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Boolean networks serve as discrete models of regulation and signaling in biological cells. Identi-
fying the key controllers of such processes is important for understanding the dynamical systems
and planning further analysis. Here we quantify the dynamical impact of a node as the probability
of damage spreading after switching the node’s state. We find that the leading eigenvector of the
adjacency matrix is a good predictor of dynamical impact in the case of long-term spreading. This
so-called eigenvector centrality is also a good proxy measure of the influence a node’s initial state
has on the attractor the system eventually arrives at. Quality of prediction is further improved
when eigenvector centrality is based on the weighted matrix of activities rather than the unweighted
adjacency matrix. Simulations are performed with ensembles of random Boolean networks and a
Boolean model of signaling in fibroblasts. The findings are supported by analytic arguments from
a linear approximation of damage spreading.

I. INTRODUCTION

Boolean networks are coarse-grained models of the reg-
ulatory dynamics that controls the surivial and prolifer-
ation of a living cell [1–4]. The dynamics is time- and
state-discrete. This Boolean abstraction assumes that
small differences in concentration levels are irrelevant.
The binary distinction of a low or a high concentration
of each biomolecule is sufficient to capture the dynamics.

A purely theoretical branch of studies is devoted to
randomly constructed Boolean networks [5, 6] and strives
to elucidate generic features of Boolean dynamics. From
the perspective of statistical mechanics, averaged macro-
scopic quantities in the limit of large system size are de-
scribed in dependence of ensemble parameters such as the
probability distribution of the employed Boolean func-
tions [7, 8] and the degree distributions of the networks
[9, 10]. The number of attractors (ergodic subsets of the
state space) [2, 11–13] and the stability under pertur-
bations [9, 14–19] have been investigated. The underly-
ing fundamental result is a transition between convergent
(stable) and divergent (unstable) dynamics when the in-
put sensitivity of the Boolean functions passes a critical
value [14, 20].

In recent years, the theory of random ensembles has
been complemented by case studies showing that suitably
constructed Boolean networks capture the behaviour of
empirical regulatory systems [21–25]. These system-
specific Boolean networks are obtained by compiling bio-
chemical interactions from the literature [26], by dis-
cretizing existing models of differential equations [27], or
by inference from data by a dedicated algorithm [28].

With the advent of system-specific Boolean models,
new conceptual questions and analytical and numerical
challenges arise. In particular, the response of the sys-
tem to external intervention may be quantified in a more
detailed manner than an averaging over all eligible per-
turbations. Since each node now represents a specific
biochemical entity, a node’s individual impact on the dy-
namics is of interest. The prediction of nodes’ impacts
from the model may be compared to biological experi-

ments. It is expected to trigger additional experiments
and lead to improvement of models.

The goal of this contribution is to establish a formal
notion of node impact in Boolean dynamics and its rela-
tion to a node’s topological position in the network. We
perform a linear approximation of the long-term effect of
a perturbation at a specific node i. We find that, in good
approximation, the expected impact is monotonically re-
lated to the entry of i in the leading eigenvector of the
adjacency matrix. When not only the network structure
but also the Boolean functions are known, the estimate
is improved by replacing the adjacency matrix with a
weighted matrix of the activity values derived from the
functions. The analytic approximations are validated by
numerical studies of random Boolean networks and an
empirical network from the literature.

II. BOOLEAN NETWORKS

A Boolean network is a state- and time-discrete dy-
namical system. The dynamics is defined by an iteration

x(t+ 1) = f(x(t)) (1)

with n Boolean dynamical variables written as a binary
vector x(t) ∈ {0, 1}n at each time t ∈ N∪{0}. The map-
ping f : {0, 1}n → {0, 1}n is typically sparse: calculating
the state xj(t + 1) requires knowledge of the state xi(t)
for a few (� n) indices i at the previous time step. When
the system is pictured as a directed network, the nodes
{1, 2, . . . , n} carry the dynamic variables x1, x2, . . . , xn
interacting along a relatively small number of directed
arcs.

