Vol. 00 no. 00
Pages 1-8

Topology and prediction of RNA pseudoknots

Christian M. Reidys!?7 Fenix W.D. Huang!, Jgrgen E. Andersen?, Robert C.
Penner3*, Peter F. Stadler"~?, and Markus E. Nebel'

LCenter for Combinatorics, LPMC-TJKLC, Nankai University Tianjin 300071, P.R. China

2College of Life Science, Nankai University Tianjin 300071, P.R. China

3Center for Quantum Geometry of Moduli Spaces Aarhus University, DK-8000 Arhus C, Denmark

4Math and Physics Departments, California Institute of Technology, Pasadena, California, USA

5Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for
Bioinformatics, University of Leipzig, Hartelstral3e 16-18, D-04107 Leipzig, Germany.

SMax Planck Institute for Mathematics in the Sciences, InselstraRe 22, D-04103 Leipzig, Germany

"RNomics Group, Fraunhofer IZI, PerlickstraRe 1,D-04103 Leipzig, Germany

8Inst. f. Theoretical Chemistry, University of Vienna, Wahringerstrae 17, A-1090 Vienna, Austria

9The Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, New Mexico, USA

10Department of Computer Science, University of Kaiserslautern, Germany

Received on *****; revised on *****; accepted on *****

Associate Editor; *****

ABSTRACT structure,PseudoBase (Tauferet al, 2009) lists more thar50
Motivation: Several dynamic programming algorithms for predicting records of pseudoknots determined by a variety of experiai@nd
RNA structures with pseudoknots have been proposed that differ computational techniques including crystallography, NMRuta-
dramatically from one another in the classes of structures considered. tional experiments, and comparative sequence analysisialmy
Results: Here we use the natural topological classification of RNA cases, they are crucial for molecular function. Examplesuite
structures in terms of irreducible components that are embeddable the catalytic cores of several ribozymes (Doudna and Ce&adR)2
in surfaces of fixed genus. We add to the conventional secondary programmed frameshifting (Nan®gt al., 2006), and telomerase acti-
structures four building blocks of genus one in order to construct vity (Theimeret al,, 2005), reviewed in (Staple and Butcher, 2005;

certain structures of arbitrarily high genus. A corresponding unam- Giedroc and Cornish, 2009).

biguous multiple context free grammar provides an efficient dynamic Secondary structures can been interpreted as matchinggaph
programming approach for energy minimization, partition function, of permissible base pairs (Tabaskt al, 1998). The energy of
and stochastic sampling. It admits a topology-dependent parame- RNA folding is dominated by the stacking of adjacent basespai
trization of pseudoknot penalties that increases the sensitivity and not by the hydrogen bonds of the individual base pairs (Mashe
positive predictive value of predicted base pairs by 10-20% compa- et al, 1999). In contrast to maximum weighted matching, the gene-
red to earlier approaches. More general models based on building ral RNA folding problem with a stacking-based energy fuoati
blocks of higher genus are also discussed. is NP-complete (Akutsu, 2000; Lyngsg and Pedersen, 2008%9. T
Availability: The source code of gf ol d is freely available at ht t p: most commonly used RNA secondary structure predictionstool
/I waww. conbi nat ori cs. cn//cbpc/gfold.tar. gz includingnf ol d (Zuker, 1989) and th¥i enna RNA Package
Contact: duck@santafe.edu (Hofackeret al.,, 1994), therefore exclude pseudoknots.
Supplementary information Supplementary material containing a Polynomial-time dynamic programming algorithms can bei-dev
complete presentation of the algorithms, full proofs of theorems, and sed, however, for certain restricted classes of pseudekniot
detailed performance data are available at Bioinformatics online. contrast to theD(n?) space and)(n®) time solution for simple

secondary structures (Waterman, 1978; Nussetal., 1978; Zuker

and Stiegler, 1981), however, most of these approachesarple
1 INTRODUCTION tationally much more demanding. The design of pseudokndirfg
algorithms thus has been governed more by the need to limipae
tational cost and achieve a manageable complexity of thesmn
than the conscious choice of a particularly natural seapettes of
RNA structures. As a case in point, the class of structureen
lying the algorithm by Rivas and Eddy (1999) was characeetiz
only in a subsequent publication (Rivas and Eddy, 2000). féhe
lowing references provide a certainly incomplete list ohdgnic
programming approaches to RNA structure prediction usiiffg-d
rent structure classes characterized in terms of recuesiprations

