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eMax Planck Institute for Mathematics in the Sciences, Inselstrasse 22, D-04103 Leipzig, Germany
fFraunhofer Institut für Zelltherapie und Immunologie – IZI Perlickstraße 1, D-04103 Leipzig, Germany

gCenter for non-coding RNA in Technology and Health, University of Copenhagen, Grønnegårdsvej 3, DK-1870 Frederiksberg C, Denmark
hSanta Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501, USA

Abstract

Functional RNA elements can be embedded also within exonic sequences coding for functional proteins. While not
uncommon in viruses, only a few examples of this type have been described in some detail for eukaryotic genomes.
Here we useRNAz andRNAcode, two comparative genomics methods that measure signaturesof stabilizing selection
acting on RNA secondary structure and peptide sequence, resp., to survey the fruit fly genomes. We estimate that
there might be on the order of 1000 loci that are subject to dual selection pressure. The used genome-wide screens
also expose the limitations of the currently available methods.
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1. Introduction

The worlds of protein-coding genes and those of
non-coding RNAs (ncRNAs) are often seen as clearly
separated. A small number of examples from both
prokaryotes and eukaryotes, however, demonstrates that
this is not strictly true, see [1] for a recent review.
The best studied case in animals is the Steroid recep-
tor activator gene (SRA). Originally characterized as
a non-coding RNA with a distinctive secondary struc-
ture [2], it was later found to have isoforms coding for
the functional protein SRAP, see [3]. SRA is proba-
bly the most extreme example, as nearly the complete
transcript is covered by both conserved RNA structure
and protein-coding region. At the other extreme, how-
ever, structured RNA motifs, such as selenocystein in-
sertion elements (SECIS), internal ribosome entry sites
(IRES), or mRNA localization signals are not at all fre-
quent in UTRs of protein-coding transcripts [4]. In
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some cases, in particular in viruses, such structured
elements are found in coding regions. The software
tool RNAdecoder [5], which implements a comparative
method for finding and folding RNA secondary struc-
tures within protein-coding regions, provided statisti-
cal evidence for frequent superpositions of RNA struc-
ture and coding sequences [6]. Nevertheless, system-
atic genome-wide analyses of this phenomenon have not
been published to date.

The overwhelming majority of annotated coding re-
gions translates to proteins with more than 30 amino
acids. The discovery of the very short, independently
encodedTarsal-lesspeptides [7, 8], however, suggests
that more small ORFs of this type might be hidden in
the genomic DNA. Examples such as plant ENOD40
[9] with its short ORFs embedded in a heavily struc-
tured RNA, furthermore, hint at a possible association
of functional secondary structure with coding capacity
in such atypical transcripts. These, however, are likely
to have escaped standard gene annotation procedures.

We therefore start our survey of the drosophilid
genomes with the independent prediction of evolution-
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arily conserved RNA secondary structures and of open
reading frames with evidence of stabilizing selection
acting on the peptide sequence. To this end we employ
RNAz [10, 11] andRNAcode [12], respectively.

2. Methods Summary

This study is based on the 15-wayMultiz align-
ment of insect genomes, which contains the 12 se-
quenced drosophilids, mosquito, honeybee and bee-
tle. All analysis refers to the genome ofDrosophila
melanogaster. Conserved secondary structure were as-
sessed usingRNAz 2.0 [11] after slicing the alignment
blocks into overlapping windows and removing align-
ment slices with too many gaps, too few sequences, or
too extreme sequence divergence. Selection pressure on
peptide sequence level was examined byRNAcode [12]
with p = 0.05 as cut-off for individual high scoring seg-
ment (HSS). Adjacent HSS in the same reading frame
separated by less than 51 nt were combined into a sin-
gle hit (cHSS) with ap-value estimated as the product of
its constituent HSS.RNAdecoder was used as described
in [5]. The genomic MAF alignments were converted
into col-format with codon positions determined from
the RNAcode annotation. GO-term enrichtments were
computed usingFuncAssociate [13].