In order to formalize and quantify these ideas, we con-
sider the xi-dependence of f as the mapping

∂(i)fj(x) =
{

1 if fj(x) 6= fj(xli)
0 otherwise (2)

This is the Boolean analogue of the usual partial deriva-
tive of a function, using xli to denote state vector x with
its i-th entry negated. Note that ∂(i)f also maps from
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FIG. 1: Probabilistic description of damage spreading in a Boolean network. The estimated damage probability pi(t) for a node
i at time t is indicated by the height of the shaded area. At time t = 0, the upper node is perturbed, thus having a damage
probability 1. Neglecting correlations, the probability that a damage spreads from a node i to a node j is the activity αij as
a label on each connection i → j. Note that the case of more than one perturbed input, such as for the node with the Nor-
function, is not captured by the activities. In the analytic treatment, we assume linear superposition of damage probabilities.
The node performing Nor has an estimated damage probability (1/2)(1/2) + 1(1/2) = 3/4 at time t = 2.

{0, 1}n to {0, 1}n. By averaging ∂(i)f over all states with
equal weight, the activity of i on j is obtained as

αij(f) = 2−n
∑

x∈{0,1}n

∂(i)fj(x) (3)

The activity αij(f) is the probability that a perturba-
tion (negation of state) at node i causes a perturbation
at node j in the subsequent time step, assuming that all
2n state vectors occur with equal probability. The sensi-
tivity of the Boolean function fi is the sum of its incoming
activities,

si(f) =
n∑
j=1

αji . (4)

Likewise, we define the strength of fi as the sum of out-
going activities

σi(f) =
n∑
j=1

αij . (5)

The directed network on the nodes {1, 2, . . . , n} ob-
tained from f contains an arc from node i to node j if
and only if αij(f) 6= 0. The adjacency matrix A of the
network has an entry aij = 1 if αij(f) 6= 0 and aij = 0
otherwise.

III. DYNAMICAL IMPACT

So far we have considered the average effect of a flip
perturbation at the input i of a Boolean function fj on
the output. Now we ask about the long-term behaviour
of the whole system after a perturbation. We define

Hi(t) = {x ∈ {0, 1}n : f t(x) 6= f t(xli)} (6)

as the set of initial conditions such that a perturbation
at node i spreads at least until time t. Then the fraction
of such combinations

hi(t) =
|Hi(t)|

2n
(7)
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FIG. 2: Variation of dynamical impact across nodes in ran-
dom Boolean networks. For all networks, the ratio r =
[N maxi hi(t)]/

PN
i=1 hi(t) between maximum and average

impact is calculated. Each data point is the average of r
over 100 networks of size N = 500 with connectivity parame-
ter K = 2 at the given average sensitivity. Error bars indicate
standard deviation divided by 10.

out of all possible ones is the probability that the damage
spreads for at least t steps after perturbing node i. We
call hi(t) the dynamical impact of node i for t steps.

Figure 2 shows that dynamical impact strongly varies
across nodes. The maximum value is typically more than
an order of magnitude larger than the average in net-
works of size N = 500 at critical sensitivity 〈s〉 = 1.

Let us find an analytic approximation for hi(t) at long
times t. By pi(t) we denote the probability that node
i carries a damage at time t, i.e. the probability that
[f t(x)]i 6= [f t(xli)]i. After the perturbation has spread
for at least one time step, the damages and also the un-
perturbed states are correlated across nodes in general.
Then the single-node probabilities pi(t) are insufficient
for an exact description of the spreading probabilities.
Here we make an approximation by neglecting the corre-
lations. Then the damage probabilities follow the equa-
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tion

pj(t) ∝
N∑
i=1

αijpi(t− 1) . (8)

This equation is exact if the network, seen downstream
from the initially perturbed node, is a directed tree. Then
at most one term in the summation is non-zero. Oth-
erwise Eq. (8) serves as an approximation assuming a
roughly linear accumulation of the damage. Figure 1
provides an illustration. In a more compact notation,
Eq. (8) reads

p(t) = ℵTp(t− 1) (9)

using the transpose of the activity matrix ℵ = (αij)ij .
Iteration from the initial condition yields

p(t) = (ℵT)tp(0) . (10)

In the limit of large t, the projections on the (left and
right) eigenspaces of the leading eigenvector of ℵ domi-
nate the behaviour of p. Assuming that ℵ is irreducible,
non-negativity ensures that these eigenspaces are one-
dimensional by the Perron-Frobenius theorem. Then we
find unique normalized right and left principal eigenvec-
tors ε′ and ε of ℵ with non-negative entries. In this ap-
proximation by the dominant eigenspaces, the evolution
of p reads

p(t) = λt(ε′ ⊗ ε)p(0) (11)

with the dyadic product of ε and ε′ and the largest eigen-
value λ. According to Equation (11), the projection of
the initial damage probability p(0) on the eigenvector ε
is what determines the expected damage at long time t.
In other words, εi is indicative of the long-term damage
expected from a perturbation at node i in the linearized
treatment with suppression of correlations.