The global conformation of RNA molecules is to a large extent
determined by topological constraints encoded at the tevacon-
dary structure, i.e., by the mutual arrangements of the pased
helices (Bailoret al, 2010). In this context, secondary structure is
understood in a wider sense that includes pseudoknotsoddtithe
vast majority of RNAs has simple, i.e., pseudoknot-freepsdary
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and/or stochastic grammars: Rivas and Eddy (1999); Uemura Y ?‘

etal.(1999); Akutsu (2000); Lyngsg and Pedersen (2000)eCal. f‘f\

(2003); Dirks and Pierce (2003); Deoganhal. (2004); Reeder and M J\,{}\

Giegerich (2004); Li and Zhu (2005); Matsat al. (2005); Kato _(-(

et al. (2006); Cheret al. (2009). The inter-relationships of some of f\ 30 40.(’\4-{::) 1
&
T

these classes of RNA structures have been clarified in pa@doy L& e 50 :
don et al. (2004) and Rgdland (2006). In addition to these exact ?‘\ ﬁr*ﬁ;: J—ﬁi}ﬁﬁﬁﬁﬁiﬁﬁiﬁ’
algorithms, a plethora of heuristic approaches to pseuntogre- (& / 70 60 <
diction have been proposed in the literature; see e.g.,Zsteand 80 <

Nebel, 2008; Chen, 2008) and the references therein. —

At least three distinct classification schemes of RNA cadntac
structures have been proposed: Haslinger and Stadler$889e-
sted using book-embeddings, &al.(2008) focused on the maxi-
mal set of pairwise crossing base pairs, and Bbal. (2008) based <

the_ classmcat_lon on topologlca_l embeddings. While thdassifi- ’,,,,,,,&\‘\\
cations have in common that simple secondary structurefdah@ NN m
most primitive class of structures, they differ already fe tcon- /fﬂ\

e e e e e e e e e e e e e e e e o e e e e e e e e e e e e e e e e
1 10 20 50 8

struction of the first non-trivial class of pseudoknots. piestheir % “© *0 7 % g

mathematical appeal, however, no efficient (polynomialeli algo- (b)

rithms are available for predicting pseudoknotted stggieven in

the simplest case df-non-crossing RNA structures. A practically

workable approach t8-non-crossing structures requires the enume-Fig- 1. RNA structures as planar graphs and diagram.

ration of an exponentially growing number of diagrams whéck

then “filled in” by means of dynamic programming (Huaegal., : f N\

2009); a Monte-Carlo approach utilizing the topologicapryach ) — —

with a very simple matching-like energy model was explorgd b

(Vernizzi and Orland, 2005).

In this contribution, we show that the topological classifian  Fig. 2. Inflation of edges and vertices to ribbons and disks

of RNA structures can be translated into efficient dynamic- pr

gramming algorithms whose computational complexity iecliy

related to the maximal genus that is considered in certegdircible  the associated surface carries the important invariaatsirig to a

building blocks of the structure. meaningful filtration of RNA structures. Formally, we willew an
RNA molecule as a topological surface having its diagramedrel
mation retract (Anderseet al,, 2010). The main idea is to “thicken”
the edges into (untwisted) bands or ribbons and to exparitveae

2 RESULTS tex to a disk as shown in Fig. 2. This inflation of edges leads to

2.1 Topology of RNA Structures fatgraphD (Loebl and Moffatt, 2008; Pennet al., 2010).

A fatgraph, sometimes also called “ribbon graph” or “mag’ai
graph equipped with a cyclic ordering of the incident halfies at
each vertex. ThusD refines its underlying grapt) insofar asD

Diagram RepresentatioRNA molecules are linear biopolymers

consisting of the four nucleotide&, U, C, and G characterized

by a sequence endowed with a unique orientatigrtq 3'). Each > . - o .

nucleotide can interact (base pair) with at most one otheleotide encodes the ordering of the ribbons incident on its disks;funther

by means of specific hydrogen bonds. Only the Watson-Cridis pa €Xt€nsion, the ribbons may also be allowed to twist givirsg fo

GC andAU as well as the wobbl&U are admissible. These base POSSibly non-orientable surfaces (Massey, 1967).

pairs determine the secondary structure. Note that we hegiecr We interpret the boundary of each ribbon as oriented counter

ted here base triples and other types of more complex irttersc clockwv_se. AD-cycle is consFructed by foIIowmg_ the boundaries