Due to space limitations detailed methods can be
found online1.

3. Results

3.1. RNAz Screen

RNAz 2.0 detected 15912 loci (covering about 1.3
Mb) that show evidence for evolutionarily conserved
secondary structure. Of these, 394 correspond or can
be aligned with known structured ncRNAs. Taking into
account that a sizable fraction of known ncRNAs are not
included in the input alignments (notably tRNAs, due to
variations in the number of tRNA genes in the various
flies, and microRNAs, due the abundance of species-
specific miRNAs), this amounts to an overall recall rate
of about 69% (319/465), Figure 1, relative to the se-
quence alignments.

Compared to the previousRNAz screen in flies [14]
we achieve a similar recall rate (69% vs. 65%) on the
structured ncRNAs. On the other hand, the total num-
ber of predictedRNAz loci is reduced here by almost a

1http://www.bioinf.uni-leipzig.de/publications/

supplements/11-012
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miRNAs 104 84 82%
other 52 35 67%

Figure 1: Summary of theRNAz screen usingD. melanogasteras ref-
erence. Left panel: overlap ofRNAz hits and protein-coding gene
annotation. Right panel: Summary statistics of theRNAz screen and
recall of the screen on known ncRNAs contained in alignment blocks
that could be evaluated byRNAz.

factor of three (15912 vs. 42482). This discrepancy can
be explained, on the one hand, by the different input
alignments (hereMultiz vs. Pecan in [14]), and on the
other hand by using an improved version ofRNAz [11],
which is substantially more specific.
RNAz hits located in 5’ and 3’ UTRs might corre-

spond to structured regulatory elements. Unfortunately,
we miss most of the Rfam annotated structured ele-
ments such as the bicoid 3’UTR regulatory element (bi-
coid 3) or the nanos 3’ UTR translation control element
(nosTCE), since the corresponding loci do not pass the
filtering steps of the input alignments. The small frac-
tion of UTR elements might thus be an underestimate
caused by the comparably poor sequence conservation
in UTR regions, which in turn renders sequences align-
ments less reliable for these loci.

3.2. RNAcode Screen

RNAcode determined 131197 cHSS in theD.
melanogastergenome. This in particular includes also
coding sequences in transposable elements that are not
part of the CDS annotation. After removing all cHSS
that overlap annotated repeats, we are left with 95355
loci, of which 65788 (65%) overlapped on the same
strand with annotated CDSs. This amounts to 94.7% of
the sequence covered byRNAcode predictions. Most of
the remaining 26702 cHSS are short and have ap-value
larger than 0.001. At p = 0.001 only 5697 predictions
outside annotated CDS are left, Figure 2. Due to the re-
laxedp-value cutoff we have to expect a large false dis-
covery rate. On the other hand, the sensitivity is needed
to include very short peptides such asTarsal-lessin the
screen.
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Figure 2: Summary of theRNAcode screen. Cumulative distribution
of cHSS as function of lower bound on the length (l.h.s.) and upper
bound on thep-value (r.h.s). The set ofRNAcode cHSS (full line) is
compared to the cHSS not previously annotated as coding sequence
(dashed line). Gray background marks regions with very high false
discovery rates.

Short peptides.In order to define a plausible set of can-
didates for novel small proteins that have been over-
looked in existing annotation we choose a cut-off of
p < 0.001 and a minimum length of 45 nt (i.e., 15
AA). Of the 2388 loci that do not overlap an annotated
CDS or an annotated repeat, we find 352RNAcode hits
that map to exonic parts of FlyBase genes, and 439 hits
overlap “FlyBase NonCoding transcripts”. A total of
654 hits overlap ESTs. After removing overlaps with
FlyBase exons and “FlyBase NonCoding” elements we
are left with 328 candidates of previously undescribed
coding sequences. The majority of these candidates are
additional exons of previously annotated proteins. Fur-
thermore, we find clusters ofRNAcode hits close to the
ends of the chromosomes and in the heterochromatic
DNA. These are likely related to un-annotated repeti-
tive elements. Manual inspection nevertheless identifies
several dozens of loci with novel small proteins.

