2009)): (I) Direct RNA mediated chromatin regulation during
transcription. Epigenetic regulator proteins (yellow) are (a, green) recruited directly from
transcribed ncRNA (blue) or released from acting site during transcription (b, red). (II)
Indirect association to DNA regulatory elements after transcription. After transcription of
long ncRNAs (blue) from DNA (1), regulative epigenetic regulators (yellow) may interact
directly (green) or via antisense RNA mediator (red, brackets) with ncRNAs (2) in order to
bind to DNA (3). With this mechanism the recruitment of epigenetic regulatory proteins,
switches of gene expression states, and maintenance of epigenetic memory are performed.

1.2.2 Y RNA

Y RNAs are believed to play two intracellular roles. Y RNAs were originally discov-
ered as an RNA component of Ro RNPs, binding to Ro60 for RNA quality control
(Stein et al., 2005). However, recently it was shown to be essential for chromoso-
mal DNA replication (Christov et al., 2006). For chromosomal DNA replication a
cluster of Y RNAs is associated with the protein RPA and the sliding clamp PCNA
and other proteins (Krude, 2010; Szüts et al., 2005, 2003). Y RNAs are hereby
the essential fraction for replication (Y1, Y3, Y4 and Y5 located in a narrow clus-
ter). These ncRNAs are over expressed in human cancer cells. Y RNAs are known
nowadays in mammals and nematodes.

1.3 RNA-RNA INTERACTIONS

1.3.1 General Properties

RNA-RNA interactions provide one of the fundamental mechanisms of cellular reg-
ulation. Single-stranded nucleic acids readily form complex interaction structures
(co-folds) stabilized by complementary base pairing, thereby achieving a high se-
quence specificity. This recognition principle is utilized for wide variety of biological
functions, including the decoding of the genetic code. Each codon is recognized by
a complementary anti-coding presented by the corresponding tRNA. In this case,
the interaction covers only three nucleotides, which is stabilized by the surrounding
ribosomal machinery (Aitken et al., 2010). The direct binding of small RNAs to
each other also plays a crucial role for the catalytic activity of the spliceosome,
where snRNAs and the pre-mRNA co-fold (Valadkhan, 2005).

A present, we lack high-throughput methods to assess RNA-RNA interactions
both in vitro and in vivo. The direct proof RNA-RNA binding in vivo is at least
very difficult so that most if not all experimental reports on RNA-RNA cofolds come
from in vitro experiments. To this end chemical probing (Brunel and Romby, 2000)
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is used to determine the secondary structure of both the isolated binding partners
and their interaction structures. In practice, chemical probing, which determines by
means of context-specific degradation whether a nucleotide is paired or unpaired
only provides constraints which in some cases imply an unique RNA secondary
structure model, while in other cases ambiguities remain.

In contrast to the experimental difficulties, RNA secondary structures and RNA-
RNA interactions can be predicted efficiently by computational methods. The
folding problem is posed as a combinatorial matching problem with certain con-
straints. The nucleotides of the two sequences are represented as vertices of graph,
whose edges encode the logically allowed Watson-Crick and GU base pairs. We
then search for a matching in this graph (i.e., a subset of edges such that ev-
ery vertex/nucleotides take part in only one edge) that satisfies further structural
constraints and maximizes an energy function. For RNA secondary structure pre-
diction, for instance, one requires that base-pairs do not cross each other. The
energy function accounts for base-pair stacking and loop entropies, i.e., it favors
parallel base pairs and discounts long unpaired regions (Mathews et al., 1999).
Although the RNA-RNA interaction problem (RIP) and the closely related RNA
folding problem with arbitrary pseudoknots are NP-complete in their most gen-
eral forms (Alkan et al., 2006), efficient polynomial-time dynamic programming
algorithms can be derived by restricting the space of allowed configurations.