Secondary structures can thus be represented as graphomr, m ©of .the rlbbons from disk to disk thereby altlernatlng betwbease

conveniently, labelled diagrams. In such a diagram, théiaee ~ P&Irs ribbon and backbone as shown in Fig. 3. Theycles are

of the polymer is horizontally drawn as a chain. This chaingists  therefore uniquely defined. Topological invariants sucthasnum-

of vertices and arcs respectively representing the niidestand P& Of boundary components of the fatgrdphan thus be computed

covalent bonds. The base pairs are represented as arcstipphe directly from the underlying diagrar. Furthermore, fatgraphs can

half-plane: see Fig. 1. be succinctly stored and conveniently manipulated on tinepcer
Thus, we shall identify a structure with a labelled graphrahe @S Pairs of permutations (Penretral, 2010).

vertex sefN] = {1,2, ..., N} represented by drawing the vertices 1 ne fatgraphiD gives rise to a unique surfac€p, and eactD-
1,2,.... N on a horizontal line in the natural order and the arcs €YCl€ corresponds to a boundary component¥ef, whose Euler

(i, ), wherei < j, in the upper half-plane. characteristic and genus are given by

Fatgraph representationln order to understand the topological pro- x(Xp) = v—e+r (2.1)
perties of RNA molecules we need to pass from the picture ARN 1
as diagrams or contact-graphs to that of topological saga®nly g(Xp) = 1- §X(XIDJ)7 (2.2)
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diagram shadow

0

Fig. 3. Computing the number of boundary components. The diagram co fig. 5. Shadows: the shadow is obtained by removing all non-crgsaios
tains5 + 9 edges and0 vertices. We follow the alternating paths described gnq isolated vertices and collapsing all resulting stantesingle arcs.
in the text and observe that there are exactly two boundamgponents

(bold and thln) Accordmg to eq. (2.1), the genus of the diayis given
a

Fig. 6. ~-structures: we display the shadow oflastructure (left) having
topological genus two and the shadow of the HDV-structuigh{y (Ferré-
D’Amareé et al, 1998), a2-structure having also genus two. Although both
shadows have genus two, the HDV structure cannot be gedetetatively

Fig. 4. Reduction to fatgraphs having a single vertex. Contradfiegback-  via successive removals 6§f -elements and stacked arcs and has order one.
bone of a diagram into a single vertex decreases the lengtredfoundary ~ The structure displayed on the left has order two.

components and preserves the genus. The backbone of thregratan be

recovered by re-inflating the disk.

shadow-removal; see Fig. 6. Clearly;yestructure can have genus
exceedingy. Algorithmically speaking, g-structure is contained in

wherew, e, r denotes the number of discs, ribbons and cycleB in the dynamic programming “hull” of the s&t, of shadows of genus

(Massey, 1967). Furthermor®,hasD as deformation retract.
We next make use of an additional feature of RNA structures,W
namely, that the backbone forms a unique oriented chairrrdete
ned by the covalent bonds. Thus, the backbone can be callaps
to a single disk. The procedure can be undone by re-inflatieg t
disk and rebuilding the backbone. This contracts Mheertices to
a single one and removes thé — 1 covalent bonds, see Fig. 4. It
therefore preserves Euler characteristic and genus. Ukiagol-
lapsed fatgraph, we see that the relation between the gdrths o
surface and the number of boundary components is deternbiyned
the number of arcs in the upper half-plane, namely,

In order to quantify the relation betweenand the genug of a
~-structureS, we consider the number(&) of S, -substructures
Shat have to be removed in order to decomp&séiVe callw(S) the
order of &. Since stacked arcs that arise during the decomposition
cannot contribute to the genus, we have

9(6) = w(8)~. (2.4)

The simplest class of structures are of courssructures, obtai-
ned as the dynamic programming hull over the base pair-free

2-2g—r=1-n, (2.3) structure:
wheren is number of base pairs andhe number of boundary com-  LEMMA 2.1. An RNA structure is &-structure if and only if it
ponents. The latter can be computed easily and thereforeoten IS @ simple secondary structure. In particularfastructure always
the genus of the molecules. has genug = 0.

From the collapsed fatgraph we can derive piodygonal model
of the surfaceXp, that is, a polygon in which sides are identified in
pairs; see Fig. 4.

