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We introduce a model for the evolution of species triggered by generation of novel fea-
tures and exhaustive combination with other available traits. Under the assumption that

innovations are rare, we obtain a bursty branching process of speciations. Analysis of the

trees representing the branching history reveals structures qualitatively different from
those of random processes. For a tree with n leaves generated by the introduced model,

the average distance of leaves from root scales as (logn)2 to be compared to logn for

random branching. The mean values and standard deviations for the tree shape indices
depth (Sackin index) and imbalance (Colless index) of the model are compatible with

those of real phylogenetic trees from databases. Earlier models, such as the Aldous’

branching (AB) model, show a larger deviation from data with respect to the shape
indices.
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1. Introduction

Since the seminal work by Darwin [11], the evolution of biological species has been
recognized as a complex dynamics involving broad distributions of temporal and
spatial scales as well as stochastic effects, giving rise to so-called frozen accidents.
There is vast exchange and overlap of concepts and methods between the theory
of evolution and the foundations of complex systems such as fitness landscapes [35,
12, 20] and neutral networks [19], the evolution of cooperation [3] and self-organized
criticality [4] to name but a few.

A striking feature of biological macroevolution is its burstiness. The temporal
distribution of speciation and extinction events is highly inhomogeneous in time [28].
As described by the theory of punctuated equilibrium [13], a connection between
punctuated equilibrium in evolution and the theory of self-organized criticality [4] is
established through the model by Bak and Sneppen [5, 29]. Ecology, i.e. the system
of trophic interactions and other dependencies between species’ fitnesses, is driven
to a critical state. Then minimal perturbations cause relaxation cascades of broadly
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distributed sizes.
Rather than through ecological interaction across possibly all species, bursty

diversification may also be due to adaptive radiation as a rapid multiplication of
species in one lineage after a triggering event. About 200 million years ago, a novel
chewing system with dedicated molar teeth evolved in the lineage of mammals,
allowing it to rapidly diversify into species using vastly distinct types of nutrition
[33]. There are many more examples where a single innovation triggers adaptive
radiation such as the tetrapod limb morphology caused by a binary shift in bone
arrangement [32] and the homeothermy as a key innovation by the group of mam-
mals [14, 21]. Adaptive radiation is observed also when a species is confronted with a
change in environmental conditions e.g. when entering a new geographical area. The
diversity of finch species on Galapagos islands is the famous example first studied
by Darwin. Spontaneous phenotypic or genetic innovations and those caused by the
pressure to adapt to a change in environment are treated on the same footing for
the modeling purposes in this contribution. Though being a central concept in the
theory of evolution, the term innovation has not been ascribed a unique definition
so far [23].

Here we study a branching process to mimic the evolution of species driven by
innovations. The process involves a separation of time scales. Rare innovation events
trigger rapid cascades of diversification where a feature combines with previously
existing features. We call this newly defined branching process innovation model.

How can the validity of models of this kind be assessed? The evolutionary history
of species is captured by phylogenetic trees. These are binary trees where leaves rep-
resent extant species, alive today, and inner nodes stand for ancestral species from
which the extant species have descended. By comparing the shapes of these trees
[26, 17, 8, 31], in particular their degree of imbalance [9, 22], with trees generated
by different evolutionary mechanisms [2, 6, 15], a selection of realistic models is
possible.

2. Stochastic models of macroevolution

We consider models of macroevolution within the following formal framework. At
each point in time t, there is a set of species S(t). Evolution proceeds as follows.
A species s ∈ S(t) is chosen according to a probability distribution π(s, t) on S(t).
Speciation of s means replacing s by two new species s′ and s′′ such that

S(t+ 1) = S(t) \ {s} ∪ {s′, s′′} (1)

is the set of species at time t+ 1. The initial condition (at t = 1) is a single species.
Therefore discrete time t and number of species n are identical, n = |S(t)| = t.