Dicistronic transcripts and upstream ORFs.We find
487 cHSS that do not overlap any annotated CDSs
within the annotated 5’ UTRs of 458 distinct genes.
These predictions constitute candidates for dicistronic
transcripts and so-called upstream ORFs (uORFs). In
particular,RNAcode predicts cHSSs for 30 of the 31 di-
cistronic ORFs reported by [15], missing onlyKaz1-
ORF A.

Since RNAcode by construction does not produce
complete gene models, we tested whether these cHSSs
could be extended to an upstream start codon (ATG) and
a downstream stop codon (TAG, TAA, or TGA) within
51 nt. Beyond the current FlyBase annotation, we iden-
tify 26 novel un-spliced protein candidates with lengths

Table 1: Fraction of coding regions for whichRNAdecoder predicts
a structured region of minimum lengthL with average probability of
0.9 that the region is structured. To independently evaluate the pre-
dicted dual functional loci of our surveyRNAdecoder was applied to
RNAcode predictions that overlapped withRNAz hits at two signifi-
cance levels. The background is estimated based onRNAcode predic-
tions withoutRNAz overlap.

Background RNAz

L p > 0.5 p > 0.9
20 0.40 0.58 0.54
40 0.32 0.48 0.45
100 0.17 0.29 0.27

ranging from 31 to 110 amino acids. We compared these
predictions to the results of [16], who identified 44 pu-
tative conserved peptide uORFs with evidence for sta-
bilizing selection. Their data set consists of 19 spliced
uORFs, all of which we recover by RNAcode cHSS,
and 25 un-spliced uORFs. Of the latter, 10 are present
in the current FlyBase annotation and were therefore ex-
cluded from our candidate set. All uORFs annotated by
Flybase are also detected as cHSSs in our screen. Of the
remaining 15 uORFs of [16], four are contained in our
candidate set, leaving 11 cases withoutRNAcode signal.
Conversely, we report 22 previously undescribed uORF
candidates.

Read-through peptides.Read-through translation, i.e.,
skipping of stop codons, has been observed for several
Drosophila genes. A similar effect is regularly observed
for selenoproteins, where a stop-codon is re-interpreted
as selenocystein under the influence of a conserved
RNA secondary structure element in the 3’ UTR, the
SECIS element [17]. Recently, SECIS-dependent read-
through without selenocysteine incorporation has also
been reported [18]. A computational study [19] sug-
gests nearly 100 genes that are candidates for read-
through translation. We therefore extracted allRNAcode

hits that overlap annotated 3’ UTRs. In order to remove
known isoforms, we considered only 3’ UTRs that do
not overlap known CDS. Among the 229 candidates,
175 (76%) are in phase with the annotated stop codon.
Furthermore, there are 72 novelRNAcode hits that over-
lap the stop codon, of which 54 (75%) are in phase. The
strong enrichment of predictions in phase provides fur-
ther evidence that read-through translation is a common
phenomenon in fruit flies that leads to functional protein
variants.
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Figure 3: Comparison ofRNAz prediction confidence values outside
of CDS (l.h.s.) and overlapping CDS (r.h.s). We obtain fewerhigh-
confidence prediction in coding regions compared to other genomic
regions.