PrROOF. We first observe that a diagram of genus zero contains
no crossing arcs. This follows from the fact that genus is aono
tone non-decreasing function of the number of arcs (see2e8))(
and that the genus of the matching (A) consisting of two milytua
2.2 ~-dructures crossing arcs has only one boundary component and hence genu
Theshadowof a diagram (RNA structure) is obtained by removing one; see Fig. 2. Second, we observe by induction on the number
all non-crossing arcs, collapsing all isolated verticed seplacing  of arcs that each new non-crossing arc contributes a newdaoyn
all remaining stacks (i.e., adjacent parallel arcs) bylsirgcs; see  component an@ — 2g — (r + 1) = 1 — (n + 1) shows that the
Fig. 5. We show in this section that for any fixgdthere are only  genus remains zero. Structures consisting only of nonsangsarcs
finitely manypossible shadows,. This fact is of central algo- therefore have genus zero.
rithmic importance since an RNA structure of finite genushigst
determined by finitely many shadows. Next, we consider structures of arbitary genus. For thedysis,

We next come to the notion of-structures. An RNA structure diagrams without isolated points, i.e., matchings, plagrt@l role.
is ay-structure if its shadow can be decomposed iterativedyn Let ¢, (n) be the set of matchings of genyswith n arcs, and let
bottom to topby removing blocks of arcs corresponding to a sha-c4(n) := |%,(n)| denote its cardinality. As shown by Andersen
dow of genusy and any stacked arcs that are induced by eacret al. (2010), the generating functioB,(z) = >, ., cs(n) 2" is
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given by
VvV1i—4
Cole) = Py gy 921 (25)

where P, (z) is an integral polynomial of degre@g — 1) such
that P,(1/4) # 0. The number of genus zero matchings are well-
known to be given by the Catalan numbers, and eq. (2.5) aliog/s
derivation of explicit formulas for higher genera, for iaste,

_2n 2 (2n — 1!
 3(n—2)!

_ 274 (5n —2)(2n — D!
B 90(n — 4)!

ci(n) , c2(n)
Furthermore, the number, (2¢g) of matchings of genug having
exactly 2¢ arcs i.e., matchings having exactly one boundary
component, is the coefficient of in P,(z) and is given by

_ (49)!
©(29) = Loy 11

Explicitly, we havec:(2) = 1, c2(4) = 21 andc3(6) = 1485 for
example. These particular matchings will serve as “seedisbér
folding algorithm. More precisely, we shall use the follogi

THEOREM2.2. For arbitrary genusg, the setS, of shadows is
finite. Every shadow if§, contains at leas2g and at mos{6g — 2)
arcs.

The special casg = 1, on which we focus in the algorithmic
part of this contribution, is explicated in the Supplementdaterial
(SM).

PROOF. First note that if there is more than one boundary compo-
nent, then there must be an arc with different boundary corepts
on its two sides, and removing this arc decreasdsy exactly
one while preserving since the number of arcs is given by=
2g + r — 1. Furthermore, if there are, boundary components of
length? in the polygonal model, thetn = 3, fv, since each side
of each arc is traversed once by the boundary. For a shadow,0
by definition, andv, < 1 as one sees directly. It therefore follows
that2n = Y, vy > 3(r—1)+2,s02n =4g+2r—2 > 3r—1,
i.e.,4g — 1 > r. Thus we haver = 2g 4+ (49 — 1) — 1 = 6g — 2,
i.e. any shadow can contain at mégt— 2 arcs. The lower bound
2g follows directly fromn = 2g + r — 1 by observingr = 1.

Many S,-shadows are in faet structures for some < g, that s,
they can be constructed from elementsSof One key result of this
contribution is the following characterization bfstructures:

THEOREM2.3. An RNA structure is a-structure if and only if
its shadow can be decomposed by iteratively removing onkeof t
four shadows

(A) (B) (€) (D)

In particular, 1-structures can have arbitrarily large topological
genus.

PrRoOOF. We only give a sketch here and refer to the SM for a
full proof. First, we observe that taking the shadow pressiyenus.
Since (A) is the unique matching with two arcs of genus= 1,
it is contained in every matching of gengs= 1. An arc crossing

the ruld

[s1,71] and

in RNA structures:

Fig. 7. Fragment-pairs
IA1IB11A2IB>S induces the fragment-pairgii,ri],
[i2,72], [s2,j2]. Arcs connecting the two fragments of a pair are non-
crossing, while arcs with both endpoints within the samgrfrant may be
crossing such as those withiiss, jo|.

—

into (A) preserves the genus and leads to either (B) or (C)iléVh
every arc added to (B) increases the genus, there is ondopitg$o
preserve the genus when adding an arc to (C), namely, th&éaudi
leading to (D). It remains to observe that no further arc caadded
to (D).