2.1. Trees

The evolutionary history of organisms is represented by a phylogenetic tree. For
the purpose of this contribution, a phylogenetic tree is a rooted strict binary tree
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Fig. 1. Comparison of tree shapes. Each tree of size eight consists of a root (white diamond), a set

of inner nodes (black squares) and a set of leaves (gray circles). The left tree is totally imbalanced,
also called comb tree, with depth d = 35/8 = 4.375 and Colless index c = 21/21 = 1 . The right

tree is a complete binary tree with depth d = 24/8 = 3 and Colless index c = 0/21 = 0 .

T : a tree with exactly one node (the root) with degree two or zero, all other nodes
having degree three (inner node) or one (leaf node), cf. illustrations in Figure 1. For
such a tree T with root w, a subtree T ′ is obtained as the component not containing
w after cutting an edge {i, j} of T . T ′ is again a rooted strict binary tree. Since
this contribution focuses on tree shape, all edges have unit length. The distance
between nodes i and j on a tree T is the number of edges contained in the unique
path between i and j.

¿From the evolutionary dynamics, an evolving phylogenetic tree T (t) is obtained
as follows. At each time step t, the leaves of T (t) are the species S(t). When s

undergoes speciation, two new leaves s′ and s′′ attach to a leaf s. After this event, s
is an inner node and no longer a leaf of the tree. In this way, each model of speciation
dynamics also defines a model for the growth of a binary tree by iterative splitting
of leaves.

2.2. Yule model

In the simplest case, the probability of choosing a species is uniform at each time
step, π(s, t) = 1/t. This is the Yule model or ERM model. It serves as a null model
of evolution.

The model corresponds to a particularly simple probability distribution on the
set of generated trees. For a tree with n ≥ 2 leaves generated by the Yule model
and i ∈ {1, 2 . . . , n−1}, let pERM(i|n) be the probability that exactly i leaves are in
the left subtree of the root. Then pERM(i|n) = 1/(n− 1). This is shown inductively
as follows. Obtaining exactly i leaves at step n, either they were already present at
the previous step and the speciation took place in the right subtree, or the number
increased from i−1 to i by speciation in the left subtree. Addition of these products
of probabilities for the two cases yields

pERM(i|n) =
n− 1− i
n− 1

pERM(i|n− 1) +
i− 1
n− 1

pERM(i− 1|n− 1) . (2)
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With the induction hypothesis pERM(j|n− 1) = 1/(n− 2) for all j, we obtain

pERM(i|n) =
(n− 1− i) + (i− 1)

(n− 1)(n− 2)
=

1
n− 1

. (3)

The induction starts with pERM(1|2) = 1 which holds because a tree with two
leaves has one leaf each in the left and in the right subtree. Thus the uniform
selection of species turns into a uniform distribution on the number of nodes in the
left or right subtree. Note that the same distribution applies to each subtree of an
ERM tree. Therefore pERM fully describes the statistical ensemble of ERM trees.
The probability of obtaining a particular tree is the product of pERM terms taken
over all subtrees. This becomes particularly relevant for modifications of the model
taking p non-uniform, see the following subsection.

2.3. Aldous’ branching (AB) model

The class of beta-splitting models defines a distribution of trees by the probability

pβ(i|n) =
1

αβ(n)
Γ(β + l + 1)Γ(β + n− l + 1)

Γ(l + 1)Γ(n− l + 1)
(4)

with appropriate normalization factor αβ(n). Analogous to pERM of the previous
subsection, pβ(i|n) is the probability that a tree has i out of its n leaves in the left
subtree. In order to build a tree with n leaves, one first decides according to pβ(i|n)
to have i leaves in the left and n− i leaves in the right subtree. Then the same rule
is applied to both subtrees with the determined number of leaves. The recursion
into deeper subtrees naturally stops when a subtree is decided to have one leaf.