To which extent does this asymptotically expected
damage amplitude εi inform us about the probability
hi(t) that the perturbation spreads for a long time t?
In the follwing sections we investigate the question by
simulations. Often the network structure is known but
information on the Boolean functions lacking. Taking all
non-zero activities as having value 1 turns the activity
matrix into the adjacency matrix. Therefore we also con-
sider the predictive power of the leading left eigenvector
e = (e1, e2, . . . , en) of the adjacency matrix. In situations
without global knowledge on the system, we may want
to compare dynamical impacts of a few nodes, for which
the network neighbourhood is known. Then we can re-
sort to the strength σi or the out-degree di as centralities
of node i based on local information. Table I summarizes
the four node centralities under consideration.

IV. RESULTS FOR RANDOM NETWORKS

Let us investigate the dynamical impact of nodes and
its prediction by centrality measures (cf. Table I) on ran-

TABLE I: Centrality measures considered as predictors for
the dynamical impact hi(t).

↓ range ↓ adjacency matrix A activity matrix ℵ
local out-degree (di) strength (σi)

global eigenvector (ei) eigenvector (εi)

dom Boolean networks with N = 500 nodes and connec-
tivity parameter K = 2. See Section VIII for details. As
shown in Figure 3(a), the long-term impact of perturba-
tions is best predicted by the leading eigenvector ε of the
activity matrix in the whole range of sensitivity. Predic-
tion by the leading eigenvector e of the adjacency matrix
is inferior to that by ε in the supercritical regime 〈s〉 > 1.
When reaching 〈s〉 = K = 2, predictive powers become
equal again, because all Boolean functions are exclusive-
or or its negation. Then all network connections have
activity value 1 and adjacency and activity matrices are
the same. The superiority of the eigenvector ε as a pre-
dictor is in agreement with the analytic arguments given
in the previous section. Slightly above the critical sen-
sitivity value 1, predictive power shows a peak for all
centrality measures considered. Further analyses of the
dynamics are necessary to understand the variation of
the predictive power with average sensitivity, especially
the minimum of Pε at 〈s〉 ≈ 0.7.

Figure 3(b) displays predictive power at short times,
here t = 1. As expected, strength σ is the best predictor
in this case. Predictions by the out-degree vector d per-
form second best but significantly worse than those by
strength σ.

The results in the upper panels of Fig. 3 are obtained
under synchronous update of the whole system, as de-
fined by Eq. (1). In order to check the robustness of the
results, we repeat the simulations under stochastic asyn-
chronous update according to Equation (13). The results,
shown in panels (c) and (d) of Fig. 3, are qualitatively
similar to those obtained under synchronous update. In
the supercritical regime, however, the predictive power of
all four centrality measures is increased when the updat-
ing is asynchronous instead of synchronous. Thus dam-
age spreading is easier to predict under asynchronous up-
date, at least with the four centrality measures studied
here. This effect must be rooted in the interplay be-
tween the update order and the network structure. For
instance, the damage definitely heals when the perturbed
node receives the first update before all its predecessors.
The frequency of this happening decreases with the out-
degree di and incurs an additional dependence of dynam-
ical impact on the centrality measure d.

Simulations at different network sizes (N = 50, N =
100, not displayed) yield similar results for all four combi-
nations of long- or short-term spreading and synchronous
or asynchronous updates. The predictive power of all
four centrality measures remains constant or increases
with system size.
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(c) t=100N, async (d) t=N, async

FIG. 3: Quality of prediction of dynamical impact in random Boolean networks at varying average sensitivity 〈s〉. Symbols
distinguish the centrality measures out-degree d (green �), strength σ (blue 4), and the principal eigenvectors ε and e of the
activity matrix (red �) and the adjacency matrix (black ◦). The four panels present combinations of long- or short-term
prediction with deterministic synchronous or stochastic asynchronous update. Each data point gives the rank order correlation
(cf. section VIII) with dynamical impact h(t), averaged over 100 independent realizations of random Boolean network with
given sensititivity 〈s〉, K = 2, and N = 500 nodes. The error bars indicate the standard deviation over realizations.
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V. SWITCHING BETWEEN ATTRACTORS
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FIG. 4: Power of centrality measures for predicting if a per-
turbation changes the attractor reached. Symbols for the cen-
trality measures are the same as in Fig. 3. Each data point is
an average over 100 random Boolean networks with N = 50
nodes and connectivity parameter K = 2. Error bars indi-
cate the standard deviation over the random network ensem-
ble, Error bars are scaled down by the factor 0.2 to avoid
overlapping.