The simplest approaches concatenate the two interacting sequences and subse-
quently employ a slightly modified standard secondary structure folding algorithm
(Hofacker et al., 1994), possibly allowing some pseudoknots (Rivas and Eddy,
1999). The resulting model, however, still does not generate all relevant interac-
tion structures. Alternatively, internal base-pairs in the interaction partners are
neglected (Rehmsmeier et al., 2004). RNAup (Mückstein et al., 2006) and intaRNA

(Busch et al., 2008) restrict interactions to a single contact interval; this model
class has proved particularly useful for bacterial sRNA/mRNA interactions. To-
date only a handful of interaction structures are known that are even more complex,
some of which we will encounter later in this section.

1.3.2 MicroRNAs and RNA Interference

MicroRNAs were the first small regulatory RNAs found in animals, but turned out
not to be the only ones. During the past few years, a variety of additional RNA
classes associated with the RNA interference (RNAi) pathways (Kim and Rossi,
2008) were discovered, many of which share functional properties and processing
machinery, see Carthew and Sontheimer (2009); Verdel et al. (2009) for recent re-
views. Their size of about 20-30 nt and their final destination define these RNAs
as a reasonably homogeneous group. They guide large protein complexes to their
targets, thus comprising the “RNA sensor” allowing sequence specific binding of
the proteins. Both miRNAs and siRNAs form subclasses of this large class of small
ncRNAs involved predominantly in gene silencing. MiRNAs stand out from the
other small RNAs in several ways: they are processed from an extremely stable
hairpin-structured precursor and they are typically highly conserved over long evo-
lutionary timescales (Hertel et al., 2006), indicating crucial regulatory functions.

Although microRNAs clearly interact by basepairing with their targets, our un-
derstanding of the rules that govern the recognition of microRNA target sites. Sur-
prisingly, even exact complementarity is insufficient in some cases, while rather poor
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Figure 1.2 Structures of a few miRNA-target interaction, (Brodersen and Voinnet,
2009).

interactions are still functional in some cases. For animal microRNAs, the “seed
rule”, for instance, postulates that exact complementarity between nucleotides 2-
7 with the mRNAs is necessary. There are several well-documented exceptions,
however (Brodersen and Voinnet, 2009).

MicroRNAs may act in two distinct ways to downregulate protein expression ei-
ther by translational repression or by slicing, i.e., endonuclease cleavage of the target
mRNA. The latter pathway is the principle mode of action of siRNAs and possi-
bly other sub-classes of short RNAs. MicroRNAtarget complementarity, Fig. 1.2,
does not necessarily predict the regulatory output of the interaction. In particular
complementarity does not imply slicing, while central mismatches prevent slicing,
reviewed in (Brodersen and Voinnet, 2009). This observation is consistent with
structural models that suggest that the mRNA faces the Ago RNase H active site
about 10 nt from the beginning of the miRNA-mRNA duplex (Song et al., 2004).
Imperfectly paired target sites in animal transcripts often occur multiple times in
the same mRNA. Cooperative action of multiple sites has also been observed.

1.3.3 Small Bacterial RNAs and Translational Control

Small non-coding RNAs (sRNAs) form an important class of regulators of gene
expression. In bacteria, their role in the cell was not fully appreciated until the
discovery of hundreds of sRNAs in E. coli and many other species (Vogel and
Sharma, 2005; Waters and Storz, 2009). While the chaperone protein Hfq plays an
important role in facilitating sRNA/mRNA interactions, sRNAs are also abundant
in species such as Helicobacter pylori that lack Hfq (Sharma et al., 2010), Fig. 1.3.

The exact location and structure of the sRNA/target duplex has a decisive im-
pact on the function of the sRNA. While most sRNAs act to downregulate protein
expression exceptions are well known. Typically, the sRNAs regulate translation by
influencing the accessibility of the Shine-Dalgarno (SD) sequence. If the SD is con-
tained in a stable secondary structure, translation is inhibited. Most sRNA achieve
this by binding directly to the SD, thus covering the SD by sRNA/mRNA interac-
tion (Sharma et al., 2007). Several sRNAs, however, (among them DsrA, GlmZ,
RNAIII, RprA, RyhB, and Qrr) activate translation by binding the 5’ mRNA region
in such a way that the mRNA refolds to liberate a sequestered ribosome binding
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Figure 1.3 Three examples of interaction between bacterial sRNA and mRNAs. The
primary interaction region(s), corresponding to the published structures are highlighted in
red, hybridization probabilities computed by rip2 (Huang et al., 2010) are annotated by
shaded boxes, identifying additional hybridization regions that may further stabilize the
interaction.

site (Fröhlich and Vogel, 2009). The pairing of GadY sRNA to the 3’-end alters
processing and increases mRNA stability.