The parameter β ∈ [−2; +∞[ in Equation (4) tunes the expected imbalance. By
increasing β, equitable splits with i ≈ n/2 become more probable. The probability
distribution of trees from the Yule model is recovered by taking β = 0. The case β =
−1.5 is called Proportional to Distinguishable Arrangements (PDA). It produces a
uniform distribution of all ordered (left-right labeled) trees of a given size n [25, 24,
30, 10].

Another interesting case is Aldous’ branching (AB) model [1, 2] obtained for
β = −1, where Equation 4 reads

p−1(i|n) ∝ 1
i(n− i)

. (5)

Blum and François have found that β = −1.0 is the maximum-likelihood choice of
β over a large set of phylogenetic trees [6]. Therefore we use it as a standard of com-
parison. The AB model does not have an interpretation in terms of macroevolution,
as noted by Blum and François [6]. In particular, it is unknown if its probability
distribution of trees can be obtained by stochastic processes of iterated speciation
as introduced at the beginning of this section.
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2.4. Activity model

In the activity model [15], the set of species S(t) is partitioned into a set of active
species SA(t) and a set of inactive species SI(t). At each time step, a species s ∈
SA(t) is drawn uniformly if SA(t) is non-empty. Otherwise s ∈ SI(t) is drawn
uniformly. The two new species s′ and s′′ independently enter the active set SA(t+1)
with probability p. The activation probability p is a parameter of the model. For
p = 0.5 a critical branching process is obtained. Otherwise the model is similar to
the Yule model. A variation of the activity model has been introduced by Herrada
et al. [16] in the context of protein family trees.

2.5. Age-dependent speciation

In the age model [18], the probability of speciation is inversely proportional to the
age of a species. At each time, a species s ∈ S(t) is drawn with probability

πs(t) ∝ τs(t)−1 (6)

normalized properly. The age τs is the number of time steps passed since creation
of species s.

2.6. Innovation model

In the innovation model, each species s is defined as a finite set of features s ⊆ N.
Features are taken as integer numbers in order to have an infinite supply of symbols.
We denote by F (t) the set of all features existing at time t, that is F (t) =

⋃
s∈S(t) s.

Each speciation occurs as one of two possible events.
An innovation is the addition of a new feature φ ∈ N \F (t) not yet contained in

any species at the given time t. One of the resulting species carries the new feature,
s′ = s ∪ {φ}. The other species has the same features as the ancestral one, s′′ = s.

A loss event generates a new species by the disappearance of a feature. A feature
φ is drawn from F (t) uniformly. The loss event is performed only if s \ {φ} /∈ S(t)
such that elimination of φ from s actually generates a new species. In this case, the
resulting species are the one having suffered the loss, s′ = s \ {φ} and the species
s′′ = s remaining unaltered. Otherwise, φ is not present in s or its loss would lead
to another already existing species, so nothing happens.

We assume that creation of novel features is significantly less abundant than
speciation by losses. This separation of time scales is implemented by the rule that
an innovation event is only possible when no more losses can be performed. In order
to facilitate further studies with the model, we provide a pseudocode description in
Algorithm 1. Figure 2 shows an example of the dynamics.

Forbidding duplication of species by loss events is a crucial ingredient of the
model. If arbitrary loss events were allowed, the cascade of speciations after a single
innovation would not come to a stop. The statistics of tree shapes would be similar
to that of the ERM model, where all extant species undergo speciation with uniform
probability.
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Fig. 2. A tree growing by the innovation model to a size of n = 9 leaves. The root node labeled
with the empty feature set ∅ speciates by an innovation event adding the feature 1 to the feature
set. This results in the species ∅ and {1} . Innovation events are performed, generating features

until a loss event is possible. The first loss event generates the species {3} by removing the feature
1 from {1, 3}. Now no further loss events are possible, because removal of a feature from any of

the extant species (leaves) ∅, {2}, {1, 3}, {2} does not create an additional species. The following

innovation event creates the species {1, 3, 4} with the new feature φ = 4, now allowing for three
subsequent loss events.
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Algorithm 1: Pseudocode for the innovation model

