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Abstract Orthology detection is an important problem in comparatine evolu-

tionary genomics and, consequently, a variety of ortholdgtection methods have
been devised in recent years. Although many of these metredtependent on gen-
erating gene and/or species trees, it has been shown thatagy can be estimated
at acceptable levels of accuracy without having to inferegieees and/or reconciling
gene trees with species trees. Thus, it is of interest torsteted how much informa-
tion about the gene tree, the species tree, and their rdiztioci is already contained
in the orthology relation on the underlying set of genes.eHse shall show that
a result by Bocker and Dress concerning symbolic ultraicgetand subsequent al-
gorithmic results by Semple and Steel for processing thesetsres can throw a
considerable amount of light on this problem. More spedlfichuilding upon these

authors’ results, we present some new characterizatiosgifobolic ultrametrics and
new algorithms for recovering the associated trees, witeraphasis on how these
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algorithms could be potentially extended to deal with aabjt orthology relations. In

so doing we shall also show that, somewhat surprisingly it ultrametrics are

very closely related to cographs, graphs that do not comtaiimduced path on any
subset of four vertices. We conclude with a discussion on dresults might be

applied in practice to orthology detection.

Keywords Orthology- Symbolic Ultrametric Cograph Cotree- Rooted triples

1 Introduction

With the current deluge of DNA sequencing data, orthologieckon has become
an important task in bioinformatics, and it lies at the he&rnany comparative and
evolutionary genomic studies. A variety of orthology dé¢itat methods have been
devised in recent years (see e.g. Kristensen et al (201 Bnfaverview). Many of
these methods are tree-based and typically rely on the cé@tion of a gene tree
with a species tree (cf. e.greeFam (Li et al, 2006) Phy0P (Goodstadt and Ponting,
2006),PHOG (Datta et al, 2009) anEnsemblCompara GeneTrees (Hubbard et al,
2007),MetaPhOrs (Pryszcz et al, 2011)). Even so, computing gene trees fram se
guence data is not only computationally demanding, butdltss a rather error-prone
task especially for large data sets. Moreover, in a recenthmark study it was
shown that orthology can be estimated at acceptable lefralscaracy without even
having to infer gene trees and/or to reconcile gene tredsspitcies trees (Altenhoff
and Dessimoz, 2009). It makes sense, therefore, to lookeatdghnection of trees
and orthology from a different anglelow much information about the gene tree, the
species tree, and their reconciliation is already contaime the orthology relation
between genes?

In this paper, we shall explore the following model for shieddight on this
guestion. Suppose that is a set of genes having a common origin, and that their
evolutionary history is given by a gene tree, i.e. a (grapotetical) tred = (V,E)
with vertex seV, edge set and leaf seX. Typically one can think off as being
derived from a species tree, in which case the interior aestofT will correspond
to speciation or duplication everitdNote that two genes,y in X are orthologs if
the event corresponding to the (unique) least common asrdest (x,y) of x andy
in T is a speciation; ik andy are not orthologs then lgéx,y) will correspond to
some other events such as a duplication. In particular, i@l mapt from the
set of interior vertices of to some seM of events, and, consequently, a nthpy,
from distinct pairsx,y in X to M given by puttingd.ry)(x,y) = t(lcar(x,y)). These
concepts are illustrated in Fig. 1. Note that in practice deenot necessarily know
the pair(T;t), but that there are bioinformatics methods that allow ustorete the
valuesd ) (x,y) for x,y € X (Altenhoff and Dessimoz, 2009; Lechner et al, 2011).
Hence, in this set-up, the above question can be rephradetiaxgs: Given an ar-
bitrary symmetric ma@ : X x X — M, i.e. an orthology relation, can we determine
if there is a pair(T;t) with for which dr)(x,y) = d(x,y) holds for xy € X distinct
and, if not, can we at least find some p@lr;t) where this is almost true?

1 Inreality, other events such as horizontal gene transfghtailso occur, although we will not consider
these explicitly here.
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Fig. 1 A phylogenetic treel = (V,E) on the seX = {a,...,e}, together with a map from the set of
interior vertices ofl to the set of events! = {m;,my, Mz}, as indicated by the labels on the interior vertices
of T. The vertex inv that is the least common ancestorcainda has labelm, and sodry)(c,a) = me.

Intriguingly, a solution to the first part of this questionshalready been given
by Bocker and Dress (1998) in a different context. In paitc they completely
characterized maps of the fordpr ), with (T;t) as above, maps which they called
symbolic ultrametricsMoreover, in subsequent work Semple and Steel (2003) pre-
sented an algorithm that can be used to reconstristdt from any given symbolic
ultrametric. In this paper, we shall build upon these rasuytesenting some new
characterizations for symbolic ultrametrics and novebstgms for recovering the
associated trees, with an emphasis on how these resultdgamidrans could be po-
tentially used to cope with arbitrary orthology relatiois.so doing we shall also
show that, somewhat surprisingly, symbolic ultrametries\aery closely related to a
well-studied class of graphs called cographs, which isipegcthe class of graphs
that do not contain induced paths on any subset of four e{iCorneil et al, 1981).

The rest of this paper is organized as follows. In Section@pvesent the basic
and relevant concepts used in this paper. In Section 3, ve&d tee aforementioned
results concerning symbolic ultrametrics from (Bocked &mess, 1998) and (Semple
and Steel, 2003), and prove some mild generalizations skthesults that are rele-
vant to the question above concerning orthology relationSection 4, we show that
symbolic ultrametrics can also be characterized in termsogfaphs (see Proposi-
tion 3) and that the tree corresponding to a symbolic ultteémean also be recovered
using cotrees, trees that can be canonically associatezfjtaghs. In Section 5, we
present a connection between symbolic ultrametrics andtaiceollection of parti-
tions that can be associated to the corresponding tree @@daly 3). We use this
result in the following section to help obtain a new algaritfor deciding whether or
not a map is a symbolic ultrametric and, if this is the case¢cfmstructing its corre-
sponding tree representation. We conclude in Section 7andliscussion on how our
results might be applied in practice to orthology detection

2 Preliminaries. Phylogenetic Treesand Rooted Triples

In this section, we present the relevant basic concepts atation. Unless stated
otherwise, we will follow Semple and Steel (2003).
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In the remainder of this papeX will always denote a finite set of size at least
three.

AtreeT = (V,E) is a connected cycle-free graph with vertex\8€t ) =V and
edge seE(T) = E. A vertex of T of degree one is a calledleaf of T and all other
vertices ofT are callednterior. A star is a tree that has at most one interior vertex.
An edge ofT is interior if both of its end vertices are interior vertices. The sets of
interior vertices and interior edges Bfare denoted by andE?, respectively.

A rooted tree T= (V,E) is a tree that contains a distinguished verggxe V
called theroot. Without explicitly stating it we will always assume thataoted tree
is directed in that all edges @fare directed away fromy. For ease of representation
we will always draw rooted trees with the root at the top. AteabtreeT is called
binary if every interior vertex ofT has outdegree two. We define a partial order
onV by settingv <1 w for any two vertices/,w € V for which v is a vertex on the
path frompt to w. In particular, ifv <1 w we callv anancestorof w.

