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Abstract

Background: Orthology analysis is an important part of data analysis in many areas of bioinformatics such as
comparative genomics and molecular phylogenetics. The ever-increasing flood of sequence data, and hence the
rapidly increasing number of genomes that can be compared simultaneously, calls for efficient software tools as
brute-force approaches with quadratic memory requirements become infeasible in practise. The rapid pace at
which new data become available, furthermore, makes it desirable to compute genome-wide orthology relations
for a given data set rather than relying on relations listed in databases.

Results: The program Proteinortho described here is a stand-alone tool that is geared towards large data sets
and makes use of distributed computing techniques when run on multi-core hardware. It implements an extended
version of the reciprocal best blast hit method. We apply Proteinortho to compute orthologous proteins in
the complete set of all 711 eubacterial genomes available at NCBI at the beginning of 2009. We identified thirty
proteins present in 99% of all bacterial proteomes.

Conclusions: Proteinortho significantly reduces the required amount of memory for orthology analysis compared
to existing tools, allowing such computations to be performed on off-the-shelf hardware.

Availability: The source code of Proteinortho can be obtained under the GPLv2 (or later) from
http://www.bioinf.uni-leipzig.de/Software/proteinortho/
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Background
Genome annotation largely depends on the deter-
mination of sequence intervals that are homologous,
and if possible, orthologous to sequences of known
identity and function in related genomes. Ortholo-
gous genes (orthologs) are derived from a common
ancestor by a speciation event [1]. Orthologs are of
particular interest because they can be expected to
have maintain at least part of their (ancestral) bio-
logical function. For protein-coding genes, several
well-known databases, including InParanoid [2],
OrthoMCL-DB [3], COG [4], Homogene [5], eggNOG [6],
OMA Browser [7] and Ensembl Compara [8] compile
such information. Their content is restricted to data
previously published in comprehensive databases of
protein sequences such as UniProt [9]. Updates with
additional proteomic data thus are published rel-
atively infrequently. The modern high-throughput
technologies, however, produce huge amounts of pro-
tein data and even larger amounts of transcript
data that are computationally translated to puta-
tive polypeptide sequences. Oftentimes, therefore,
it would be desirable to generate the orthology rela-
tion for a particular data set, so that the availability
of orthology data does not limit the set of species or
genes that can be included.

The computation of genome-wide orthology data,
however, is a challenging and time consuming task
with the currently available tools. In many cases,
orthologs cannot be identified unambiguously by
means of sequence comparison. The main difficulty
arises from the presence of paralogs (homologous
genes within the same genome) which can make it
very difficult to recognize the correct ortholog among
the other homologs. Gene duplications in follow-
ing the speciation, furthermore, create two or more
genes in one lineage that are, collectively, ortholo-
gous to one or more genes in another lineage. Such
genes are known as co-orthologs [10].

The most widely used approach to identify (puta-
tive) orthologs between two species is the reciprocal

best blast hit method [11–15]. It was more recently
extended e.g. in OrthoMCL [16] and MultiParanoid

[17] to detect (co-)orthologs within multiple species.
All these tools, however, are limited to relatively
small sets of species. In practise, analyzing the
complete proteomes of more than about 50 procary-
ote species goes beyond the capabilities of standard
hardware and requires access to supercomputer re-
sources. The crucial limitation is the amount of
memory required to hold results of all pairwise com-

parisons. In contrast, Proteinortho can deal with
hundreds of species together containing millions of
proteins by processing the output of blast compar-
isons already on the fly.

Results and Discussion
Orthology prediction

Theory

As for other approaches to large-scale orthology de-
tection, the starting point is a complete collection
of pairwise comparisons, typically performed using
blast. For simplicity of presentation, we assume
that the individual sequences that are compared rep-
resent proteins, although algorithms and pipelines
are applicable also to other sequence data such as
non-coding RNA genes or conserved DNA regions.

Typically, the results of pairwise comparisons are
ranked by similarity, for instance based on blast

statistics, evolutionary distances, or genome rear-
rangement analysis [7, 16, 18]. High-ranking hits
across multiple species then have to be combined
in order to determine orthologous groups. However,
these groups usually do not readily provide detailed
insights since they can contain large numbers of re-
lated genes for each species. Hence, meaningful units
have to be identified. For this purpose, a variety of
clustering algorithms have been employed, as in the
MCL-algorithm [16, 19, 20]. Alternatively, data were
curated by manual postprocessing [4].