set t = 1, F (0) = ∅, S(0) = {∅};1

while |S(t)| < N do // N as final size of simulated tree2

if S(t) \ {s \ {φ} : s ∈ S(t), φ ∈ F (t)} 6= ∅ then3

// loss event4

draw φ ∈ F (t) uniformly;5

draw s ∈ S(t) uniformly;6

if s \ {φ} /∈ S(t) then7

S(t+ 1) = S(t) ∪ {s \ {φ}};8

F (t+ 1) = F (t);9

increment t;10

else11

// innovation event12

draw s ∈ S(t) uniformly;13

set φ = 1 + max(F (t) ∪ {0});14

set S(t+ 1) = S(t) ∪ {s ∪ {φ}};15

set F (t+ 1) = F (t) ∪ {φ};16

increment t;17

3. Comparison of simulated and empirical data sets

Now let us compare the tree shapes obtained by the models with those of evo-
lutionary trees in databases. The TreeBASE [27] database contains phylogenetic
information about the evolution of species whereas the database PANDIT [34] con-
tains phylogenetic trees representing protein domains. Analysing the properties with
reference to the tree shape of both data sets and applying a comparative study with
statistical data sets of different models one can conclude how well a growth model
constructs “real” trees.

Comparison by simple inspection of trees from real data and models may already
reveal substantial shape differences. Figure 3 shows an example. The trees in panels
(a) and (b) are less compact than that of panel (c) of Figure 3.

For an objective and quantitative comparison of trees, we use the following two
measures of tree shape. The depth (or Sackin index) [26] is the average distance of
leaves from root,

d =
∑n
i=1 di
n

. (7)

where di is the number of edges on the unique path between a leaf i and the root
node.

The Colless index measures the average imbalance of a tree [9]. The imbalance
at an inner node j of the tree is the absolute difference cj = |lj − rj | of leaves in
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(a) (b) (c)

Fig. 3. Empirical and simulated trees. The depicted phylogenetic tree in (a) is from the database

TreeBASE (Matrix ID M2957, relationships in Rosids based on mitochondrial matR sequences),

(b) is a tree created as a realization of the innovation model and (c) a tree from the ERM (Yule)
model. Each of the trees has 161 leaves.

the left and right subtree rooted at j. Then the average of imbalances

c =
2

(n− 1)(n− 2)

n−1∑
j=1

cj (8)

with appropriate normalization is the Colless index c of the tree. The index j runs
over all n − 1 inner nodes including the root itself. We find c = 0 for a totally
balanced tree and c = 1 for a comb tree, see also Figure 1.

Ensemble mean values and standard deviations of these indices are shown in
Figure 4. Comparing the results of three models (ERM, AB and innovation) to
those of trees from two databases, the least discrepancy is obtained between the
innovation model and the trees from TreeBASE, representing macroevolution. In
Figure 5, the averages of the two indices are shown after rescaling to facilitate the
comparison. Of all models, the values of the innovation model are also best matching
those of PANDIT.
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Fig. 4. Comparison of size-dependent summary statistics for models and real trees. Symbols dis-
tinguish the ERM model (◦), the AB model (�) and the innovation model (�) and the data sets

TreeBASE (∗) and PANDIT (+). The data sets were preprocessed by solving monotomies and

polytomies randomly as well as removing the outgroups as proposed by [6]. The mean values of
depth, and Colless index, panels (a) and (b) are binned logarithmically as a function of tree size

n. The same procedure is applied to the standard deviations, panels (c) and (d). The analysed
TreeBASE data set has been downloaded from http://www.treebase.org on June, 2007 containing

5,087 trees of size 5 to 535 after preprocessing. The PANDIT data set has been downloaded from

http://www.ebi.ac.uk/goldman-srv/pandit on May 2008 and includes 36,136 preprocessed trees of
size 5 to 2,562 . The simulated data set comprises for each model (AB model, ERM model and

innovation model) 1,000 trees for each tree size from 5 to 535 and 10 trees for each tree size from

536 to 2,562.