A phylogenetic tree T (on X$ a rooted tree with leaf sét that does not contain
any vertices with in- and outdegree one and whose pgohas indegree zero. For
A C X a non-empty subset, we define{¢a), or themost recent common ancestor
of A to be the unique vertex if that is the greatest lower boundAtinder the partial
order=t. In caseA = {x,y} we put lca (x,y) = Icar ({x,y}). We denote byl (W)
the (rooted) subtree of with root Icar (W). For convenience, we will sometimes
denote the root of (W) by pw. Two phylogenetic treef; andT, on X are said to be
isomorphicif there is a bijectiony : V(T;) — V(T,) that induces a (directed) graph
isomorphism fronil; to T, which is the identity orX and maps the root of; to the
root of To.

SupposeT is a phylogenetic tree oX with root pr and a non-empty subset
Y C X with [Y| > 2. Then therestriction T|Y of T to Y is the phylogenetic tree
obtained fromT (Y) by suppressing all vertices of degree two with the excepiion
pr if pr € V(T(Y)). For every vertex € V(T) we denote byC(v) the subset oK
such thav = Icar (C(v)) and put&’(T) = Uyey (1) {C(V) }. We say that a phylogenetic
treeSon X refines T in symbolsT < S, if €(T) C ¢(S). In addition, we say thal
displaysa phylogenetic treonY if Scan be obtained from the restrictidnY of T
toY by contracting interior edges. Note that contraction of-imdarior edges would
not result in a valid phylogenetic tree as such a tree coydrave an interior vertex
contained inY. We say that a se¥ of phylogenetic trees all having leavesnis
compatiblef % = 0 or if there is an phylogenetic trdeon X that displays every tree
contained inZ.

A (rooted) tripleis a binary phylogenetic tree on a &¢tvith |Y| = 3. ForY :=
{x,y,z} € (%), we denote byy|z the unique triplet on Y with root p; for which
Ica (x,y) # ot holds. Given an phylogenetic trédeon X we denote by

H1 = {T|Y 'Y € <>3<) andT|Y is binary} Q)

its set of rooted triples. Note that, for any phylogenege® on X, we have %1 | <
(‘é‘) and that the maximum is attained precisel¥ ifs binary.

The importance of sets of rooted triples stems from the faat the setZy of
rooted triples displayed by a phylogenetic treainiquely determine3 up to iso-
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morphism, i.e. ifT’ is a phylogenetic tree for whick¢t = %1/ holds thenT and
T’ must be isomorphic. In fact, a more general result of thisimesis presented by
Semple and Steel (2003, p. 119-120):

Theorem 1 LetZ be a collection of triples so that the union of their leaf setX.
Then there is a polynomial-time algorithm — calledrZD — that, when applied to
Z, either:

(i) outputs a phylogenetic tree on X that displaysf # is compatible; or
(i) outputs the statemefitZ is not compatible”

Note that the original version of tHBUILD algorithm is due to Aho et al (1981).
A more efficient solution of the same problem has been desgeby. by Rauch Hen-
zinger et al (1999).

3 Symbolic Ultrametrics

In this section, we recall some results from Bocker and (@998) and Semple
and Steel (2003, Section 7) concerning symbolic ultrarmetiiVe also prove some
mild generalizations of these results with the view to thpssible application to
orthology relations. More details on such applicationd b discussed in the last
section.

From now onM will always denote a non-empty finite set, the symbowill
always denote a special element not containdd,iandM® :=M U{®}. The symbol
© corresponds to a “non-event” and is introduced for purethtécal reasons. It
will always correspond only to the leaves of a phylogene&e since these will not
usually correspond to events such as speciation and dtiptica

Now, suppos® : X x X — M® is a map. We calb a symbolic ultrametrié if it
satisfies the following conditions:

(UO) &(x,y) =@ ifandonly ifx=y;

(UL) d(x,y) = d(y,x) forall x,y € X, i.e.d is symmetric;
(U2) [{o(x,y),0(%,2),0(y,2)}| < 2forallx,y,ze X; and
(U3) there exists no subsgt,y,u,v} € (%) such that

O(xy) = 6(y,u) = O(u,v) # 6(y,V) = 6(x,v) = &(x, u). )

Note that every symmetric mapon X with |X| = 3 that also satisfies Properties
(U0) and (U2) is a symbolic ultrametric of. Also note that everultrametric don
X (that is, a symmetric magh from X x X to the real numbers which vanishes on the
diagonal and that satisfies the additional property diatz) < max{d(x,y),d(y,2)}
holds for allx,y,z € X) is also symbolic ultrametric if the special symholis iden-
tified with 0. Ultrametrics are well-studied in phylogemstias they correspond to
weighted, rooted trees (cf. e.g. Semple and Steel (2003)).

2 Note that in Bocker and Dress (1998) a symbolic ultramesritefined without the requirement (U0),
which we have introduced for technical reasons.
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Now, suppose that = (V,E) is a phylogenetic tree oX and that : V — M® is
a map such thatx) = © for all x € X. We call such a mapa symbolic dating map
for T; it is discriminatingif t(u) # t(v), for all edges{u, v} € E. To the pair(T;t) we
associate the mafyr,) on X x X by setting, for alk,y € X,

diry) 1 X X X — M@ dry) (xy) = t(lcar (x,y)). (3)

Clearly this map is symmetric and satisfies (UO). We call taie (T ;t) a symbolic
representatiorof a mapd : X x X — M@ if d(x,y) = d;r) (X,y) holds for allx,y €
X; it is called discriminating ift is discriminating (see Fig 1 for an example of a
discriminating symbolic representation where we have teuhithe assignment of the
value ® to the leaves). Note that we call two symbolic represemat{d;t) and
(T’;t") of & isomorphiaf T andT’ are isomorphic viaamayp :V(T) — V(T') such
thatt’(¢(v)) =t(v) holds for allve V(T).

In Bocker and Dress (1998), the following fundamental kesancerning the
relationship between symbolic ultrametrics and symb@jresentations is proven:

Theorem 2 Suppose : X x X — M@ is a map. Then there is a discriminating sym-
bolic representation o if and only ifd is a symbolic ultrametric. Furthermore, up
to isomorphism, this representation is unique.

Given any symbolic ultrametridé on X, we denote the unique discriminating
symbolic representation @ given by this theorem byTy;ts).

Note that the symbolic tree representation of an orthol@gtion on a set of
genes need not necessarily be discriminating, since daiit events do not nec-
essarily have to come directly after speciation events acel wersa. To help deal
with this, we shall now prove a simple result concerning thlationship between
symbolic ultrametrics and arbitrary symbolic represeates. To this end, suppose
that T = (V,E) is a phylogenetic tree oX and thatt : V — M® is a symbolic
dating map that is not discriminating. Then there must esgsbee = {u,v} € E°
such thatt(u) = t(v). Let ve denote the vertex ifT obtained by collapsing the
edgee. Then the treéle = (Ve, Ee) with vertex setve =V \ {u,v} U{ve}, edge set
Ee =E\ {e} u{{e,w} : {wu} or{w,v} € E} is clearly a phylogenetic tree ox.
Furthermore the matg : Ve — M® defined by putting, for allv € Ve,

te(W) = t(w) if w £ ve andt(ve) =t(u) (4)

is again a symbolic dating map fdg. Clearly, this construction can be repeated, with
(Teste) now playing the role ofT;t), until a phylogenetic treg = (V,E) on X is
obtained together with a discriminating symbolic datingorhian T.