2.3 Minimum free energy folding of ~-structures

We have shown in the previous section thastructures are sim-
ple RNA secondary structures. Their minimum free energy BYIF
configuration can be obtained by dynamic programming recurs
ons (Waterman, 1978; Zuker and Stiegler, 1981) derived feom
decomposition into suitable substructures. This decoitippscan

be expressed in terms of a context-free grammar (Dowell altty E
2004; Steffen and Giegerich, 2005). In the simplest casechwh
corresponds to evaluating base pairs only, we consideigéesion-
terminal symbolS representing an arbitrary diagram over a segment
and three terminal symbols to represent isolated vertg@aslfol:),
openings (symba() and closings (symbad)) of base pairs. We only
need the three production-rules

S —: S, S — (9)S, S — e, (2.6)

to generate the corresponding langu&ge

Let us next consider RNA-structures. We shall use the that (1)
any1-structure can be inductively generated from genus onetstru
res and (2) that every genus one structure has shadow (A)(QR)
or (D), to specify a multiple context-free grammar (MCFGgkB
etal, 1991). In contrast to context-free grammars, the non-iteam
symbols of MCFGs may consist of multiple components whiclstmu
be expandetin parallel. In this way, it becomes possible to couple
separated parts of a derivation and thus to generate cgsssin
the case ofi-structures, the languagdgis built upon sequences of
intervals fragment-pair} [i, 7], [s, j], where(i, j), (r, s) are nested
arcs. Arcs having endpoints in the different fragments asumed
to be non-crossing; see Fig. 7. For the MCFG, the fragments of
pair are associated with two different (coupled) composeita
2-dimensional non-terminal symbol.

Accordingly, we (re)introduce the following symbols:

1 This coupling is only required for components that were geatesl by the
same production step. Components, even if of the same kiaxived in
different steps are independent of each other.
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e non-terminal S, representing secondary structure elementsnon-terminal. Since its location may freely be chosen withieach
(i.e., diagrams without crossing arcs) according to thegul split point gives rise to another loop variable, and henagdrdautes
given above, afactorO(n) to the runtime.

e non-terminals/ and7’, representing an arbitrarystructure, ~ Even if there are much more sophisticated parsing algosthm

i inals® — (X1, X ] with two components used to is useful to consider this simple scheme since it directinsta-
e non-terminals [ b 22 P tes into a recursion for a dynamic programming algorithmdsily
represent a fragment-pair with nested ai’sc {4, B, C, D}, used to compute structures of minimum free energy. Furtbegm
e terminals(x, )x denoting the opening and closing of a base it js possible to introduce intermediate steps in the dédveof our
pair, resp., whereX is one ofA, B, C'or D. language by making use of additional non-terminals andymrtioin-
rules such that the time complexity can be reduced®te®). For

Different brackets as well as the different non-termindipattern  that purpose let the non-termin&l represent-structures in which

X are used to distinguish nestings of the various kinds of®lvad o structures with shadow (A), (B), (C) or (D) are nested and

Finally, we specify the production-rules of our unambigs®CFG  the last vertex is paired. We introduce the non-terminal kayls)

A U = [U,Us], V = [Vi,Va] andW = [Wy, Ws] assumed to

represent intermediate fragment-pairs and the productites

I — S|T

S — (S)S] :S|e U — [IX1,1X,)]

T = I(T)S V — [WU,UsU3]

T — IAUBIAIBS W — (U2, UlU:U3) | Vi, UrVaUs]

T — IAIBIAICIB21C2S where (U1, Us) is a marked copy ofU:,Us>) used to identify

T = IAIBICIAIBIGS coordingly we eplace the derhations B 2, as folows:
T — IAIBICiIA;ID\IByIC2ID,S

X = [xIX1XeD)x] | [(x)x], T - IMs|Is

I' — ViVa | UhWViUsVa | Ut WiUaWa
where X € {A, B, C, D} distinguishes the four types of pseudo-
knots. Note that syntactically, i.e., considered as dot-brackgrasen-
tations, thel-structures can be generated by a MCFG, parsable in
time O(ns). However, in that case, corresponding brackets are not
generated in a coupled way making the grammar inappropidate