4. Depth scaling in the innovation model

4.1. Subtree generated by an innovation

Suppose the i-th innovation, generating feature i, affects a species s with f features.
Then s is removed from the set S of extant species, turning into an inner node in
the tree. Two new species s′ and s′′ are attached, having feature sets s′ = s and
s′′ = {i}∪ s. In subsequent loss events, a subtree Ti is built up with 2f leaves, each
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Fig. 5. The same values of depth and Colless index as in Figure 4 (a,b) with an n-dependent
rescaling. (a) Average depth divided by lnn. (b) Average Colless index divided by n−1 lnn. These

factors are chosen such that the rescaled values for the ERM model asymptotically approach a

constant. See reference [7] for the scaling of the indices of the ERM model.

of which is a species σ ⊆ s ∪ {i}. Call D(Ti) sum of the distances of all the leaves
in Ti from the root of Ti.

Let us now estimate the expectation value 〈D(Ti)〉, which only depends on the
number of features of f . Trivially, D(Ti) is lower bounded by f2f since the most
compact tree is the fully balanced one with all nodes at distance f from root. In
particular, we conjecture

f2f < 〈D(Ti)〉 < DERM(2f ) . (9)

The second inequality is corroborated by the plots in Figure 6. We make it plausible
as follows. Similar to the ERM model, a leaf is chosen in each time step when
executing loss events. Here, however, the loss event is performed only if the chosen
leaf carries the chosen feature and the reduced feature set is not yet present in
the tree. Thus the probability of accepting a proposed loss event at a leaf s is
anticorrelated with the number of features |s| at s. The expected number of features
carried by a leaf decreases with its distance from root. Therefore we argue that the
present model adds new nodes preferentially to leaves closer to root than average,
resulting in trees with an expected depth increasing more slowly than in the ERM
model.

4.2. Approximation of depth scaling

We study a tree growth that is derived from the innovation model by two simplifying
assumptions. (i) Each innovation is introduced at the leaf with the largest number of
features in the tree. (ii) Introducing an innovation at a leaf with f features triggers
the growth of a subtree that is a perfect (complete) binary tree with 2f leaves at
distance f from the root of this subtree.
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Fig. 7. The deterministic growth of a tree considered as an approximation of the innovation model.
Each subtree generated by an innovation is indicated as a shaded area.
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This leads us to consider the following deterministic growth starting with a single
node and i = 0. Choose a leaf s at maximum distance from root; split s obtaining
new leaves s′ and s′′; take s′′ as the root of a newly added subtree that is a perfect
tree with 2i leaves; increase i by one and iterate. Figure 7 illustrates the first few
steps of the growth.

After i steps, the number of leaves added to the tree most recently is 2i−1.
Therefore, the total number of leaves after step i is

n(i) = 1 +
i∑

j=1

2j−1 = 2i . (10)

because the procedure starts with a single leaf at i = 0.
The leaves of the subtree added by the j-th innovation have distance

j∑
k=1

k =
j(j + 1)

2
(11)

from root because these leaves are j levels deeper than those generated by the
previous innovation. Therefore the sum of all leaves’ distances from root is

D(i) = i+
n∑
j=1

2j−1[j(j + 1)/2] (12)

after the i-th innovation has been performed. The first term i arises because the
innovation itself renders one previously existing leaf at a distance increased by
one, cf. the leaves outside the shaded areas in Figure 7. In performing the sum of
Equation 12 we use the equality

i∑
j=0

xj−1[j(j + 1)] = 2i[i2 − i+ 2]− 2 (13)

to arrive at

D(i) = i+ 2i−1[i2 − i+ 2]− 1 . (14)