The long-term behaviour of Boolean dynamics is de-
termined by attractors. These are minimal ergodic sets
in state space. Under synchronous update, an attractor
of length l is a sequence of states x(0), x(1), . . . x(l − 1)
such that f(x(t)) = x([t+1] mod l) for all t ∈ {0, . . . , l}.

It is natural to ask if a perturbation in the initial con-
dition will cause the system to arrive at a different attrac-
tor. For this invesitgation, we define the attractor impact
h′i of node i as the fraction of initial conditions where a
perturbation at node i changes the attractor eventually
reached. At difference with dynamical impact hi(t), at-
tractor impact h′i does not set an explicit time t after
which to determine the spreading or healing of the per-
turbation. On the other hand, h′i does count the per-
turbation as healed whenever the perturbed and unper-
turbed dynamics eventually become equal up to a time
lag.

Figure 4 shows the predictive power of the centrality
measures for attractor impact of nodes. The performance
comparison yields Pε > Pe > Pσ > Pd, being the same
as for predicting long-term dynamical impact, cf. Fig-
ure 3(a,c). Subcritical networks, 〈s〉 < 1, are disregarded
here because most realizations do not have more than
one attractor. For 〈s〉 > 1.9, attractor search exceeds
available computer time.

VI. DYNAMICAL IMPACT IN A REAL
NETWORK

TABLE II: Predictive power of centrality measures for the
fibroblast signal transduction dynamics. The upper part of
the table considers the original system. The lower part is for
the system after removal of the nine nodes providing constant
input. Each line of the table is a scenario defined by the
update mode and the choice of long- or short-term dynamics.
The bold number indicates the maximum in each line.

all nodes

Pε Pe Pσ Pd
synchronous t = 1 0.671 0.454 0.930 0.455

t = 100 0.920 0.734 0.746 0.523

asynchronous t = N 0.706 0.528 0.904 0.564

t = 100N 0.854 0.694 0.748 0.542

only core nodes

Pε Pe Pσ Pd
synchronous t = 1 0.633 0.467 0.946 0.528

t = 100 0.911 0.777 0.738 0.611

asynchronous t = N 0.658 0.543 0.919 0.656

t = 100N 0.834 0.731 0.741 0.631

Let us test the performance of predictors on a non-
random network now. Helikar et al. describe signal trans-
duction in fibroblasts with a detailed Boolean network
[23, 29]. The network has N = 139 nodes and 548 con-
nections, including self-couplings. The nodes fall into
two classes. There are 9 input nodes with a self-coupling.
Each of these applies the identity function to its own
state, not receiving signals from any other node. These
nodes provide constant but choosable input to the rest of
the network. Each of the remaining 130 nodes receives
an input from at least one other node in this set. We call
these the core nodes. The in-degree of nodes varies from
1 to 14, the out-degree varies from 1 to 28.

In table II, we summarize the predictive power of cen-
trality measures for dynamical impact of nodes in the
fibroblast network. Also for this network, the leading
eigenvector ε of the acvitivity matrix is the best predic-

TABLE III: The five core nodes of the fibroblast network with
the largest dynamical impact and their ranks with respect
to the four centrality measures. Synchronous update is per-
formed on the core of the network, after removal of the nine
input nodes. Dynamical impact hi(t) measures spreading over
t = 100 time steps.

node i hi(100) ri(ε) ri(e) ri(σ) ri(d)

Src 0.7707 1 1 1 1

B-Arrestin 0.7061 4 4 9 14

GRK 0.6458 16 27 17 43

PIP2-45 0.5961 2 12 4 4

PKC 0.5910 3 13 3 5
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tor of a node’s ability to cause long-term spreading of
a perturbation. Short-term spreading is best predicted
by a node’s strength σi. Table III shows the five nodes
with the largest dynamical impact and their ranks with
respect to the centrality measures. Prediction of these
ranks by the centrality measures is not perfect. However,
the leading eigenvector ε of the activity matrix correctly
identifies four out of the five nodes with the largest im-
pact.