The binding of a small RNA to an mRNA can have long-range effects through
a refolding of the mRNA. The binding affinity of HuR protein to human mRNAs,
for example, can be tuned by artificial “opener” and “closer” RNAs that interact
far away from the HuR binding motif (Meisner et al., 2004; Hackermüller et al.,
2005). So far, it remains open to what extent such induced RNA refolding plays
a role in eukaryotes as well. Changes in RNA secondary structure can also be
induced by temperature changes or metabolite binding. A wide variety of procary-
otic riboswitches, reviewed in (Henkin, 2008), utilizes this mechanism to control
either translation (by hiding or exposing the SD) or transcription (by forming an
pre-mature terminator signal upstream of the coding sequence). Complex sensors
consisting of elaborate RNA structures also play a role in recently-evolved eukary-
otic mRNAs (Kaempfer, 2003; Ray et al., 2009).

A recent study of the primary transcriptome of Helicobacter pylori (Sharma
et al., 2010) demonstrated an unexpectedly high number of anti-sense transcripts
and alternative transcription start sites, indicating that there may be an additional
layer of regulatory complexity based on these novel transcripts.

1.3.4 Small Nucleolar RNAs and Chemical Modifications

Chemical modifications of RNAs are an evolutionarily old phenomenon. In particu-
lar, tRNAs are heavily edited. In total, over 100 structurally distinguishable modi-
fied nucleosides have been encountered so far in different types of RNAs from many
diverse organisms of all domains of life (Limbach et al., 1994; Dunin-Horkawicz
et al., 2006). These modifications increase the chemical diversity of RNA and are
beneficial or even critical for proper folding and function of the RNA molecule.
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Most types of modifications are carried out by specialized, site-specific enzymes. A
large number of pseudouridine and 2’-O-methylated nucleotides however, are syn-
thesized by generic RNP complexes that recognize their target sites in in rRNAs,
snRNAs, and tRNAs through their RNA components, the H/ACA and C/D snoR-
NAs, respectively (Bachellerie et al., 2002). These two classes of enzymatically
active RNPs are ubiquitous in eukaryotic and archaeal organisms but are not found
in bacteria. The RNA components are evolutionarily and structurally unrelated,
Fig. 1.4.

A small class of hybrid snoRNAs contain an H/ACA and a box C/D motif. An
example is U85, guiding both the pseudouridylation of base U46 and the 2’O-ribose
methylation of base C45 of the U5 snRNA (Henras et al., 2004). Several snoRNAs,
in particular those of hybrid structure but also several otherwise canonical ones,
contain a CAB box (AGAG, typically located in a hairpin loop). The signal directs the
snoRNAs to the Cajal body, where they guide modifications of the RNA polymerase
II-transcribed snRNAs (U1, U2, U4 and U5). In Archaea, the snoRNAs also target
tRNA precursors (Singh et al., 2008).

An increasing number of orphan snoRNAs, i.e., snoRNAs lacking targets in
rRNAs or snRNAs, has been described in different eukaryotes. In particular, a
subgroup of snoRNAs expressed in the mammalian brain does not appear to be
involved in modifications of rRNAs or snRNAs. Instead, some of them target
specific mRNAs and appear to interfere with A-to-I editing (Vitali et al., 2005;
Rogelj, 2006).
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of histone-pre-mRNA.

1.3.5 RNAs in RNA End-Processing

The overwhelming majority of protein-coding pol-II transcripts ends in a poly(A)
tail that is generated by endonucleolytic cleavage followed by polyadenylation (Proud-
foot, 2004). This is not an absolute rule, however.

The mRNAs of the replication-dependent histones lack poly(A) and instead fea-
ture a highly conserved stemloop structure in their 3’ UTRs. It binds the stemloop
binding protein that ensures RNA stability and enhances translational efficiency.
The 3’ end is determined by base-pairing of the histone-down-stream element (HDE)
with the U7 snRNA, Fig. 1.5, which directs endonucleolytic cleavage (Marzluff,
2005).