We will argue here that orthology determination
can be understood as the problem of finding nearly

disjoint maximal nearly-complete multipartite sub-
graphs in an edge-weighted directed graph ~Υ whose
vertices are the proteins in the input set, and whose
edges connect certain pairs of similar proteins of dif-
ferent species. The edge weights ωx→y encode the
similarity of x and y. In our implementation, the
bit scores of the blast hit (x → y) will serve as edge
weight. An E-value cut-off is used beyond which
blast hits are not included into ~Υ.

In order to motivate our point of view, we first
consider an idealized data set (see Fig. 1) in which
(1) each protein x (from species A) has at most one
ortholog in any other species B 6= A, (2) if y ∈ B
is an ortholog of x ∈ A, then a blast search of x
against B yields at least one hit and (3) the unique
best hit of query x against B is the true ortholog
y of x. In this case, the well-know “reciprocal best
hit heuristic” (RBHH) can be used to retrieve the
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Figure 1: Idealized dataset for two species A and
B. Proteins x ∈ A and y ∈ B are depicted by open
boxes. Orthology relations between proteins x and
y are represented by grey shadows. Arrows indicate
blast hits from the search of x against B. Solid
lines refer to the best hits. Cases (1), (2), and (3)
cannot occur by definition in an idealized dataset,
but of course to appear in real life applications.

correct ortholog set. To see this, we construct a
subgraph ~ΥRBHH of ~Υ as follows: For each protein
x in species A and a given species B 6= A we retain
only the arc with maximal weight:

(x → y) ∈ ~ΥRBHH iff ωx→y = max
y′∈B

ωx→y′ (1)

The symmetric subgraph of ~ΥRBHH , containing
only reciprocal best hits, can be regarded as an undi-
rected graph ΥRBHH . By construction, any two ver-
tices are connected by edges in ΥRBHH if and only
if they are orthologs. A set of orthologs therefore
corresponds to a complete multipartite subgraph of
~ΥRBHH in which every species is represented at most
once. Furthermore, we note that these subgraphs are
disjoint, i.e., ortholog sets correspond to the con-
nected components of ~ΥRBHH .

When applied to real data, however, RBHH usu-
ally gives rise to several artifacts. In general, there-
fore, it does not produce correct and complete sets
of orthologs. First, gene duplications produce co-
orthologs, destroying the uniqueness of best blast

hits. The blast comparison of two species both
containing two co-orthologs will in general produce
slightly different scores among those genes, so that
~ΥRBHH in general will not contain all arcs between
them, see Fig. 2A. RBHH now extracts the symmet-
ric part of ~ΥRBHH , i.e., it removes all non-reciprocal
edges. Thus the undirected graph ΥRBHH has an
edge {x, y} if and only if both (x, y) and (y, x)

are arcs in ~ΥRBHH . A missing arc in the exam-
ple of Fig. 2A thus translates into a missing edge in
ΥRBHH . Ortholog sets, therefore, are still located in
disjoint connected components, but they are only ap-
proximately multipartite and there is no guarantee
that they remain connected. As a remedy, it could
been proposed to use the k-best blast hits instead
of a single best one. This leads, however, to another
type of artifact: If highly diverged homologs or spu-
rious blast hits are present, Fig. 2B, edges between

non-orthologous proteins might be included.
In order to reduce such problems, we suggest to

introduce a similarity cut-off value that itself de-
pends on the quality of the matches, i.e., to consider
all those blast hits of each query against a given
species whose E-values are only slightly smaller (by
a factor f < 1) than the queries’ best blast hit.
More precisely,

(x → y) ∈ ~Υ∗ iff ωx→y ≥ f max
y′∈B

ωx→y′ (2)

The symmetric part Υ∗ of ~Υ∗ now retains more edges
than ΥRBHH . In particular, it includes all the edges
connecting similar co-orthologs. On the other hand,
the threshold at fairly high bit scores disconnects at
least most of the more distant homologs. Sets of
(co-)orthologs thus appear in Υ∗ as nearly complete
multipartite subgraphs. Typically they will contain
more than one node from the same species, among
them, in particular, all in-paralogs. Although this
approach strongly reduces the problem with spuri-
ous edges, Υ∗ may also contain additional edges con-
necting two or more sets of (co-)orthologs.