Table III and the lower part of Table II are obtained
for the fibroblast network after removal of the nine in-
put nodes. These nodes indefinitely sustain their state.
Therefore a perturbation at an input node i never heals,
yielding maximal dynamical impact hi(t) = 1 for all
times t. Reduction to the dynamical core by the removal
of the input nodes allows for a less biased assessment of
predictive power.

VII. DISCUSSION

Even in random Boolean networks, nodes exhibit sig-
nificant differences in dynamical impact. As we have
shown here, these differences are captured well by lo-
cal and global centrality measures that can be calcu-
lated efficiently. The locally defined measures strength
and out-degree are the best predictors for the short-term
spreading of a perturbation from a given node. For long-
term predictions, principal eigenvectors of the adjacency
and activity matrices perform best. These centralities re-
sult from analytic considerations of a linearized spreading
scenario. Eigenvectors naturally arise as the asymptotic
result of taking arbitrarily large powers of the matrix
underlying the linearized dynamics.

Future work should expand the analyses and perfor-
mance comparisons to other centrality measures used in
the context of biological networks [30]. Many of these,
such as the betweenness and the closeness centrality, are
based on the length or multiplicity of shortest paths.
The shell index is a modification of the degree central-
ity taking into account the degree of neighbouring nodes
[31, 32].

Another direction of work is to expand the repertoire
of dynamics beyond Boolean networks. For epidemic
spreading in the SIS and SIR models [33], the eigenvector
centrality [34] yields good predictions of a node’s spread-
ing efficiency in the critical regime [35]. Damage spread-
ing in an equilbirium system, such as the Ising or the
Potts model on a network, constitutes another impor-
tant case for further clarification of the relation between
node centrality and dynamical impact.

VIII. METHODS

a. Random Boolean networks. A random instance
of a Boolean network with N nodes, connectivity param-

eter K and expected average sensitivity 〈s〉 is generated
as follows. Each node i is assigned a Boolean function
fi, drawn from the distribution

π(f) ∝ exp[λs(f)] . (12)

The distribution π is normalized and supported by the set
of 2K Boolean functions with at most K inputs. Here λ is
chosen such that the expectation value of s(f) under the
distribution π is equal to the average sensitivity 〈s〉 [16].
Then π is the unique distribution maximizing entropy
with the given 〈s〉. For each input, on which fi actually
depends, a link (j, i) is established with the source node
j drawn uniformly at random. When this would lead to
a duplicate or self-coupling, j is discarded and redrawn.

Both for the random and the empirical Boolean net-
works, we estimate dynamical impact of a node i by
104 runs of the dynamics. For each of these, a state
x(0) ∈ {0, 1} is drawn uniformly. Then two replica of
the system are initialized with x(0) and at (x(0))li. The
fraction of runs where the replica are in different states
at time t is taken as approximation of hi(t). When hi(t)
is the same for all nodes i or the largest eigenvalue of
the network’s activity matrix is degenerate, the network
is discarded and a new independent realization is drawn.
Discarding of network happens mostly at small 〈s〉. It
does not occur in any of the trials with 〈s〉 ≥ 1.2 .

The dynamics of Equation (1) is deterministic with
synchronous update. Alternatively, we consider stochas-
tic asynchronous update as follows. At each time step t,
a node u(t) is drawn uniformly at random and the nodes
take states

xi(t+ 1) =

{
fi(x(t)) if i = u

xi(t) otherwise
(13)

in the subsequent time step. The same random sequence
u(t) of updated nodes is used for the perturbed and the
unperturbed replica of the system.

b. Predictive power. We quantify the predictive
power Py of a centrality measure y ∈ {d, e, σ, ε} as the
rank order correlation with dynamical impact.

Py = corr(r(h), r(y)) (14)

with the usual Pearson correlation coefficient corr. For a
general vector v = (v1, v2, . . . , vn), the rank vector r(v)
has entries

ri(v) = 1 + |{j 6= i|vj > vi}|+
1
2
|{j 6= i|vj = vi}| . (15)
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