In contrast, the 3’ ends of the pol-II transcribed snRNAs are produced by the
Integrator, a specialized protein complex (Baillat et al., 2005), while the 3’ of
the telomerase RNA is processed by the spliceosome in Schizosaccharomyces pombe

(Box et al., 2008), and RNase P RNA processes the 3’ ends of the two long ncRNAs
MALAT-1 and MENǫ, utilizing a tRNA-like element to attract the tRNA processing
machinery. Besides tRNAs, RNase P RNA in addition cleaves the yeast HRA1
ncRNAs, bacterial riboswitches, and possibly also some box C/D snoRNAs, see
(Wilusz and Spector, 2010) for a review.

The rRNA operon is transcribed by pol-I. The maturation of the ribosomal
RNAs involves a complex cascade of processing steps. In Eukarya and possibly
Archaea, this involves also the use of the atypical box C/D U3 snoRNA (Marz
and Stadler, 2009) that acts as an RNA-chaperone mediating the correct structure
conformations of the pre-rRNA for endonuclease cleavage (Atzorn et al., 2004).
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Figure 1.6 U insertion editing of the CYb mRNA of Trypanosoma (Yu and Koslowsky,
2006). A single guide RNA (bottom strand) encodes multiple editing sites. The gRNA and
its mRNA target (upper strand) form a 3-stem structure that is refolded as the processing
moves from one editing site to the next.

1.3.6 Guide RNAs and RNA Editing

Many of the mRNAs of the kinetoplasts (mitochondria) of Trypanosomes and Leish-
manias are edited by inserting and/or deletion of uridines, a process that depends
on a specialized class on ncRNAs, the guide RNAs (gRNAs). In contrast to the
ncRNA-guided editing system in Kinetoplastida, the C→U editing in plant or-
ganelles is directed by cis-acting elements and a plethora of PPR enzymes, reviewed
in (Shikanai, 2006).

The gRNAs of kinetoplastids are typically 50-70nt long and contain three func-
tional elements. A 5-21 nt region on their 5’ side acts as anchor specifically recog-
nizing the target mRNA. The “guide region” in the middle of the molecule serves a
template for editing. It is complementary (allowing GU pairs, however) to the ma-
ture, edited mRNA. The 3’-tail consists of post-transcriptionally added poly-U tail.
The editing process takes place in the editosome, a complex structure comprising
more than 20 proteins arranged around the mRNA/gRNA pair (Simpson et al.,
2004). The editosome typically performs several successive round of of enzymatic
reactions templated by a gRNA, Fig. 1.6. Most of the gRNAs are not encoded
in the major maxicircle DNA, which also contains the mitochondrial rRNA and
protein-coding genes. Instead, large numbers of gRNA genes are be located on the
minicircles (Ochsenreiter et al., 2008; Madej et al., 2008).

The U insertions and deletions can be extensive. The 1246 nts ND7 mRNA of
Trypanosoma brucei, for instance, is processed by inserting 551 and deleting 86
uridines. It is no surprise, therefore, that the U in/dels typically change the open
reading frames of the mRNAs. Intriguingly, the pre-mRNAs of theTrypanosoma

brucei mitochondrion are edited in sometimes alternative ways to yield distinctive
protein sequences. Alternative gRNAs are utilized (Ochsenreiter et al., 2008) to
expands the diversity of mitochondrial proteins by alternative editing.
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Figure 1.7 Processing of CRISPR content into crRNAs (redrawn from (Horvath and
Barrangou, 2010; Karginov and Hannon, 2010)). cas genes (black constrained, white
optionally) upstream and downstream of CRISPR cluster. The Leader sequence (L) directly
upstream of CRISPR. Transcribed CRISPRs are cleaved within the repeat by cse3 or cas6.
Additionally, pre-crRNA is exonucleolytic processed into mature crRNA consisting of a
repeat tag (folding into a single hairpin) and the spacer sequence.