The problem of finding maximal complete mul-
tipartite subgraphs of a graph is NP complete [21].
Furthermore, we have seen above that Υ∗ may lack
a few edges that should connect orthologs, while at
the same time there are also some additional “false
positive” edges. Hence, orthology detection might
be formulated as an editing problem, asking for a
decomposition of Υ∗ into a disjoint collection of com-
plete multipartite subgraphs with the minimal num-
ber of edge insertions and deletions.

Since no efficient approaches to this combinato-
rial optimization problem seem to be known, it ap-
pears fruitful to resort to a heuristic approach that
employs a somewhat different point of view: nearly
complete multipartite subgraphs are very dense sub-
graphs, which in our case either form connected
components on their own, or which are connected
to other dense clusters by a few additional edges.
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Figure 2: Reciprocal best hit heuristic (RBHH).
(A) If there is a pair of divergent co-orthologs x1,
x′

1
, and y1 and y′

1
, resp., it is possible that there

are no reciprocal best blast hits. In this situta-
tion, RBHH will not identify any orthologs. (B)
One possible remedy is to include the second best
blast hits (n = 2). However, in this case highly
similar orthologs (x2 and y2 as well as x3 and y3),
which in principle can clearly be divided, can get
combined. (C) ProteinOrtho uses an adaptive
approach that is (1) flexible with respect to the
number of more diverged orthologs in absence of
a reciprocal best blast hit and (2) will not in-
termix ortholog-groups that can be disentagled
easily because of large differences in pairwise sim-
ilarity.

The problem thus is to determine for each con-
nected component of Υ∗ whether it is sufficiently
densely connected, and if not, to partition it into
its densely connected components by removing the
spurious edges connecting them. Here, we approach
this issue by means spectral partitioning [22].

Implementation

blast searches. Proteinortho expects fasta files
containing either nucleic acid or amino acid se-
quences as input. In contrast to previous ap-
proaches, however, Proteinortho does not build
a large database containing all proteins but rather
keeps the protein complements of different species
separate. This has multiple advantages: (1) the
blast step can be partitioned into multiple runs.
The available processor cores are used efficiently as
each blast process can utilize one processor core to
the full, which is usually not the case if threading
is handled by blast itself. Furthermore, the blast

jobs can be distributed to several computers in a
network. (2) The computationally expensive blast

search of species against themselves (which is im-
plicit in searching a comprehensive protein database)
can be avoided. (3) The E-values returned by blast

depend only on the proteome of each input species,
not on the database of all input sequences. (4) The
scope of the analysis can be extended without the
need to re-compute blast comparisons that have al-
ready been computed earlier. The E-values remain
unchanged when species are included or excluded

from the analysis. (5) Compared to the strategy of
OrthoMCL, the E-values for comparisons between dis-
tant species are smaller while the E-values of related
species are larger. Therefore, Proteinortho implic-
itly enforces more exact hits for related proteomes
but allows less exact hits for larger evolutionary dis-
tances.

Proteinortho can use several PCs with a shared
storage (such as an NFS file system). The imple-
mentation of distributed computing is illustrated in
Additional File 3. Furthermore, cluster infrastruc-
ture (e.g. MPI or SGE) is supported. A benchmark
illustrating the performance improvements is shown
in Figure 3a. Proteinortho is faster than OrthoMCL

even if only a single processor core is available.

Most importantly, the algorithm outlined in the
previous section avoids the memory bottleneck that
limits previous approaches. Suppose our input set
comprises N species with, on average, m genes.
The size of the input is thus n = N × m pro-
teins. Instead of storing all n × n pairwise blast