PROOF. We only sketch the proof. All technical details can be @lgorithmic purposes.
found in the SM. The proof uses induction on the ordé6). We As typical for dynamic programming and in analogy to our par-
first demonstrate that arlystructure® can be uniquely decompo- Sing scheme, we usg-dimensional matrices to store the optimal
sed. In the following, we consider unpaired vertices to hat@imed ~ Structure over a fragment. The matrix is indexed by the secpie
in S. We start the decomposition from right to left. Accordinghe ~ coordinates of the endpoints. It can be a simple secondany-st
above, we have to consider a paired vertex and distinguishakes ~ ture 8 or a substructure of higher genus. For the fragment-pairs,
of the corresponding are to be (a) non-crossing or (b) crossing. In i.e., for the non-terminals of dimension twbdimensional matrices
case (a), there existslastructure that is nested in this arc. In case indexed by the endpoints of both linked fragments are reqio
(b), we consider the set(«a) of arcs that are crossed by Consi-  Store the optimal structure over them. Suppose the paieghfients
der the minimal arev. that crosses ang'(a)-arc, where minimal 1S [, 7] and[s, j], and letGu(i, j; 7, s) be the fragment-pair (asso-
is with respect to the partial order , where(i, j) < (r,s) iff r < i clated with)[Uy, Uz, G(i, j; 7, ) be the fragment-paifls, Vo],
andj < s. It follows thatae = (i,5) anda. = (ix,j.) induce ~ Gw(i,j;7,s) be the fragment-paifiVs, W»], and G(i, j; r, s) be
the fragment paifi, i.] and [j., j]. Since® is a 1-structure, this the fragment-paif X1, X2]. The recursions for these matrices, sum-
fragment pair belongs to a unique shadow of type (A), (B), (€) Marized in graphical form in Fig. 8, are determined direttjythe
(D), which in turn gives rise to at most four new fragment paithe ~ grammar.
theorem now follows since by construction the order of ang-su ~ We can conclude from the rewriting rules that the computatio

structure contained in such a fragment pair is reduced by sme  Of the2-dimensional matrices requires at most three loop vargble
SM (Fig. 9). and there ar€©(n?) many of them. AccordinglyQ(n”) operations

are required to fill the associat@edimensional matrices. For thie

If we make use of a naive table-based parsing schemedimensional matrices, two loop variables are needed fdn eathe
checking for each subwords of the input and for each corresponding rewriting rules (those with a left-hand sfldimen-
rule f whether f can produces, a rule like f = sion?2) for there are in each case two split points introduced by the
I — TA\IB2IC IA2IDIB2IC>ID5S introduces a complexity — right-hand sides of the corresponding productions. Sineeneed
O(n'®): First, we must procesd(n?) different subwords induced  to computeO(n*) matrix entries, the total run time is i@(n°).
by an input of sizex. Second, each non-terminal but the first on the Obviously,O(n*) space is required to store these tables. Accordin-
right-hand side of the production introduces an additiepéit point gly, the algorithm can generate alistructures inO(n°) time and
which specifies the part of to be generated by the corresponding O(n*) space.

THEOREMZ2.4. Any RNAI-structure can bainiquely decompo-
sed viaZ,, and any diagram generated via, is a 1-structure.
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. ﬁ BTN K TR NG <N of type X over the fragment paifi, 5], [r, s] are readily calculated
. ! i | from the partial partition functions. These “backward nesions”
jirs) are analogous to those derived by McCaskill (1990) for ¢nusee
structures: Let\y, ; be the set ofl -structures containingV; ; and

ﬂ letAg ~ be the set of-structures containing the fragment-pair
A i o

o) .ﬁ‘m / e ) Xi,jir,s. It fOllows that we have
G(i,j;r,s) i+1,p-1) P,q;r,S)  I(g+1-1)
e G(p+1,j;r,g+1) PN,M = Z Ps; ]P))Zi,j;'r,s - Z Ps.
‘ ”y\\\ = SEANLJ SEAX'i,j:'r,s
s i} _\
i r ) s ] pp+1 qq 1] o
Gultins) SupposeN; ; or X; ;... are obtained by decomposirfy. The
e 5 /_u* G\u('q iP.s) conditional probablitieﬂP’N. ; gs and P Lol AT€ then given
- — N JiT s )
.,_/’ \\_\1 = ,_4;; e by Qo.(N;;)/Qe., and Qo, ( i S)/Qg respectively. Here
v Oyl coertinar) Qo, represents the partition funct_lc_m o, _and Qo (Ni )
== and Qo, (X;,j;rs) represent the partition functions for thoge-
L2TBIN A Cuiane) /’—(E;\\Gv“vq?”’*” configurations that cgntaimi,j and.Xi,]-mS respectively. Taking
TN KA N Fa ) the sum over all possiblé;, we obtain
'/ I’“\‘_\| = / \ \ /
- — PH_IQ" i — ] | Iw j —
I er(”rss) J o I\_‘i i'_/' o \ N / / P =P Qo, (Ni.;) P =P Qo, (Xijir.s)
~Gu s ~Gu s N TRy, Kisgirs — 207 Qp,
Gu(sjip,a+1) Gu(sj:p,q+1) . . . . . .
From this backward recursion, one immediately derives elststic
backtracing recursion from the probabilities of partiatstures that
Fig. 8. The decomposition fot-dimensional matrice§!, Gu, Gv, andGw. ~ generates a Boltzmann sample Ietructures, see (Tacket al,
1996; Ding and Lawrence, 2003; Huaeal., 2010) for analogous
o . ) constructions.
2.4 Partition function and sampling The basic data structure for this sampling is a staekhich stores