1.3.7 CRISPRs

Immunity against viruses and plasmids in 40% of Eubacteria and 90% of Archaea
is connected to clustered regularly interspaced short palindromic repeat sequences
(CRISPRs). Transcripts from these loci target foreign nucleic acids in by specific-
sequence detection. In addition to other well-described defense strategies, such as
prevention of adsorption, blocking of injection, and abortive infection (Horvath
and Barrangou, 2010), the CRISPR clusters store invading genetic information in
preparation for an “immune response” during a second infection. Immunization is
established in three phases (van der Oost et al., 2009; Marraffini and Sontheimer,
2010): (1) incorporation of new spacers into CRISPR arrays, (2) expression and
processing of CRISPR RNAs (crRNA), and (3) CRISPR interference.

Various cas proteins are located upstream and optionally downstream of CRISPR
cluster, Fig. 1.7. Six core genes cas1 to cas6, located <1kb around CRISPR have
been identified to interact beside repeat-associated mysterious proteins (RAMP)
with mature processed CRISPR (crRNA). cas1 acts as endonuclease within immu-
nization process and cas2 and cas6 are a sequence specific endoribonuclease. The
CRISPR leader located upstream of repeat tags is defined by a low-complexity A-T-
rich region. This area acts as promoter for CRISPR transcript. The spacer addition
provides novel phage resistance, whereas spacer deletion was shown to result in a
loss of phage resistance (Barrangou et al., 2007). With the CRISPR/Cas system
horizontal gene transfer between distant organisms was shown by resistance of bac-
teria that where never invaded by a certain phage before (Godde and Bickerton,
2006).

Recently, a possible relationship between CRISPR interference and eukaryotic
RNA silencing has been discussed (Marraffini and Sontheimer, 2010), since there
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are many obvious similarities: (1) RNA guiding effector apparatus to the target, (2)
the gene function is affected in a programmable and sequence directed manner, (3)
adaptive and heritable components used to establish recoverable genomic records
of past invasions. On the other hand, the two systems clearly are not homologous:
both the protein machinery is completely different and crRNAs are not amplified
post-transcriptionally from single stranded precursors. For more details, we refer
to the reviews (Marraffini and Sontheimer, 2010; Horvath and Barrangou, 2010;
Karginov and Hannon, 2010).

1.4 RIBOZYMES

A ribonucleic acid enzyme (ribozyme) is an RNA molecule that, like the much more
familiar protein-based enzymes, catalyzes a chemical reaction. Natural ribozymes
include for example the peptidyl transferase activity of the 23S rRNA, the ham-
merhead and hairpin ribozyme, RNase P RNA and RNase MRP RNA. Similar to
the ribosome, the spliceosome is in essence also a ribozyme (Valadkhan, 2007).
The efficiency of the catalysis, however, depends to a certain extent on secondary
structure features of the mRNA to be catalyzed (Warf and Berglund, 2010).

Ribonuclease P (RNase P) and mitochondrial RNA processing (RNase MRP) are
ribozymes acting in processing tRNA and rRNA, respectively. The RNA subunits
are evolutionarily related. RNase MRP is eukaryotic specific, where as RNase P is
present in all kingdoms of life but not known in plants and heterokonts (Piccinelli
et al., 2005). The high similarity of P and MRP RNA secondary structures (Collins
et al., 2000) and similarity of the protein contents and interactions of RNase P and
MRP (Aspinall et al., 2007; Walker and Engelke, 2006) suggest that P and MRP
RNAs are paralogs. Both enzymes consist of an RNA molecule and 9-12 protein
subunits, most of which are part of both enzymes. An in silico relationship was
shown for Pop8 and Rpp14/Pop5 as well as Rpp25 and Pop6 (Rosenblad et al.,
2006). The RNA subunit and its interacting proteins build an coevoluting network.

Beyond the relatively small collection of natural ribozymes, it is quite easy to
“breed” catalytically active RNAs (and even single-stranded DNAs) in in vitro

selection (SELEX) experiments, see e.g. the recent review (Talini et al., 2009).