scores, Proteinortho processes the comparisons be-
tween any two species A and B immediately: first
the blast hits are filtered by two additional cri-
teria: (1) The alignment must exhibit a minimum
level of sequence identity. (2) The alignment must
cover at least a minimum fraction of the query pro-
tein. This second rule ensures that fusion genes
such as rice OsUK/UPRT1 [23] are eventually as-
signed as homologs of the dominating part of the
protein. Then equ.(2) is evaluated for all x in
A, so that Proteinortho directly constructs the
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Figure 3: CPU time and memory requirements of Proteinortho. (a) The speed benchmark was performed
using an E. coli strain with 4132 proteins on an eight core Intel Xeon system using one thread (1) and eight
threads (8) at 2.33GHz. The encoded proteins were used multiple times to simulate multiple (identical)
species. This is the worst case scenario for Proteinortho since in this case every protein has a link to at
least one protein in every other species. Proteinortho is significantly faster than OrthoMCL. Using multiple
threads we observe a substantial speed up.
(b) The memory benchmark is performed using the same set as in (a). OrthoMCL quickly exhausts memory
for larger sets. Proteinortho clearly performs more efficient, even though this artifical scenario is a more
complex case than real world analysis. Both benchmarks outline that Proteinortho allows comprehensive
studies which were not possible before.

sparse graph ~Υ∗, while ~Υ does not need to be stored
at all. Proteinortho therefore uses chained ar-
rays, requiring only n × k, where k is the aver-
age number of nearly optimal blast hits per gene,
and k = a × N , where a is the average number of
(co-)orthologs of a gene in a single species. The
value of a is independent of the size of the data
set. Emprically, we found a ≤ 1 in all datasets in-
vestigated so far. Thus Proteinortho saves a fac-
tor n2/N2ma = m/a ≥ m of memory. Note that
prokaryotes have m ≈ 103 . . . 104 proteins.

Spectral partitioning. First we reduce the problem by
determining the connected components of Υ∗ since
these can be treated separately. We use the well-
known breath-first search approach [24] to this end.
In order to check whether a connected component
Ξ is sufficiently dense to represent a single set of
co-orthologs we compute its normalized algebraic
connectivity α∗

2
= α2/n. Here n is the number of

vertices of Ξ and α2 is 2nd-smallest eigenvalue of

the graph Laplacian L = D − A of Ξ [25]. Here
A is the adjacency matrix of Ξ and D is the di-
agonal matrix of the vertex degrees. The eigen-
value α2 can be computed iteratively, see Addi-
tional File 1. Values of α∗

2
≈ 1 indicate dense clus-

ters that most likely correspond to coherent sets
of (co-)orthologs. Small values α∗

2
, on the other

hand indicate that Ξ has a low connectivity and
either consists of two or more dense components
or it has (nearly) tree-like protrusions. Very large
components α∗

2
≈ 0 can arise when genes dupli-

cate frequently and diverge quickly according to the
duplication–degeneration–complementation (DDC)
model [26].

The “Fiedler vector” x2, i.e., the eigenvector of
L to eigenvalue α2 can be used to find a partition of
Ξ into two connected components, one consisting of
the vertices for which x2 has positive entries and one
for which x2 has negative entries [27]. This decom-
position is iterated until Ξ is partitioned into com-
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ponents with algebraic connectivity α∗

2
above a cer-

tain threshold value and tree-like pieces, which most
likely correspond to false-positive edges of Υ∗. In
order to speed up the computation, trees are there-
fore removed from the component Ξ before the al-
gebraic connectivity and the Fiedler vector is com-
puted. This is achieved by iteratively removing a
vertex of degree 1 and its adjacent edge. This step
is not performed if Proteinortho is used to compare
only two species.

Evaluation of Proteinortho

We compared Proteinortho with the COG database
[4] and OrthoMCL [3]. The latter is the main com-
petitor in terms of speed and memory. The COG

database provides a manually curated data set that
can be regarded as more reliable than fully auto-
mated approaches. For benchmark analysis, a set
of 16 randomly chosen bacteria from three different
classes (six Gram-positive bacilli, six gamma- and
four alpha-proteobacteria) are used. The input set
comprises 53, 623 protein sequences.

Fig. 4 summarizes the size distribution of co-
ortholog sets for the three approaches. Using de-
fault settings (E-value cutoff 10−10, algebraic con-
nectivity threshold α∗

2
> 0.1, minimum 25% identity,

50% coverage of query sequence, similarity threshold
f = 0.95) Both Proteinortho and OrthoMCL report
fewer groups than listed in the COG-database. This
is not surprising, however, since COG contains multi-
ple co-orthologs while both stand-alone tools apply
clustering algorithms to avoid such assignments.