3.3. Dual Loci: Overlap ofRNAz andRNAcode

About 9% ofRNAz loci, 1500 atpRNAz= 0.5 and 449
at pRNAz = 0.9, overlap annotated coding regions. In
addition, some fifty previously unrecognizedRNAcode
predictions overlap withRNAz hits. Figure 3 compares
the RNAz confidence values of predictions inside and
outside of coding regions. The distribution is shifted
towards lower confidence prediction in the coding re-
gions, suggesting thatRNAz has a moderately elevated
false discovery rate on coding sequences. In the absence
of a known positive set, however, this cannot be tested
directly.
RNAdecoder [5, 6] is an SCFG-based tool specif-

ically designed to detect conserved RNA secondary
structure that is superimposed on coding sequences.
The fraction of positive predictions is indeed elevated
by 30% to 50% in codingRNAz hits compared to
RNAcode predictions that are classified as unstruc-
tured byRNAz, Table 1. The false discovery rates of
RNAdecoder, however, appears unacceptably large on
the available genome-wide alignments, probably as a
consequence of the limited alignment quality. It ap-
pears impossible, therefore to applyRNAdecoder inde-
pendently to our data set.

The maternal effect proteinoskaris currently the only
known example of a “dual function RNA” in the fruit fly
[20]. The transcript functions as a non-coding RNA dur-
ing oogenesis, while theoskarprotein is produced in the
embryo, recently reviewed by [1]. Figure 4 depicts the
genomic region corresponding to theoskargene. Inter-
estingly, two structured regions in the exons and one in
the 3’ UTR have been predicted byRNAz. [21] showed
that the 3’ UTR is sufficient to recover the full regula-
tory RNA function. However, to our knowledge the ex-
act region and regulatory mechanism remains unknown.

We hypothesize that the structured subregion within the
3’ UTR might cause the observed effect.

The absence of validated mRNAs in which functional
RNA structure and coding sequence are superimposed
implies that we also lack positive controls to estimate
the sensitivity of our computational screen. Since cod-
ing sequences are typically rather well-conserved we
can expect that the majority of such elements will be
included in the input alignments. Assuming that both
the sensitivity and the specificity ofRNAz is comparable
between CDS and other regions of the genome, we esti-
mate that the fruit fly may contain on the order of 1000
structured coding regions. This ball park figure is based
on a sensitivity of about 2/3 and a false discovery rate
of about 50-60%, as estimated in several previousRNAz

screens, see e.g. [14, 11].
In order to see if secondary structure structure super-

imposed on coding region is associated with particular
gene functions, we performed a GO-term enrichment
analysis. No significant associations were detectable,
however.

3.4. Effects on base pairing patterns
The idea of investigating the conflicting selective

constraints of RNA secondary structures superimposed
on coding sequence data dates back at least to the
1970s, when Walter Fitch observed that optimization of
RNA structure imposes limitations in nucleic acid se-
quences and thus should influence the amino acid se-
quence [22]. The different selective constraints on the
three codon positions, furthermore, lead to different ex-
pected substitution patterns depending on the phase of
the nucleotides with respect to the underlying coding se-
quence [23]. The latter effect is captured in the model
underlyingRNAdecoder. On the other hand, substantial
differences in the nucleotide composition of the three
codon position have been observed in fruit flies [24].
This bias in particular influences the stickiness, i.e., it
makes the probability that two nucleotides can pair de-
pendent upon the two codon positions.

In order to investigate the magnitude of these effects
we compared the base pairing patterns of putative dual
loci (with secondary structure superimposed on coding
sequence in the same reading direction), dual loci in an-
tisense orientation, structured RNA without conserved
coding sequence, and protein-coding sequences with-
out conserved secondary structure, Figure 5. Surpris-
ingly, the stickiness is largest for anti-sense arrange-
ments of CDS and RNA structure. The parallel arrange-
ment, on the other hand, shows only a small increase
in stickiness over coding sequence without constrained
secondary structures.
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Figure 4: Genomic region (chr3R:4,760,853-4,764,123) encoding the oskar gene. Two alternative protein-coding transcripts are annotated in the
FlyBase. Exons are indicated by filled boxes and the thin lines that connect them correspond to intronic sequences. Arrows indicate the reading
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For all types of coding sequences, we find that
(

1 2 3
2 1 3

)

is the most prevalent arrangement of base

pairs, followed by
(

1 2 3
3 2 1

)

and
(

1 2 3
1 3 2

)