1.5 NCRNA-PROTEIN INTERACTION: RIBONUCLEOPROTEINS

1.5.1 7SK

7SK RNA is known for deuterostomes (Krüger and Benecke, 1987; Murphy et al.,
1987; Gruber et al., 2008b,a; Marz et al., 2009). It negatively controls Transcription
by regulating the activity of the Positive Transcription Elongation Factor b (P-
TEFb) for Polymerase II (Peterlin and Price, 2006; Egloff et al., 2006). In this
process HEXIM1/2 proteins dissolve from P-TEFb and bind to the polymerase III
transcript 7SK RNA (Yik et al., 2003; Michels et al., 2003, 2004; Blazek et al.,
2005). Furthermore the La-related protein 7 (LARP7) was proven to regulate the
stability of 7SK RNA (He et al., 2008; Krueger et al., 2008; Markert et al., 2008).

The network of 7SK RNA and its specific protein partners is a metazoan in-
vention (Gürsoy et al., 2000; Gruber et al., 2008b,a; Marz et al., 2009). The well
characterized LARP7 homologs (Bousquet-Antonelli and Deragon, 2009) are found
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in most metazoan clades HEXIM was found in all clades of metazoans excluding
Platyhelminthes. Two copies are known for eutheria (Byers et al., 2005; Marz
et al., 2009).

In contrast, another protein known to interact with 7SK RNA, MePCE/BCDIN3
has a much broader phylogenetic distribution, indicating that it has other important
functions beyond its interaction with 7SK RNA.

1.5.2 SRP RNA

The signal recognition particle (RNP) targets ribosomes to the endoplasmatic retic-
ulum (ER) in order to translate proteins into the ER. The SRP complex consists of
a highly conserved ∼300 nt SRP RNA (or 7S RNA) and six proteins (9, 14, 19, 54,
68 and 72 SRPs) in eukaryotes. In archaeas four protein particles are absent and
SRP19 and SRP54 exists compared to one Ffh protein (homolog to SRP54) and a
RNA molecule (also known as 4.5S RNA or 6S RNA in Bacillus) (Rosenblad et al.,
2003). Although the network of SRP RNA and corresponding proteins is highly
conserved, an evolving network between the three main kingdoms of life is clearly
visible (Andersen et al., 2006).

Eukaryotic cells have been shown to decrease protein synthesis and increasing the
expression of protein quality control mechanisms, such as chaperones and proteases.
The bacterial SRP receptor, FtsY, inhibits the translation of both SRP-dependent
and SRP-independent proteins (Bürk et al., 2009).

In higher plants two different SRP-dependent mechanisms are known: once pro-
teins are post-translational transferred to chloroplasts and on the other hand pro-
teins are co-translational encoded by the plastid genome (Rosenblad and Samuels-
son, 2004). Although for the first system in general no RNA component seems to
be necessary. However in single plastids from red algae and chlorophyta a remi-
niscent eubacterial SRP was identified. The co-translational protein requires the
SRP RNA, which accelerates the interaction between the SRP and SRP receptor
200-fold (Jaru-Ampornpan et al., 2009). This SRP RNA is missing in the chloro-
plast SRP (cpSRP) pathway. Instead, the cpSRP and cpSRP receptor (cpFtsY)
by themselves can interact 200-fold faster than their bacterial homologous (Jaru-
Ampornpan et al., 2009).

1.5.3 Telomerase RNA

Linear chromosomal ends are replicated by a telomerase enzyme. This consists of
the catalytic protein component telomerase reverse transcriptase (TERT) and the
core functional unit telomerase RNA (Box et al., 2008). Telomerase dates back
to the origin of eukaryotes. Notable exceptions are diptera including Anopheles

and Drosophila, which use retrotransposons or unequal recombination instead of
a telomerase enzyme. Although TERT proteins are experimentally validated for
a wide range of eukaryotes, the knowledge of RNA:protein interacting networks
implies that telomerase RNA exists for more organisms than the experimentally
validated small phylogenetic groups within vertebrates, yeasts, ciliates and plas-
modia (Podlevsky et al., 2008; Xie et al., 2008).



1.5.4 Spliceosomal snRNAs, SL RNA, SmY RNA

Post-transcriptional modifications by connecting different genomic parts are known
in different variations and for diverse phylogenetic groups.