Fig. 5 presents the outcome in more detail.
Proteinortho and OrthoMCL report comparable re-
sults. Proteinortho is more stringent. The amount
of completely new groups which have to be regarded
as false positives is considerably lower. OrthoMCL re-
ports slightly more groups. Even though both tools
were applied with the same E-value threshold the re-
sults vary due to the different blast strategies. Most
pairwise E-values derived by Proteinortho tend to
be somewhat larger than those derived by OrthoMCL

for the same set of proteins. In turn, OrthoMCL re-
ports some more and larger groups. However, the
overall outcome can be regarded as similar while the
runtime and memory requirements of Proteinortho
are largely reduced in comparison to OrthoMCL.

Domain-wide commons

In order to demonstrate that Proteinortho is suit-
able for large-scale analyses we asked Which pro-

teins can be found in all bacterial species? Pro-
teins that are conserved domain-wide are likely to
be useful for the construction of a phylogeny of eu-
bacteria as an alternative to the prevalent usage of
16S rRNA sequences [28]. They can also serve as
protein-based markers for identifying novel bacterial
species as members of an established phylogenetic
group. In addition, they can give insight into ba-
sic protein equipment of bacterial life. Hence, we
applied Proteinortho to the set of all eubacterial
proteomes available at NCBI in late 2009.

The input dataset comprises 2, 155, 620 pro-
teins annotated in 711 bacterial genomes. The
Proteinortho run took less than two weeks using
50 processor cores (Intel Xeon at 2.00-2.33GHz) dis-
tributed over multiple PCs. Only 2 GB memory
were required. OrthoMCL could not be employed for
this task on the hardware available in our lab. Ex-
trapolating from the benchmarks in Fig. 3, we es-
timate that hundreds of gigabytes of memory and
years of runtime would have been required.

Proteinortho identified thirty proteins as core
of the bacterial protein complement, occurring in
99% of all 711 free-living and endosymbiotic bac-
teria:

elongation factor Tu (often co-orthologous to
elongation factor 1-alpha)

elongation factor G

translation initiation factor IF-2

RNA polymerase subunit β and β′

ATP-dependent metalloprotease FtsH

O-sialoglycoprotein endopeptidase

methionine aminopeptidase

F0F1 ATP synthase subunit α and β

dimethyladenosine transferase

1 ribosomal protein of the 30S rRNA subunit

3 ribosomal proteins of the 50S rRNA subunit

3 GTP-binding proteins

12 tRNA synthetase

About one third of these proteins could not be
found in the two species with the smallest proteomes
in our data set: Candidatus Carsonella ruddii PV

and Candidatus Sulcia muelleri GWSS. Both are
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Figure 4: Comparison of the results of
Proteinortho with different thresholds of the
normalized algebraic connectivity α∗

2
= 0...0.8 with

the COG-database and OrthoMCL for a dataset con-
sisting of 16 randomly chosen bacterial proteomes.
The vertical dashed line marks the transition from
clusters containing mainly a single ortholog from
each species to sets including co-orthologs. The
COG-database reports many large groups which of-
ten include co-orthologous proteins. OrthoMCL and
Proteinortho focus on highly connected subsets
in order to find orthologous sets and thus split
those groups. Thereby, Proteinortho’s clustering
algorithm becomes more stringent with increasing
values of α∗

2
in splitting in particular large groups.

While these groups are left intact for α∗

2
= 0,

thresholds of 0.5 and higher drastically reduce the
fraction of included co-orthologs.

Figure 5: Comparison of OrthoMCL and Proteinortho

to the COG-database. The following assignments were
defined: identity: the group equals a COG-group; sub-
set: the group is subset of a COG-group, at least two
proteins are equal; superset: the group is a superset
of a COG-group, at least two proteins are equal; new:
none of the above-noted criteria matched. Both tools
reveal comparable results with respect to the manually
curated COG-database. OrthoMCL covers more identical
and differently composed groups while Proteinortho

is more restrictive and reports fewer new groups which
are not present in the COG-database. All groups with
less than six species were omitted from the OrthoMCL

and Proteinortho data. See Additional File 3 for com-
parisons with different minimal coverage.

endosymbionts that are considered as organelle-like
[29, 30]. Numerous genes that are otherwise consid-
ered to be essential for life have been reported as
missing in both species. A more detailed and larger
list of domain-wide common proteins can be down-
loaded at http://bioinf.pharmazie.uni-marburg.de/
supplements/proteinortho/.