Proposition 1 Letd : X x X — M® be a map. Then the following are equivalent:

(i) o is asymbolic ultrametric.
(ii) there is a discriminating symbolic representationdf
(iii) there is a symbolic representation &f

Moreover, ifé is a symbolic ultrametric, andr;t) is any symbolic representation of
d, then(T;f) is isomorphic to Tj;t5).
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Proof (i) = (ii): Apply Theorem 2.

(i) = (iii): This is obvious.

(iif) = (i): Itis straight-forward to check that if there is a symicokpresentation
(T;t) of 8, thend must satisfy (U0)—(U3). Then apply Theorem 2.

To see that the final statement holds, note that:iK x X — M® has a symbolic
representatiomT't) ande = {u,v} € E(T) with t(u) = t(v), thendr,) = di1y)-
Therefored ¢ = dir,y) must also hold. Moreovet s dlscnmmatmg by construc-
tion and thus E)y Theorem 2, the proposition follows. O

We conclude this section by recalling a practical approactcbnstructing the
discriminating symbolic representatidiiis;ts) from a given symbolic ultrametric
J: X x X — M@ based on th®UILD algorithm, that was described by Semple and
Steel (2003, Section 7.6).

Letd: X x X — M® be a symbolic ultrametric oX and letZ(J) be the set of
triplesxy|z, {x,y,z} € (é) satisfying one of the following two conditions:

(R1) o(x,y) # d(x,2) = d(y,z), or
(R2) d(x,y) = d(x,z) = d(y,z), and there is some € X such thad (x,w) = d(y,w) #
o0(z,w) = d(x,y).

Furthermore, denote bys C %(0) the subset ofZ(5) consisting only of the triples
satisfying condition (R1). I is a symbolic ultrametric thew? (d) = %1, (Bocker
and Dress, 1998, Lemma 2). Moreover, we have the followisgltewhich is a mild
generalization of (Semple and Steel, 2003, p. 167-8):

Proposition 2 Let & : X x X — M® be a map that satisfies Properties (U0)—(U2).
Then the following are equivalent:

(i) o is asymbolic ultrametric.
(i) #2(0) is compatible.
(iiiy Zsis compatible.

In particular, d is a symbolic ultrametric if and only if theUILD algorithm applied
to %Zs or #(d) returns a phylogenetic tree T, in which case the may(T) — M@,
vi— d(x,y) with v=lcar(x,y), x,y € X, is well-defined andT;t) is isomorphic to
the discriminating symbolic representation i®r

Proof Clearly all 3 assertions are equivalent¥| = 3. So assuméX| > 4. The
implications (i)=- (ii) and (ii) = (iii) are trivial in view of the observation preceding
Proposition 2.

(iif) = (i): Suppose for contradiction tha¥s is compatible but thad is not a
symbolic ultrametric. Thed does not satisfy Property (U3) and so there exists some
{x,y,u,v} € (3) such thatd(x,y) = 3(y,u) = 3(u,v) # 3(y,v) = 3(x,v) = 3(x,u).

But thenZ := {xylv,xuly,uv|x} € Zs must hold which is impossible a& is not
compatible and thu&’s cannot be compatible. O

It follows from this result and Theorem 2 that we can decidpatynomial time
whether or not is a symbolic ultrametric by applying trBUILD algorithm to the
setZs, which will also construct a symbolic representationdoin case it is. The
following additional consequence, which will not be usdeilais also worth noting:
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Corollary 1 Suppos@ is a symbolic ultrametric on X. Th&hhas a unique symbolic
representation if and only {7 (d)| = (‘é‘).

Proof Suppose first thatz(5)| = ('%)). Then|Zr,| = (%) in view of (Bécker and
Dress, 1998, Lemma 2) recalled abovedais a symbolic ultrametric. Since only a
binary phylogenetic tree can displé%‘) triples, it follows thatTs must be binary.
But this implies immediately thdfTs;ts) is the unique symbolic representation &or
because any symbolic representationd@an be obtained frorls;ts) by resolving
interior vertices ofT.

Conversely, assume thathas a unique symbolic representatidnt). ThenT
must be binary as otherwise, by Proposition 1, there wouist @x interior vertex
of T that could be resolved to obtain a new symbolic represemtli’;t’) for o
contradicting the uniqueness@f;t). But then(T;t) is isomorphic to Ts;ts) and so
|%15| = (‘é‘). Sinced is a symbolic ultrametric oX, Lemma 2 of Bocker and Dress
(1998) impliesZ, = % () and so the corollary follows. O

4 Cographsand Cotrees

In this section, we shall investigate a connection betwgerbslic ultrametrics and
complement-reducible graplws cographs As mentioned in the introduction, a co-
graph is &4-free graph (i.e. a graph such that no four vertices inducdgraiph that
is a path of length 3), although there are a number of equivalearacterizations of
such graphs (see e.g. (Brandstadt et al, 1999) for a survey)

Letd : X x X — M® be a map satisfying Properties (U0) and (U1). ¥arX and
me M, we define theneighborhood M(x) of x with respect tanandd as

Nm(X) = Nms(X) := {y € X : 8(x,y) = m}. (%)

Note that, in view of Property (UOk ¢ Nn(x) and that, in view of Property (U1),
y € Nm(X) if and only if x € Nm(y). We also define, for each fixede M, an undirected
graphGm(9) = (Vm, Em) with vertex seim = Vin(0) = X and edge set

Em =Em(d) ::{{x,y}e <>2<> lye Nm(x),xex}. (6)

For example, ifd = d(ry) for the pair(T;t) depicted in Fig. 1, theitGy, (d) is
the graph with vertex sefa,...,e} and edge sef{a,b},{d,b},{e b},{c,b}}, and
Gm; (0) is the graph with the same vertex setag (0) and edge sef{a,d},{c,e} }.

The following result gives the aforementioned connectietween symbolic ul-
trametrics and cographs:

Proposition 3 Letd : X x X — M® be a map satisfying Properties (U0) and (U1).
Thend is a symbolic ultrametric if and only if

(U2)) Forall {x,y,z} € (3) there is an me M such that f,(5) contains two of the three

edges(x,y}, {x,z}, and{y,z}.
(U3") Gm(0) is a cograph for all me M.
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Proof Suppose thad is a map as in the statement of the proposition. Note that we
may assuméX| > 4.

Clearly, & satisfies (U2) if and only if it satisfies Property (U2’). Moker, it is
easy to see that (U3’) implies (U3). Thus if (U3’) and (U2")tahend is a symbolic
ultrametric onX. Thus, it only remains to show thatdf satisfies (U2) and (U3) (i.e.
d is a symbolic ultrametric), then it must satisfy (U3’).

Suppose this is not the case, i.e. (U3") does not hold. Themetlexists
{x,y,u,v} € (3) and somem € M such that the subgraph @(3) induced on
{x,y,u,v} is a path of length three. Suppose that this pathysu,v. Thend(x,y) =
o(y,u) = d(u,v) = mandm¢ {d(x,u),d(x,v),d(y,v)}. But (U2) impliesd(x,u) =
o(x,v) = d(y,v), and so (U3) does not hold. This contradiction completepthef.