We have shown that the MCF@, uniquely generates all-  blocks of the form(4, 7, N) (or (i, j; r, 5, X)), presenting substruc-
structures, i.e., it is unambiguous. Consequently; can be tures of nonterminal symbold™ over [i, j] (or X over [X, X2]
employed to countl-structures over a given sequengeand to ~ WhereX; = [i,r] and X, = [s,]). L is a set of base pairs sto-

compute the corresponding partition function ring those removed by the decomposition step in the gramvidar.
initialize with the block(1,n,I) in A, andL = &. In each step,

Q= Z e*G(S)/RT7 we pick up one element inl and decompose it via the grammar
e with probability @™ /Q™, whereQ™ is the partition function of the

block which is picked up fromd, andQ?* is the partition function
of the target block which is decomposed by the rewriting .riilee

is energy (_Jf strl_Jcture over S?q}*?”cefv_ and &, is the ??t ofl- base pairs which are removed in the decomposition step aveano
structures in which all base paifs ;) satisfy the base pairing rules to L. For instance, according to the rewriting rdle— I(T')S, the

for RNA, i.e., ziz; € {AU,UA,GC,CG,GU, UG}_' Let NV; ; block (4, j, T') is decomposed into the three block$;h — 1, 1),
denote the substructure represented by the nontermindday¥in (h+1,f—1,T), ({ + 1,7, 5) and one base pait, ¢) which is
2, over the fragmenfi, j], and letX; ;.. denote Fhe fragment.-pair to be rémovéd. For fixeoi i;ldicehs ¢, wherei < h <7 ¢ < j, the
X = [X1, X»], whereX; = [i,r] and X, = [s, j] in the recursions probability of decomposingi, j, T) reads

for energy minimization. For each of these symbols, we thime

where R is the universal gas constarf, is the temperaturei7(s)

corresponding partial partition functiody, ; andQX . Since Qs XQTyir sy X Qsypy, X o—Elh.0/RT

the MCFG is unambigous, the recursions for the partlal aunti Phe = Or. . -

functions are derived by replacing minima by sums and aaluiti o

of energy contribution by multiplication of partial paitih functi- The sampling step is iterated until is empty. The resulting

ons, see e.g., (o8t al, 2006). For instance, the recursion for the 1-structure is the given by the lidt of base pairs.
partition functions corresponding to the nonterminal spibreads

25 Software
Tig = zh: Quip X Qsnga g Implementation MFE folding, partition function including a com-
putation of base pairing probabilities, and stochastiktracing are
Y Quy X Q1 X Qsyyy, x e PIWIRT implemented irgf ol d. The program is written in C.

"t Energy Model Although the presentation above uses a simplified

whereFE|h, ¢] denotes the energy of the loop closed by the base paigrammar that does not explicitly distinguish the usual Iogpes,

(h, ). gf ol d implements the Mathews-Turner energy model without
The probabilitiesPy, ; of partial structures of typeV over the  dangles (Mathewst al, 1999, 2004) for secondary structure ele-

fragment[i, j] and the probabilitieﬁbgiyj“ of partial structures ments. For pseudoknots, we use here an extended versior of th




Topology and prediction of RNA pseudoknots

Dirks-Pierce (DP) model (Dirks and Pierce, 2003) that adaif-
ferent penaltiesix for the four topologically distinct pseudoknot
typesX = A, B,C,D. We have observed that the values/®f
have a substantial influence on the accuracy of the predattad-
tures. In bothNUPACK and pknot sRE, a common pseudoknot