. These dif-
ferences in abundance may be large, reaching up to
50%. The observed pattern of abundances is surpris-
ing, since the prevalence of pairings does not match up
with the pairings that are easiest to maintain by com-
pensatory mutations [23]. Furthermore, there is little, if
any, correlation between the observed number of base
pairs in one of these three base pair arrangements and
the stickiness. Hence it appears that stickiness is not
a determining factor for the relative location of con-
served coding sequence and conserved secondary struc-
ture. Although the data suggest that sequence bias in
coding sequence and selective constraints on secondary
structure influence each other, it remains unclear to
what extent the observed biases are specific to flies and
whether they are strong enough to be used as a compo-
nent in prediction tools for dual loci.

4. Discussion

In this contribution we have explored to what ex-
tent existing computational methods are capable of sur-
veying loci at which coding sequence and secondary
structure is simultaneously under stabilizing selection.
With the notable exception ofRNAdecoder [5, 6] this
topic has received very little attention, probably be-
cause of the lack of well-studied examples. Hence we
have combined a survey of structured RNA elements
and a search for conserved coding sequences withRNAz

andRNAcode, respectively. Together, they suggest that
loci with dual function are not uncommon in the fruit
fly genomes, proposing several hundred candidate loci
featuring conserved RNA structures within coding se-
quence. The manual curation of human transcript an-
notation in the GENCODE project [25], revealed that
a large fraction of protein-coding genes also give rise
to non-protein coding isoforms. At the genomic level,
thus, superpositions of coding and non-coding function-
alities may be common. Indeed, this is also true for the
famous SRA1 locus [3], where coding and non-coding
functionalities appear to be exerted at least in part by
distinct transcripts.

The analysis of the computational surveys reported
here exposes severe limitations in the current arsenal of
computational methods. In a genome-wide setting, all
de novoapproaches suffer from substantial false discov-
ery rates which at least in part arise from an incomplete
understanding of the background model. In the case of
superimposed selection pressures, which are the main
focus of this contribution, this problem is aggravated: it
cannot be expected that simultaneous selection on pep-
tide sequence and on secondary structure leads to in-
dependent effects on sequence and structure variation.
AlthoughRNAdecoder attempts to include such effects,
we observed a false discovery rate that is prohibitive
for genome-wide applications. Of course, the present
study cannot replace a careful benchmark of alternative
comparative RNA gene prediction tools, in particular
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evofold [26] andSISSIz [27], for the task of predict-
ing conserved RNA secondary structure superimposed
on CDS. The absence of a positive set, however, pre-
cludes such a benchmark study at this point in time.

An important issue in this context is that all currently
available tools are strongly dependent on the quality of
the input alignments. As observed in previous studies,
see e.g. [28], the sensitivity of computational screens is
limited since a substantial fraction of known ncRNAs is
not present in the input alignments. In the absence of
a sizable set of known dual loci we cannot estimate to
what extent this is limiting here. Poorly aligned regions,
on the other hand, can also easily lead to false positive
predictions: the artefactually increased sequence varia-
tion easily generates unusual substitution patterns that
are then misclassified.

Comparative genomics approaches, including the
methods employed in this contribution, cannot distin-
guish whether a genomic locus gives rise to different
transcripts, one of which is coding, while the other one
acts as a structured RNA. Beyond the technical difficul-
ties, therefore, it remains uncertain whether there are
many RNAs with dual functions or just many genomic
loci with overlapping transcripts of different types.
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H. J̈ackle. A novel stem loop control element-dependent UGA
read-through system without translational selenocysteine incor-
poration inDrosophila. FASEB J. 23 (2009) 107–113.

[19] M. Sato, H. Umeki, R. Saito, A. Kanai, M. Tomita. Computa-
tional analysis of stop codon readthrough inD. melanogaster.
Bioinformatics 19 (2003) 1371–1380.

[20] A. Jenny, O. Hachet, P. Závorszky, A. Cyrklaff, M. D. We-
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