O

Intriguingly, it is well-known in the literature concerrgrcographs that, to any
cographG, one can associate a canonicatree T(G) = (V,E). This is a rooted tree
with root® p, leaf set equal to the vertex $&tG) of G and inner vertices that represent
so-called "join” and "union” operations together with a¢ding mapAg : V° — {0,1}
such thatrg(p) = 1 and, ifv € VO andwy, ..., w € VO, k > 2, are the children of,
then|Ag(V) —Ag(wi)| =1, foralli=1,...,k(cf. (Corneil et al, 1981)). For example,
if & = dry, for the pair(T;t) depicted in Fig. 1, then the cotrees associated to the
cographssm, (9), Gm,(0), andGm, (0), respectively, are depicted in Fig. 2. Note that
the cotree associated to a cograph has root labeled withrélibaly if the cograph
is disconnected.

@) (b) ©
Fig. 2 For the symbolic ultrametricd = diry), with (T;t) pictured in Fig. 1, the three cotrees
(T(Gm (6)),)\@m (5)), i1 =1,2,3, pictured in that order from left to right. Note that theetE depicted
in Fig. 1 refines each of the cotrees.

The key observation about cographs that concerns us héat jgiven a cograph
G, a pair{x,y} € (V5?) is an edge inG if and only if Ag(Icar(g)(x.y)) = 1 (cf.
(Corneil et al, 1981, p. 166)). It is therefore natural to aslat the relationship is
between the discriminating representation of a symbolramietricd and the cotrees
associated to the cographs coming frémiven by Proposition 3. We shall now show

that there is a very close connection between these stasctur

3 Note that in cotrees the root might have outdegree one; ih sases we will simply suppress this
vertex and its outgoing edge.
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To this end, supposé : X x X — M® is a map satisfying Properties (U0) and
(U1) andm € M. Consider the mapm : X x X — {0,1,®} defined, for allx,y € X,
by putting

o if x= Y,
om(xy)=1q1 if {xy}€Em(d), ()
0 if else.

Note if & is a symbolic ultrametric orX, then it is easy to see that, is also a
symbolic ultrametric orX, me M (essentially because(dm) is a cograph).

Lemmal Letd: X x X — M® be a symbolic ultrametric. Then, for all mM,
(T(Gm(9));Agn(s)) is the discriminating symbolic representation .

Proof Supposenc M, and lefT’ = T(Gm(8)) andt’ = Ag,5)- In view of Theorem 2
it suffices to show thadm(x,y) = dir)(x,y) holds for allx,y € X. Let x,y € X.
Then, by the aforementioned properties of the cotree as®acio a cograph and
Proposition 3, it follows thatl - (x,y) = t'(Icar/(x,y)) = 1 if and only if {x,y} €
Em(0) if and only if dm(X,y) = 1, as required. O

Using this lemma, we now prove a technical result which, geeymbolic ultra-
metricd, relates triples i%Z(5) and, forme M, triples in%, .

Theorem 3 Letd : X x X — M® be a symbolic ultrametric. Then the following hold:

(i) Forallme M, Z5 C Z%5.
(i) Forallm e M, Z(dm) € Z(9).
(i) Z5 =Umem Z -

Proof (i) Supposeanc M andxy|z € Z5,. Thendm(X,y) # dm(X,z) = dm(Y,z) and so
either (2)dm(x,y) = 1 anddm(x,z) = dm(Y,2) = 0 or (b) dm(X,y) = 0 anddm(x,z) =
(Y, 2) =1.

If Case (a) holds thefix,y} € Em(9) and{x,z},{y,z} & Em(d). Henced(x,y) =
mandd(x,z),d(y,z) # m. Sinced is an ultrametric and so satisfies Property (U2) it
follows thatd(x,z) = d(y,z). Consequentlyy|z € Ry in this case.

If Case (b) holds thefix,y} & Em(d) and{x,z},{y,z} € Em(d). Butthend(x,z) =
o(y,z) = m# d(x,y) and soxy|z € Ry must hold in this case, too.

(i) Let me M. Supposexy|z € Z(dm). Assume first thaky|z satisfies Prop-
erty (R1). Then Assertion (i) impliegy|z € #Zs C #(5). So assume thaty|z
does not satisfy Property (R1). Thew|z ¢ %5, and xy|z must satisfy Property
(R2), that is,dm(X,y) = dm(X,2) = dm(y,z) and there must exist sonve € X such
that dm(x, w) = Im(Y,W) # dm(z,W) = dn(X,y). We distinguish the cas&m(x,y) =
Om(X,2) = dm(Y,2) = 1 anddm(X,y) = dm(X,2) = dm(y,2) = 0.

Assume first thadm(X,y) = dm(X,2) = dm(y,2) = 1 holds. Therm = d(x,y) =
0(x,2) = 8(y,2) and sod(z,w) = mandm¢ {d(x,w),d(y,w)} must hold. But then
Property (U2) implies thad(x,w) = d(y,w) # m and so (R2) holds. Thusy|z €
Z(0) in this case.

Now, assume thatdm(X,y) = m(X,2) = dm(y,2) = 0 holds. Thenm ¢
{d(x,y),0(%,2),d(y,2),0(z,w)} and som= d(x,w) = &(y,w). By Property (U2) it
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follows thatmy := 8(y,2) = d(zw) = d(z,x) # m. If mp := 5(x,y) = my thenxy|z
satisfies Property (R2) fod and soxy|z € Z(9d). If mp # my thenxy|z € %% C
s C Z(0) in view of Assertion (i). This completes the proof of (ii).

(iif) Statement (i) clearly implie$ ),y Z5, € #5. To see that the converse set
inclusion holds, leky|z € %;5. Then there exists sonmec M such tham= 5(x,y) #
0(x,2) = d(y,z) and thus(x,y} € Em(d) and{x,z},{y,z} & Em(d). Hence dm(x,y) =
15 0= dm(x,2) = dm(y,2) and soxy|z € Z5,, as required. O

Using this theorem, we now see how the discriminating syrmlyepresentation
Ts of a symbolic ultrametri® can be constructed from the cotrdg$m(J)), me M
(or, equivalently, the discriminating symbolic represgions of the map&;,, me M).
The first statement of the following corollary is illustrdtm Fig. 2.

Corollary 2 Letd : X x X — M® be a symbolic ultrametric. Then, for eachaM,
T(Gm(d)) < Ts. Moreover, § is isomorphic to the tree obtained by applyiBYILD
to the setJyem Zs,,-

Proof The second statement follows immediately from Theoren) a¢d Proposi-
tion 2.

To see thall (Gm(d)) < Ts holds for allm € M, note that sincéy is a symbolic
ultrametricZ (dm) = T, holds by Lemma 2 of (Bocker and Dress, 1998) recalled
above. Hence by Theorem 3 (i1, C Zr,. By Theorem 6.4.1 of Semple and Steel
(2003) this last statement holds if and onlfif < Ts. Now apply Lemma 1. O

Remark 1By modifying the argument in the proof of part (i) of Theone3, it is
straight-forward to show, under the same assumptions givére theorem plus the
additional assumptiofM| > 3, thatTy is isomorphic to the tree obtained by applying
BUILD to the sety e %5, for anyM’ C M with |[M’| = M| — 1. However, in general
it is not possible to obtaifs usingBUILD in this way by using subsets bf with size
less thariM| — 1 (see Fig. 3).