The PPV ofgf ol d predictions can be increased by filtering the
base pairs of the MFE structure by their probabilityof forma-
tion, which is computed by the partition function versiorgéfol d.
Accepting only base pairs with a predicted base pairing goeb
lity p > 0.95 increases the PPV froi.76 to more thar0.9, see

penalty3; is assigned whenever two gap matrices cross. Since th€&ig. 9C. As for false positives, we folddd0 tRNA sequences from
number of such crossings depends on the type of the pseudloknSprinzl's tRNA database (Juhlirgt al, 2009) and can report that
this algorithmic design would implyga = 51, B = Bc = 201, gf ol d identifies94% as pseudoknot-free. In comparistitJPACK
and8p = 361. In gf ol d, these parameters are independent andcorrectly identifies36% andpknot sRG nf e 89% of this sample

can be adjusted to improve the performance. Since mostiexper

tally known pseudoknots are of types (A) and (B), we focused i

particular on the ratio o4 andB3p and found that both sensitivity
and positive predictive value reach a maximum fr = 1.384.
The pseudoknot penalty of type (A) coincides with that of Bife

set.

3 DISCUSSION

model, i.e.,f4 = 1 = 9.6 [kcal/mol]. The other penalties are set cqmpinatorial models of pseudoknotted RNA structures iné |

to B 12.6, B¢ = 14.6, andBp = 17.6; see SM for details.
An alternative set of pseudoknot parameters described tjrcAn

ted in two ways: On the one hand, exact algorithmic folding ca
be constructed only for certain types of structures. On ttiero

nescuet al. (2010) can easily be incorporated but would require ahand, the larger the structure sets are, the more base ggian

re-adjustment of these four topological penalties.

Performance The current implementation aff ol d is applicable
to sequences with a length upsio~ 150 nucleotides on a PC with
1.2Gb memory, including the calculation of the partition fupat

We have observed thajf ol d provides a substantial increase

in both sensitivity (ratio of correctly predicted base paio the
total number of base pairs in the reference structure) andsé p
tive predictive value (PPV, ratio of correctly predictedsbapairs
to the total number of base pairs in the predicted structtoe)pa-
red to the alternative dynamic programming approaghesot s RE
(Rivas and Eddy, 1999)NUPACK (Dirks and Pierce, 2003), and
pknot sRG nf e (Reeder and Giegerich, 2004), and tigatol d
provides a substantial increase in accuracy, cf. Fig. 9.nlea-
luation on the entird’seudobase (van Batenburget al, 2001),
gf ol d achieves a sensitivity 06.762 and PPV of0.761. As
detailed in SM (Tab.S-3), the performance varies substtiytet-
ween different classes of sequences however. Interegtthglmore
complex pseudoknots of type B are predicted with even higbeu-
racy (sensitivity0.889, PPV 0.899) than the simpler, much more
frequent type A.
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Fig. 9. Performance ofjf ol d. Comparison of the average sensitivity (A)
and PPV (B) of different prediction algorithms on a sampl&®ftructures
from Pseudobase. All details of this sample are given in the SM (Tab.S-
2). (C) The PPV increases signficantly if only base pairs Véitber pairing
probabilities as predicted by the partition function versiof gf ol d are
included in the predicted structure.

terns are contained in them that cannot be realized in nauedo
steric constraints. Algorithm design so far has been matilen
by the desire to reduce computational complexity. The idsaril
gf ol d, in contrast, is to define a more suitable class of structures
that can be generated by nesting and concatenating a smalemu
of elementary building blocks. This recursive structureaptured
by a fairly simple unambiguous multiple context-free graanrthat
translates in a canonical way to dynamic programming atlgors
for computing the minimum energy structure and the partifimc-
tion in O(n®) time andO(n?) space. In addition to MFE folding,
we have implemented the computation of base pairing préibabi
ties and a stochastic backtracing recursion, thus progittie major
functionalities of RNA secondary structure predictionteaire for

a very natural class of pseudoknotted structures.

The 1-structures considered here strike a balance between the
generality necessary to cover almost all known pseudo&ddiiruc-
tures, and the restriction to topologically elementaryatures that
have a good chance to actually correspond to a feasibleaspttic-
ture. From a mathematical point of view, the charactermaif
structures in terms of irreducible components with givgrotogical
genus appears particularly natural and promises to reflesely the
ease with which a structure can be embedded in three dinrensio
In addition, the grammar underlyirgf ol d naturally distinguishes
different types of pseudoknots and admits different enqrasa-
meters for them. We observe that this additional freedomhef t
parametrization leads to a substantial increase of seitsitif type
(B) pseudoknots,0(63 — 0.889) and PPV (.73 — 0.899) com-
pared to the usage of a common penalty for each crossing of gap
matrices. In terms of prediction accura@y ol d thus compares
favorably also with the leading alternative dynamic praognaing
approaches to pseudoknotted structures.
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