Conclusions
Proteinortho implements a blast-based approach
to determine sets of (co-)orthologous proteins or nu-
cleic acid sequences that generalizes the best recipro-
cal blast hit heuristic. The software is optimized for

large data sets, and in particular provides a drastic
reduction of the memory requirements compared to
earlier tools. It can therefore be run on off-the-shelf
PC hardware for large data sets. Our implementa-
tion scales very well with the number of available
processor cores. The blast searches can be trivially
parallelized and distributed easily to multiple PCs
without the need for a cluster management system,
while deployment to existing cluster infrastructure
is also supported.

Proteinortho views orthology detection as a
variant of graph clustering since co-orthologous sets
correspond to maximal complete multipartite sub-
graphs, which at the same time are well separated
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from each other. Due to the unavoidable noise in
the real data, however, co-orthologous sets appear
as dense subgraphs without clearly recognizable low-
weight cuts. This property is measured quite well by
the algebraic connectivity. At the same time, low-
weight cuts between dense regions are identified very
well by the corresponding Fiedler vector. We there-
fore employ spectral partitioning instead of a direct
graph clustering approach. The quality of the co-
orthologous sets proposed by Proteinortho is com-
parable to the performance of OrthoMCL.

Both time and memory requirements are signifi-
cantly reduced compared to earlier approaches, en-
abling applications that were infeasible before. For
instance, we applied Proteinortho to the complete
set of 2.1 million proteins from the 711 bacterial
genomes available at NCBI at the beginning of 2009.
We found 30 proteins that are present in more than
99% of the investigated sequences.

Methods
All analysis with Proteinortho and OrthoMCL were
applied using default values unless described other-
wise. These are E − value < 10−10, 25% percent
identity, Markov Inflation Index of 1.5 for OrthoMCL
and E-value < 10−10, 25% percent identity, adap-
tive best hits similarity of f = 0.95, algebraic con-
nectivity > 0.1 for Proteinortho. OrthoMCL ver-
sion 1.4 was downloaded from http://orthomcl.org/
common/downloads/.

Speed and memory benchmark were performed
multiple times using the proteome of Escherichia coli

K12 substr. MG1655 data from the NCBI. The pro-
tein ids were renamed systematically to prevent du-
plicated ids for benchmarking purposes which can-
not be handled by Proteinortho. A script contin-
uously observed the memory consumption and re-
ported the maximum peak for each run, Fig. 3.

For the domain-wide commons we applied
Proteinortho with default values of the parame-
ters. Bacterial proteomes and genomes were down-
loaded from NCBI ftp://ftp.ncbi.nih.gov/genomes/
Bacteria/ in March 2009. A detailed list can be
found in Additional File 2. In order to recover miss-
ing annotation, we selected orthologous groups cov-
ering at least 75% of all species that are good can-
didates of domain-wide commons. The unique set
of sequences of each orthologous group was blasted
against all genomes that lack an annotated ortholog

using tblastn (E-value < 10−20). The best hit was
then added to the orthologous group.

For evaluation we used the proteome data
from the COG-database (ftp://ftp.ncbi.nih.gov/pub/
COG/COG/) downloaded in November 2009. We
have chosen Bacillus halodurans, Bacillus subtilis,
Lactococcus lactis, Listeria innocua, Streptococcus

pneumoniae TIGR4, Streptococcus pyogenes M1

GAS from the Gram-positive bacilli class, Buchnera
sp. APS, Escherichia coli K12, Pasteurella multo-

cida, Salmonella typhimurium LT2, Vibrio cholerae,
Yersinia pestis from the gamma proteobacteria
class and Brucella melitensis, Caulobacter vibrioides,
Mesorhizobium loti, Rickettsia prowazekii from the
alpha proteobacteria class. Both, Proteinortho

and OrthoMCL were applied to this set. All groups
with proteins covering at least 6 species were com-
pared to the COG-database, illustrated in Fig. 4 and
Fig. 5.

Authors contributions
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