X1 X2 Xn-3  Xn-2 Xn-1

Fig. 3 A symbolic representation of a symbolic ultrametdion the seX = {x1,...,X,—1} with values in
the setM = {my,...,my}. It can be shown that it is not possible to reconsticby applyingBUILD to
the selJmew Rs,,, for anyM’ € M with [M’| <n—2.
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5 Pseudo-Cherries, Cliques, and Partitions

In this section, we will show that the cliquem a certain grapls(d) that can be as-
sociated to a symbolic ultrametrdc: X x X — M are closely related to the structure
of the discriminating symbolic representation®{see Proposition 4). We use this
result in the next section to help derive a new algorithm fetednining whether a
map is a symbolic ultrametric or not. We shall also show tligties inG(d) can be
characterized in terms of cliques in the graghg d), me M, defined in the previous
section (see Corollary 3).

Letd: X x X — M® be a symmetric map that satisfies (U0). Bdk,y) = m e
M, x #y, we have{x,y} C Nm(x) A Nm(y), whereA denotes the usual symmetric
difference of sets. For future reference note that, Wix] := Nm(x) U {x}, x € X,
we have

Nm(X) A Nm(y) = {x,y} if and only if Nm[X] = N[y, (8)

for allme M and ally,z € X. Also note that this condition is satisfied for at most one
me M for any given paifx,y} € (3).
Now, defineG(9d) to be the graph with vertex s¥tand edge set

E(d) := {{x,y} € ()2() . Nm[X] = Nm[y] for someme M}. 9

For example, i6 = d(t, for the pair(T;t) depicted in Fig. 1, then the gra@{9) is
the graph with vertex sdf, ..., e} and edge sef{c,e},{a,d} }. We denote by’ (G)
the (set-inclusion) maximal cliques of a graghand for brevity we let(d) denote
€(G(9)), ford: X x X — M® a symmetric map that satisfies (U0). Note that,y) =
5(u,v) holds for any clique  ¢(3) with |C| > 2 and any two{x,y}, {u,v} € (5) in
cased is a symbolic ultrametric. Also note that there exist @ €(d) with |C| > 2

in this case because the trég has a vertex such that all of its children (of which
there must be at least two) are leaves.

b ce a d f gh i j

Fig. 4 A phylogenetic treel on X = {a,b,c,--- , j}. The verticesx = Icar (C') andy = Icar (C) are the
most recent common ancestors of the €ets {a,d,e} andC' = {h.i,j}. BothC andC’ are pseudo-
cherries ofT. However,C' is also a cherry of whereasC is not.

4 Aclique in a graph is a subset of its vertices such that eweoyvertices in the subset are connected
by an edge.
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Suppose thal is a phylogenetic tree oX with rootp. LetC C X be a non-empty
subset oiX and putvc = Icar (C). We callC apseudo-cherrpf T if a leafx of T is
adjacent torc if and only if x € C. If, in addition, every vertex € V(T) adjacent to
V¢ that does not lie on a path fromto ¢ is contained irX, then we calC acherryof
T. Note that a pseudo-cherry must contain at least one eleandrihat the definition
of a cherryC reduces to the usual definition of a cherry (as given e.g. nypf=and
Steel (2003)) in caskE| = 2. We illustrate these two definitions in Fig. 4.

Now, lett : V(T) — M® be a symbolic dating map fdf. For eachm € M, we
define a relation-,m on X by putting, for allx,y € X, x~mYy if x=y or, in casexand
y are distinctt(u) = m holds for every interior vertex of T that lies on the unique
path fromx to y. Clearly~n, is an equivalence relation oX. We write My for the
corresponding partition of. Note that thev,-equivalence classes can in some cases
be estimated directly from data without having to consteuttee (e.g. for inparalogs,
that is, paralogs which all arise from duplication eventsrad speciation event).

We now show that i is a symbolic ultrametric, then the cliques in the graph
G(9) correspond to pseudo-cherries in the discriminating syimbepresentation of
0.

Proposition 4 Let T be phylogenetic tree on X;,¥ (T) — M® be a symbolic dating
map, andd = dty, be the associated symbolic ultrametric on X. Then:

(i) x~my if and only if Nu[x] = Nmy], for all {x,y} € () and all me M.
(i) The graph G9) is the disjoint union of its maximal cliques.
(i) Ifthe mapt is discriminating, then a non-empty suliSetf X is a maximal clique
of G(d) if and only if C is a pseudo-cherry of T.

Proof (i) Suppose first thafx,y} € (é) such thatx~p,y for somem € M. Assume
for contradiction thalNm[X] # Nm[y], that is,(Nm(X) A Nm(y)) \ {x,y} # 0, in view of
Equ. (8). Choose some elemerinh that set. Then the restrictiolf := T|{x,y,z} of

T to {x,y,z} is either the star with leaf sé¢k,y, z} or isomorphic to one of the triples
in Z := {xylz,yzx,x2y}. If T" were the star ofx,y,z} then Ica (x,z) = Icar(z)y) =
Icar (x,y) would follow. But thend(x,z) = d(zy) = d(x,y) = mso thatz € Np(x) N
Nm(y), contradictingz € Nm(X) A Nm(y) — {X,y}. ThusT’ must be isomorphic to one
of the triples inZ.

If T" were isomorphic to the tripbeyjzthen Ica (x,z) =Icar (y,z) and sod(X,2) =
d(y,z). But the choice ozimplies that we may assume without loss of generality that
z<€ Nm(X) \ Nm(y), so thatd(x,z) = m+ d(y,z), a contradiction. IfT” were isomor-
phic to the triplexgy, then Ica (x,y) = Icar (z y) and sod(zy) = d(x,y) = mwould
follow as, by assumptionx~pmy holds. But therz ¢ Nim(x) \ Nm(y), a contradiction.
By symmetry,T’ cannot be isomorphic to the remaining trigkex either which yields
the final contradiction.

Conversely, suppose thét,y} € () such thalNm[x| = Nm[y], somem e M. We
need to show that(w) = m holds for every interior vertew € V(T)° on the path
P from x to y. Assume, for contradiction, that there exists some intergotexu €
V(T)% onP with t(u) # m. Thenu # Icar (x, y) sincet(Icar (x,y)) = 6(x,y) = mas, by
assumptioniNm[x] = Nm[y]. Starting ak and traversin, letu’ € V(P) andu” € V(P)
denote the predecessor and successor t#spectively. Sincé is an phylogenetic
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tree and so has no vertex with in- and outdegree one, thereaxissa lealzc V(T)
such that the path fromto z does not cross the edgésg’,u}, {u”,u} € E(P). Thus
z¢ {x,y} and either Ica(x,z) = u or Icar (y,z) = u must hold. By symmetry, we may
assume without loss of generality that1¢a z) = u. Thend(x,z) = t(u) # mand
s0z ¢ Ny(X). By construction ofz, we have Ica(y,z) = Icar (y,x) and sod(y,z) =
O(y,x) = m. Hencez € Nip(y) and soz € Nim(Y) \ Nm(X) € Nm(y) A Nm(X) = {X,y}.
This is a contradiction in view of Equ. (8). Thugw) = m for every interior vertex
w e V(T)? onP, as required.

(i) The observation thaG(9) is the disjoint union of its maximal cliques is a
trivial consequence of (i) and the fact thag, is an equivalence relation ofy for all
me M.

(iif) Suppose that is discriminating. Then the definition of a pseudo-cherry im
mediately implies that any pseudo-cherryfomust be a maximal clique @(9).