Small nuclear RNAs act with up to 200 proteins as a large RNP (spliceosome) in
eukaryotes to splice exons of protein-coding genes together (Nilsen, 2003). We find
two homolog systems for splicing in eukaryotes: The major spliceosome splices with
U1, U2, U4, U5 and U6 snRNA more than 90% of the protein-coding genes, whereas
the minor spliceosome with U11, U12, U4atac, U5 and U6atac plays an ancillary
role in the nucleus. Although the splicing reactions seem to date back until the
last unknown common ancester (LUCA), the interaction to proteins seems to be
an eukaryotic innovation (Dávila López et al., 2008). Contrary to cis-splicing, in
eight eukaryotic phyla a short leader sequence derived from small SL RNA is added
to the 5’ end of a mRNA by trans-splicing (Hastings, 2005; Nilsen, 2001). The Sm
protein binds to SL RNAs in order to act in this spliceosome-catalyzed process. In
nematoda SmY RNA are hypothesized to recycle the spliceosome proteins after SL
RNAs are consumed in the trans-splicing reaction (MacMorris et al., 2007). Direct
interactions are not known.

1.5.5 vault RNA

The vault ribonucleoprotein complex consists of 8-16 non-coding vault RNAs, a
major vault protein (MVP) and two minor vault proteins (VPARP and TEP1)
(Smith, 2001). Vault RNAs are polymerase III transcripts with length of about
100 nt which are known throught the deuterostomes (Stadler et al., 2009) and in a
few protostomes (Mosig et al., 2009). It is known that they are not necessary for
the structural assembly of vault particles (van Zon et al., 2003).

1.5.6 Long ncRNA as Coat-Hanger?

A handful of long non-coding RNAs appears to play a crucial role in the organization
of complex RNPs, acting like a “coat-hanger” to bring together different proteins.
An example is the huge telomerase RNA of yeasts (Zappulla and Cech, 2006).
Another example is the heat-shock ncRNAs hsrω of Drosophila. Different isoforms
of hsrω are expressed nearly ubiquitously in a developmentally regulated patterns.
Upon heat shock, the nuclear-retained longest isoform sequesters a variety of in
particular nuclear RNA processing factors (Jolly and Lakhotia, 2006). Similarly,
NEAT1 (also known as MENǫ) may act as organizing factor of the paraspeckles
(Bond and Fox, 2009; Sasaki et al., 2009), ribonucleoprotein bodies found in the
interchromatin space of mammalian cell nuclei.

At present, it is unknown to what extent other long ncRNAs function as stabi-
lizing backbones of large RNPs, bringing together specific combinations of proteins,
and what role such complexed might play.

13



14 BIBLIOGRAPHY

Acknowledgements. This work was supported in part by the State of Saxony through
a “Landesstipendium”.

Bibliography

Aitken, C. E., Petrov, A., and Puglisi, J. D., 2010. Single ribosome dynamics
and the mechanism of translation. Annu Rev Biophys. 39. Doi: 10.1146/an-
nurev.biophys.093008.131427.

Alkan, C., Karakoc, E., Nadeau, J. H., Sahinalp, S. C., and Zhang, K. Z., 2006.
RNA-RNA interaction prediction and antisense RNA target search. J. Comput.

Biol. 13: 267–282.

Andersen, E. S., Rosenblad, M. A., Larsen, N., Westergaard, J. C., Burks, J.,
Wower, I. K., Wower, J., Gorodkin, J., Samuelsson, T., and Zwieb, C., 2006.
The tmRDB and SRPDB resources. Nucleic Acids Res 34: 163–168.

Aspinall, T. V., Gordon, J. M. B., Bennet, H. J., Karahalios, P., Bukowski, J.-
P., Walker, S. C., Engelke, D. R., and Avis, J. M., 2007. Interactions between
subunits of Saccharomyces cerevisiae RNase MRP support a conserved eukaryotic
RNase P/MRP architecture. Nucleic Acids Res. 35: 6439–6450.

Atzorn, V., Fragapane, P., and Kiss, T., 2004. U17/snR30 is a ubiquitous snoRNA
with two conserved sequence motifs essential for 18S rRNA production. Mol Cell

Biol. 24: 1769–1778.
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