We substitute n(i) = 2i, i.e. i = log2 n, and divide D by n to arrive at the depth

d(n) =
1
2

[(log2 n)2 − (log2 n) + 2] +
(log2 n)− 1

n
(15)

of the tree with n leaves generated by deterministic growth. For large n, the depth
scaling is

d(n) ∼ (log n)2 . (16)
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Table 1. Depth scaling of models.

innovation model (log n)2

β-splitting [1]


log n if β > −1, includes ERM (β = 0)

(log n)2 if β = −1, AB model

n−β−1 if β < −1, includes PDA (β = −1.5)

age model [18] (log n)2

activity model [15]

{
n0.5 if p = 0.5,

log n otherwise.

complete tree log n

comb tree n

4.3. Comparison between innovation model and deterministic

growth

We compare the expected n-dependence of depth from deterministic growth with
simulation results from the innovation model as defined in Section 2.6. In Fig. 8,
straight lines in the logarithmic-linear plot of

√
d versus n indicate a scaling d ∼

(log n)2. For the data points (circles) of the innovation model, a least-squares fit of
the form

√
d(n) = a + b lnn with free parameters a and b results in a correlation

coefficient of 0.99988 and a slope b = 0.603 ± 0.003. For the deterministic growth,
the asymptotic slope is

√
1/2/ ln 2 ≈ 1.020 according to Equation (15). Thus the

increase of depth with the number of leaves is slower in the innovation model than
in the deterministic growth process. In the innovation model, most innovations hit
a leaf with a non-maximal number of features and therefore trigger the growth of a
lower subtree than assumed by deterministic growth.

Let us consider the dependence of the number of leaves n on the number of
innovations i. Simulation of the model yields n/i ∼ lnn, plotted as +-symbols in
Figure 8. Thus i ∼ n/ lnn. The number of innovations required to build up a tree
with n leaves is weakly sublinear in n, i.e. linear with a logarithmic correction. This
dependence is different for deterministic growth. Here the number of leaves doubles
by each innovation, since i = log2 n according to Equation (10).

Nevertheless, depth scales as (log n)2 both in the innovation model and the
deterministic growth process and, as shown above, the ratio of the coefficients of this
leading order is approximately 0.6. We hypothesize that the deterministic growth
captures the essential mechanism leading to the depth scaling of the innovation
model: tree shape in the innovation model is mostly determined by large bursts of
speciations following an innovation. Table 1 provides an overview of the scaling of
average depth with the number of leaves for various models.
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Fig. 8. Depth as a function of tree size n for the innovation model (◦) and for the deterministic

growth (thick solid curve) according to Equation (15). Note that square root of depth is plotted

such that a straight line in the plot indicates a depth scaling d(n) ∼ (logn)2. Small symbols (+)
connected by thin lines give 〈n/i〉, the average number of leaves per innovation. For each size n,

the plotted points (◦, +) are averages over
p
d(n) and i/n for 100 independently generated trees.

Error bars give the standard deviation.

5. Discussion

The innovation model establishes a connection between the burstiness of macroevo-
lution and the observed imbalance of phylogenetic trees. Bursts of diversification
are triggered by generation of new features and combination with the repertoire
of existing traits. In order to keep the model simple, the diversification after an
innovation is implemented as a sequence of random losses of features. More realistic
versions of the model could be studied where combinations of traits are enriched
by re-activation of previously silenced traits or horizontal transfer between species.
Furthermore, the model as presented here neglects the extinction of species and
their influence on the shapes of phylogenetic trees.

Regarding the robustness of the model, the depth scaling would have to be tested
under modifications. In particular, the infinite time scale separation between rare
innovations and frequent loss events could be given up by allowing innovations to
occur at a finite rate set as a parameter.

In summary, we have defined a well-working, biologically motivated model which



May 9, 2012 10:19 WSPC/INSTRUCTION FILE innovmodelPaper

A model of macroevolution as a branching process based on innovations 15

nevertheless is sufficiently simple to allow for further enhancement regarding bio-
logical concepts such as sequence evolution and genotype-phenotype relations.
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