Conversely, assume th@tis a maximal clique of5(9). Putvc := Icar (C). We
show first that every leaf of adjacent withve must be contained i@. To see this,
note that if there is a leaf€ X — C of T adjacent to/: then Ica (z,x) = vc would
hold for allx € C and, sod(z x) = t(vc) would follow for all suchx. But thenCU{z}
would be a clique inG(d) that containgC which is impossible a€ is a maximal
clique inG(9).

Now, for contradiction, assume that there exists someZea¥ (T) of T that is
contained inC but is not adjacent tac. Then, by the definition ofc, we must have
IC| > 2. Putm=t(vc) and note thad(x,y) = m holds for all{x,y} € (5). Also note
that the pattP from vc to z must be of length at least two. Lat< V(T)° denote
the child ofvc on P. Sincet is discriminating, it follows that(w) # m. Lety € X
be a leaf ofT for which there exists a directed path framto y and this path does
not have an edge in common with the path frarto z. Note thaty € C cannot hold
since Ica(z,y) = w and, s0,0(z)y) = t(w) # m. Thus,y € X —C. Sincey ¢ Nmn(2)
andy € N(x) clearly holds for allx € C, we obtainy € Nm(X)ANm(z) = {x,z} in
view of the fact thaC is a clique x,z € C, and Equ. (8), a contradiction. Thi&js a
pseudo-cherry of . O

We now give an alternative description of the maximal clgjoéG(9d) for 6 a
symbolic ultrametric, in terms of the grapl,(d) defined in the last section. To
this end, we first describe a general way of constructing aitjparfrom a collection
of subsets of a non-empty, finite set. Denote the power senohaempty, finite set
Y by £(Y) and assume thé& is a finite, non-empty set. We say that a collection
A e P(Z)is acover for Zif |Jacg A= Z holds. Now, suppos® € &(Z) is a cover
for Z. Then we associate & a collection/7(2() of subsetsB C Z that satisfy the
following three conditions:

(P1) there exists sonmfec 2 such thaB C A,

(P2) there are no two distinct elemerty € B such that there exists somez 2 with
x € Aandy ¢ A, and

(P3) Bis (set-inclusion) maximal with respect to satisfying Redp (P2).

The proof of the following lemmais routine.
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Lemma 2 Suppose Z is a non-empty, finite set. If a collecfioof subsets of Z is a
cover for Z ther7 () is a partition of Z.

Now, suppose : X x X — M® is map that satisfies Properties (U0) and (U1).
Then, for allme M, Lemma 2 implies thafl(¢(Gmn(9d))) is a partition ofX, since
any vertex of a graph must be a vertex in a maximal clique dfdhaph. For exam-
ple, consider again the symbolic ultrametdic= d(1) associated to the paifl;t)
depicted in Fig. 1. Thetil (¢(Gmy(0))) = {{b},{a,d},{c,e}} and 1 (€(Gw, (9)))
andr1(¢(Gm,(9))) are the partitions that consist of all singletongaf. .. ,e}.

We now show that for aline M the partitionﬁm corresponding to the equivalence
relation~n, defined above can be given in terms of the cliqueSafd).

Theorem 4 Let T be a phylogenetic tree on X and leM(T) — M® be a symbolic
dating map. The (&(Gm(d(ty)))) = Mm holds for all me M.

Proof Supposem € M and putd = diry) and Mm = IM1(€(Gm(d)). Since bothm
and My, are partitions ok it suffices to show that a subs&tC X with |A] > 2 is an
element infy, if and only if it is an element itﬁm.

Suppose first thah € MMy Let {x,y} € (5). Thenx~my and sot(Icar (x,y)) =
m. Thus{x,y} € E(Gm(d)). Consequently, there must exist a maximal cliglie
€(Gm(0)) such thai,y € C. Without loss of generality, we may assume t@ds of
minimal size with this property. Sinck is a maximal clique irg(9) it follows that
A C C and that there cannot exist sofdec €(Gy(J)) and distincix,y € A such that
x e C'andy ¢ C'. But thenA satisfies Properties (P1) — (P3) with regardétGm(d))
and soA € My, must hold.

Conversely, supposkc [Tm and assume for contradiction thats not an equiv-
alence class iy, Let {x,y} € (’;) Then there must exist some interior vertex
on the pathP from x to y in T such that (v) # m. SinceA € Iy, we cannot have
v=lcar(x,y). Assume without loss of generality thdfes on the path from legx, y)
to the leafx. Also assume without loss of generality tivas such that(w) = mholds
for all interior verticesv on the path® fromvto x. SinceT does not have degree two
vertices (except possibly the root ©) there must exist a child/ of v that is not a
vertex ofP'. Letze V(T) denote a leaf of such thaw lies on the path from to z.
SinceX is the vertex set 06w (d) andt(Icar(z,y)) = m#t(v) =t(Icar(x,z)) there
must exist som® € €(Gn(d)) such thatz,y € D andx ¢ D. But this is impossible
asx,y € AandA € My, O

As a consequence we now immediately obtain the aforemestticeiationship:

Corollary 3 Suppos® : X x X — M® is a symbolic ultrametric. Then the maximal
cliques of G9) are the set-inclusion maximal subsets Jpcy M(€(Gm(d))).

Proof The statement follows from Proposition 4(ii) and (iii), tfect that a non-
empty subse€ of X is a pseudo-cherry dfy if and only if A € Iy, holds for some
me M, and Theorem 4. O
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6 A Bottom-Up Construction of Symbolic Representations

We have seen in Proposition 2 that B@ILD algorithm can be used to determine
whether a map is a symbolic ultrametric or not, and if so, troiss its discrimi-
nating symbolic representatioBUILD can be thought of as a “top-down” algorithm
as, in essence, it starts at the root of the tree (if it exets) ends when it reaches
the leaves. In this section, we present an alternative 6bottip” algorithm, called
BOTTOM-UP, which will use our clique-based analysis of symbolic reprgations in
the last section. Such an algorithm could provide a potiytiseful alternative to
BUILD as it is based on finding (nearly) maximal cliques in graptsyihich many
different algorithms have been developed in the literature

Suppose thad : X x X — M® is a symbolic ultrametric, and th&t ;t) is some
symbolic representation @. For every maximal cliqu€ € ¢(9) let xc € C denote
an arbitrary but fixed element 0. Then it is easy to check that the map

dzT,t) : 6(6) X Q(é) - M®a dET;t) (CaC,) = d(T;t)(XCvXC’)v (10)

C,C' € ¢(9), is well-defined. A key observation that we shall use inEB€T0M-UP
algorithm is that the madgm is in fact a symbolic ultrametric 0&(9).

In order to prove this last statement, we shall associate/mgénetic tre€l’ on
¢(9) plus a symbolic dating map : €(3) — M® for T’ as follows. Note that by
Proposition 4, every element &(0) is a pseudo-cherry df5; we putvc = Icar; (C),
for all C € €(9), and fix some leakc € L(Ts) contained inC. Next, we remove all
leaves irC\ {xc} from T together with all edges if{vc,y} € E(T) :y € C\ {xc}}.
If vc # pr and this process has rendexgch degree two vertex then suppregssand
if ve = pt and this process has rendergdan outdegree one vertex then identify
with its unique leaf. Lefl’ = (V/,E’) denote the resulting tree. Then the restriction
t’|\» oft toV' is clearly a discriminating symbolic dating map fort Moreover, since

dzT?U (C,C/) = d(T;U ()(C,Xc/) = t(Icar (XC,XC/)) = t,(|C&|-/ (C,C,)) = d(T/;t/)(C,C/)

holds for allC,C’ € €(9), it follows that(T’;t’) is the (necessarily unique) discrimi-
nating symbolic representation d{(fT;t)' Thus, by Theorem 2 we have:

Proposition 5 Let T be a phylogenetic tree on X anoM(T) — M® be a symbolic
dating map. Then the mapm) :€(diry)) x €(d(ty)) — M® defined in Equ. 10is a
symbolic ultrametric or€(dty,) ).

We now establish a second result which will be central toB®BETOM-UP algo-
rithm. Given a map : X x X — M® satisfying (U0)—(U2) we denote the set of con-
nected components @&(d) by m(d) and, for future reference, we lep(d) denote
those elements ir(d) with size at least two.

Lemma 3 Suppose thad : X x X — M® is a map that satisfies Properties (UO)—
(U2), and Ke 1(9d). Then the following hold:

@ I;({x,)y, z} e (';) is such that xy,z is a path in K of length two, thed(x,y) =
Y,2).
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(i) If {x,y,z} € () is such thafx,y} and{y,z} are edges in K, thefiz,x} must also
be an edge in K.

G ; K

(i) K is aclique andd(x,y) = &(u,v) holds for all {x,y},{u,v} € (3).

Proof (i) Suppose for contradiction that there exisssy, z} € ('é) such thak,y, zis
a path of length two buty := 3(x,y) # 8(y,z) =: mp. Then Property (U2) implies
0(x,z) € {m, my}. Without loss of generality we may assume tbét, z) = my. Then
z € N, (x) and, sinced(x,z) # my, we also have ¢ Ny, (y). Hence,z € Ny, (X) —
Nm, (¥) € N, (X)ANm, (Y) = {x,y} since{x,y} is an edge itK, a contradiction.

(i) Suppose for contradiction that there exiisy, z} € (';) such that{x,y} and
{y,z} are edges ik but{x,z} is not an edge ifK. Then Assertion (i) implies that
O(x,y) = (Y, z) =: m. We distinguish the cas€gx,z) = mandd(x,z) # m.

First, supposé(x,z) = m. Then there must exist sornes K — {X, z} such thati €
Nm(X)ANm(z) as otherwis€ x,z} would be an edge iK. Without loss of generality,
we may assume that € Nim(X) — Nm(2). Note that since botkx,y} and{y,z} are
edges irK it follows thaty € Nm(x) N1 Nm(z) and sou # y. Moreover, sincgXx,y} is
an edge irK, {X,y} = Nm(x)ANm(y) must hold, and so € Ny(y). Similarly, since
{y,z} is an edge irK, u € Ni(z) which is impossible. Thuéx, z} must be an edge of
K.

Now suppos&(x,z) # m. Thenz ¢ Nin(X). Since{y, z} is an edge ik we have
z€ Np(y) and saz € Nm(y) — Nm(X) € Nm(Y)ANm(X) = {x,y} as{x,y} is an edge of
K, a contradiction. Thu$x, z} must be also an edge Kfin this case.

(i) This is an immediate consequence of Assertions (i) @ind O

We now present thB0OTTOM-UP algorithm. The pseudo-code for this algorithm
is given in Fig. 5.BOTTOM-UP works in a similar way to the UPGMA algorithm
(Sneath and Sokal, 1973) for constructing phylogenetastfeom distance matrices.
EssentiallyBOTTOM-UP works by iteratively looking for pseudo-cherries and, if it
finds them, defining a new map on the set of these pseudo-ebatang the lines of
Proposition 5.

We now prove a result that is analogous to Proposition 2.

Theorem 5 Suppos® : X x X — M® is a map. Then the algorith®oTTOM-UPis a
polynomial-time algorithm that either:

(i) outputs a symbolic discriminating representation @if J is a symbolic ultra-
metric, or
(i) the statementd is not a symbolic ultrametric”

Proof We first remark that if the input mad : X x X — M® satisfies Properties
(U0)-(U2) then, at each execution step of the while loop ael3, if Line 5 is not
executed then the may defined in Line 12 must also satisfy (U0)—(U2). Moreover,
the mapic defined in Line 8 is well-defined since, in view of Lemmad3C,,C,) =
5(C3,C4) holds for all{Cy,Cy}, {C3,Cs} € (5). In addition, since the set of connected
components of a graph can be found in polynomial time and iteecf the set~
defined in Line 11 decreases by at least one in each execttibe avhile loop in
Line 3 (in case Line 5 is not executed), it follows that the tiame forBOTTOM-UP is
polynomial in|X|.
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BOTTOM-UP

Input: Non-empty finite set& andM with [X| >3 and a ma@ : X x X — M®.

Output: Discriminating symbolic representationdbr the statementd is not a symbolic ultrametric
onX".

1. If o does not satisfy Property (U0), (U1), or (U2) then returndteement & is not a symbolic
ultrametric onX” and stop.

2. LetF = {(Tyy,ty) - x€ X}, where, forx € X, Ty, is the tree consisting of one verteand
tyx) is the map oV (T, ) given by puttingt;y, (x) = ©.

3. While|F| >2do

4. Compute the sets(d) and e (d).

5. If i5(8) = 0, then return the statemend fs not a symbolic ultrametric oX” and stop.

6. For allC € T»(d) do

7. LetTc be the phylogenetic tree obtained by adding a new verterd edges
{w,pcr } from w to the rootoc of T/, for allC' € C.

8. Definetc : V(Tc) — M by puttingtc(w) equal tod(Cy,Cy) for anyCy # C; € C,
andtc (v) foranyv e V(T),C € C.

9. Collapse edges @t as necessary to ensure that the restrictiotg ¢ the vertex

set of the resulting tree is discriminating. Denote the ltegupair also by(Tc;tc).
10. end do Line 6.
11. LetF = {(T¢;tc) : C e m(d)}, where we identify each singleton setrd) with
its unique element.
12. For allC € m(d) choose somg: € C and defined’ : () x 1(5) — M® to be the map
given by settingd’ (Cy,Cz) 1= 3(xc, ,Xc,) for all C1 # C; € 1(9).
13. Letd =19,
14. enddo Line 3.
15. Return the unigue elementhn

Fig.5 TheBOTTOM-UP algorithm.

Now, to complete the proof, given a map: X x X — M® we will prove the
following claims: (i) if  is a symbolic ultrametric, theBOTTOM-UP will output a
phylogenetic tred on X and a discriminating symbolic dating map fbyrand (ii) if
BOTTOM-UP returns a phylogenetic tréeon X and a discriminating symbolic dating
mapt on T, then(T;t) is a discriminating symbolic representation farThis will
complete the proof of the theorem in view of Theorem 2.

Proof of (i): Assumed is a symbolic ultrametric so that, in particularsatisfies Prop-
erties (U0)—(U2). We first remark that, sinmg(d) # 0 (in view of Proposition 4(iii)),
Line 6 is not executed at the first execution of the while loog.me 5. Moreover,
as in each execution step of that loop the nd4glefined in Line 12 is a symbolic
ultrametric, in view of Proposition 5 we must also hag¢d’) # 0.

We now show thaBOTTOM-UP returns a paifT%;t%) whereT? is a phylogenetic
tree onX andt? is a discriminating symbolic dating map f@?°. Note that it suf-
fices to show that at the end of each execution of the while lndgne 3, every
element(T¢;tc) in the setr defined at Line 11 consists of a phylogenetic ffe@nd
a discriminating symbolic dating mag for Tc.

To this end, assume thlat> 1 executions of that loop have been carried out, and
denote the map computed in Line 12 at executiby &, for | = k— 1, k, where we
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setdy := 0. LetC € m(&_1). If C & (1) then, by assumptiorlc andtc are
of the required form, where we identify with its unique element. So assume that
C e m(&-1). Then, by construction, the trde generated in Line 7 is a phylogenetic
tree onJpacc L(Ta). Sinced satisfies properties (U0)—(U2), the mipdefined in
Line 8 is well-defined in view of the remark at the beginningha# proof. Now, note
that there can be at most 0@ée C such thatc(w) = tc(pcr). If there exists no such
element, thertc is a discriminating symbolic dating map fog. Moreover, if such
an elemen€’ exists, then the map obtained by restrictigdo the vertex set of the
phylogenetic tree obtained frofg by collapsing the edgfw, pcr } is a discriminating
symbolic dating map for that tree. Thus the pdit;tc) in Line 9 is of the required
form and so (i) follows.

Proof of (ii): Suppose thad is an arbitrary map, and thaOTTOM-UP returns a pair
(T9;t%) with T2 a phylogenetic tree o andt® a discriminating symbolic dating
map forT2. Note that in this case) must satisfy Properties (U0)—(U2). To show
that (ii) holds, it suffices to show that in each executionha& while loop in Line 3
every elementTc;tc) in the setF defined in Line 11 is a discriminating symbolic
representation od restricted td_(Tc).

To this end, assume thlat> 1 executions of the while loop have been carried out
and, as before, denote the map defined in Line 12 at exedubgry, | = k— 1,k
wheredp := 0. LetC € m(d-1). If C ¢ (&-_1) then, by assumptior{c;tc) is a
discriminating symbolic representation forrestricted toL(Tc), where we identify
C with its unique element.

So, assume thal € 1(d_1). Supposex,y € L(Tc). Since, by assumption,
(Ter,ter) is a discriminating symbolic representationdfestricted td (T ), for all
C’' € C, we may assume without loss of generality that there exéinditC,,C, € C
such thatx € L(T¢,) andy € L(Tc,). Note that the definition of the trek: and the
maptc imply thatw = Icar. (c1, ¢2) holds for allc; € L(T¢,) and allc; € L(Tc,), and
sod(c1,C2) = tc(w) for all suche; andc,. But thend r 1) (X,Y) =tc(lcar. (x,y)) =
tc(w) = 8(x,y). Thus, again(Tc;tc) is a discriminating symbolic representation of
o restricted td_(Tc). This completes the proof of (ii). O

7 Discussion

The case of most immediate practical relevance for thetegtgsented in this paper
is the caséM| = 2, where the events i are simply speciation and duplication. Here,
we assume that we are given an arbitrary orthology relajioX x X — {0,1}“ on
a setX of genes (i.e., a map that satisfies (U0) and (U1) and thajresthe value 1
to pairs of genes that are (co-)orthologs and 0 to pairs tlegparalogs), a relation
that can be reliably estimated frok using various bioinformatics techniques; cf.
e.g. (Lechner et al, 2011) and the reference therein. Wesdineio obtain a symbolic
representatioliT ;t) of §, such thak,y € X are orthologs if Ica(x,y) corresponds to
a speciation event and paralogs iff€& y) corresponds to a duplication event within
a single lineage (i.e(lcar (x,y)) equals 1 or O, respectively).

The above results immediately provide the following cheeazations of orthol-
ogy relations for which a symbolic representation exists:
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Corollary 4 Suppose thad : X x X — {0,1}“ is an orthology relation. Then the
following are equivalent:

(i) o has a symbolic representation.
(i) O is a symbolic ultrametric.
(iii) G1(0) = Gp(9) is a cograph.

Somewhat surprisingly, this simple characterization dédl” orthology relations
does not seem to appear in the literature, even though Fall$2008) describes clus-
ters of orthologous genes as Turan graphs, a subclass &pitgy Related methods,
which use clustering algorithms to help identify ortholpigave been developed e.g.
by Tatusov et al (2000), Li et al (2003), Berglund et al (2Q08heeler et al (2008)
or Lechner et al (2011).

We suspect that Corollary 4 could have far-reaching corsmeps for the area of
orthology detection. In particular, instead of employimgstering techniques, given
an arbitrary orthology relatiod, it suggests looking for either a symbolic ultrametric
oracographthatis ‘close’ 1, from which a (partially resolved) gene tree could then
be constructed. Clearly this is not a trivial endeavor simcpractical applications
any estimate o® will be plagued by noise and hence will be neither a symbolic
ultrametric nor a cograph.

More specifically, for finding symbolic representations;auld be of interest to
try modifying theBUILD or BOTTOM-UP algorithms to enable them to handle arbitrary
orthology relations. For example, ideas behindM@i#-CUT supertree algorithm
(Semple and Steel, 2000), an algorithm extendWgLD which outputs a tree given
anyset of rooted triples, could be explored, as well as relapgulaaches for finding
compatible sets of triples that have as many triples as lplessi common with a
given set of triples, such as those in e.g. Byrka et al (20Al¢rnatively, Proposi-
tion 4 suggests that heuristics for finding maximum cliquess(ibsets that are close
to being maximum cliques) in graphs might be useful for mgdd theBOTTOM-UP
algorithm.

For finding cographs there is a large literature that couldd®ul for analyzing
orthology relations. For example, in the cograph editingppem, given a grap® =
(V,E) one aims to convef® into a cograplG* = (V,E*) such that the numbgE A
E*| of inserted or deleted edges is minimized. Recently it has goven that this
optimization problem is NP-complete (Liu et al, 2011) whighview of the above
results, implies the following:

Corollary 5 Letd : X x X — {0,1}“ be an orthology relation map, and K be a pos-
itive integer. Then the problem of deciding if there is a nddp X x X — {0,1}®
such that G(d*) is a cograph (or, equivalently)* a symbolic ultrametric) with
[E1(d) & E1(87)| < K'is NP-complete.

Even so, it should be noted that the cograph editing probsefixed parameter
tractable (Protti et al, 2009), and so there may be off-tiefsolutions to help get
around this difficulty. Alternatively, efficient ILP approlaes might be worth investi-
gating.

Before concluding it is worth mentioning that the generabity developed above
for [M| > 2 is potentially useful for more refined applications. Mgpedfically, gene
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duplications have several different mechanistic causasaie also empirically dis-
tinguishable in real data sets. Thus it could be of intefestexample, to consider
setsM which, as well as representing speciation and duplicati@mis could also
take into account events such as local segmental duplistituplications by retro-
transposition, or whole-genome duplications (Zhang, 20@8reover, in addition to
such events, it might be of interest to consider lineagdarspend horizontal gene
transfer, both of which play an important role in genome etioh (Maddison, 1997;
Page and Charleston, 1998). From the point of view of gerestriese behave in
a similar manner to speciations, although they introducengruencies between the
gene and species trees. Hence it might be of interest totigaés whether some of
the theory developed in this paper could be extended to geyletic networks, graph
theoretical structures generalizing phylogenetic trebilvare commonly used for
modeling horizontal gene transfer (see e.g. (Huson et 400
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