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ABSTRACT

Motivation: RNA secondary structure contains many non-canonical
base pairs of different pair families. Successful prediction of these
structural features leads to improved secondary structures with
applications in tertiary structure prediction and simultaneous folding
and alignment.

Results: We present a theoretical model capturing both RNA
pair families and extended secondary structure motifs with shared
nucleotides using 2-diagrams. We accompany this model with
a number of programs for parameter optimization and structure
prediction.

Availability: All sources (optimization routines, RNA folding, RNA
evaluation, extended secondary structure visualization) are published
under the GPLv3 and available at

www.thi.univie.ac.at/ ~choener/segfold/

Contact: choener@tbi.univie.ac.at

1 INTRODUCTION
The classical RNA secondary structure model considers tirdy

Watson-Crick AU and GC base pairs as well as the GU wobble pai

A detailed analysis of RNA 3D structures, however reveasttiere
are 12 basic families of interactions between the basesf athich
appear in nature (Leontis and Westhof, 2001; Leoettial., 2002).
This has led to the development of an extended presentdtRNA
contact structures with edges labelled by their pairingetyphis
extended description of base pairing is commonly termest dtf
inventors the Leontis-Westhof (LW) representation.

discovery of recurrent structural motifs, such as kinkxtuand C-
loops, that act as distinctive building blocks of 3D strueti The
sequence variation in these structural motifs follows cimatorial
rules that can be understood by the necessity to maintaiovirall
geometry when base pairs are exchanged. These isostetitgty
are discussed in detail by Lescoweal. (2005); Stombauglet al.
(2009).

Since many additional interactions beyond the standar@ bas
pairs are represented in the LW formalism, loops of the &aks
secondary structures now appear as complex structures mf no
standard base pairs. Effectively, long loops are therefobelivided
into much shorter ones. Parisien and Major (2008) proposed a
model that contains loops with no more than 4 unpaired bases.
For unbranched structures, it is parameterized by a stafist
potential estimated from the available 3D structures byntiog
the relative frequencies of base pairs, short unbranchegslo
of particular shapes in dependence of their sequences,
combinations of loops with a common base pair. An accompanyi
folding procedure MC-Fold (Parisien and Major, 2008), which
exhaustively enumerates stem-loop components, is al@ikaid
has been used very successfully as a first step towardslghe
"movoprediction of RNA 3D structures usingC-Sym(Parisien and
Major, 2008) which takes as input the proposed secondargtste
from MC-Fold .

and

2 MC-FOLD REVISITED
2.1 Algorithm

The LW representation has proved to be a particularly usefulike ordinary secondary structure prediction toolC-Fold is
means of analyzing three-dimensional structures of RNA asased on a decomposition of the RNA structure into “loops’. |
determined by X-ray crystallography and NMR spectroscopycontrast to the standard energy model, however, it corsitter
(Leontis and Lescoute, 2006). In particular, it has led te th fyll set of base types available in the LW representationchEa

*to whom correspondence should be addressed. Phone: +237152731,
Fax: +43-1-4277-52793, Maithoener@tbi.univie.ac.at

base pair, therefore, corresponds to a triflej; 0) where@ is
one of the 12 types of pairs. Ordinary secondary structutess,
can be thought of as the subset of pairs where the #ype 'WC

© Oxford University Press .
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Fig. 1. Example of a structure containing base triplets. The inaer(bases
14 to 37) of the PDB structur@dul is shown in a 3D representation
and as a 2D structure plot displaying the non-standard bass im LW
representation. The four bases highlighted in the 3D stradorm the two
base triplets that can be seen in the upper part of the intedp in the 2D
structure.

and the two nucleotides form one of the 6 canonical comhnati
{AU, UA, CG, GC, GU, UG}. This extension of the structure model
also calls for a more sophisticated energy model. While tidvedsard
model assumes that the contributions of the loops are additi

B;;(6; %) i, 7; 0; hairpin], a tabulated energy parameter.
Otherwise, we have the recursion

Bij(0; £) = ZPE# (904, 5; 0; Z; b, A + Br(zy ) (05 X))
’ 2.2)
If desired, this could even be expanded to a full “next-ngtare
neighbor” model by enforcing an explicit dependence on yipe t
of the inner base pair:

Bij(0; Z54) = min (J[m'; 0: L54p; H 3 6]
(2.3)
+ Buz),zm(w;%;@)

The effort to evaluate this recursion equation for a fixedelyzeir
(i,4) is L*T*, whereL is the number of loop types arifl is the
number of base pair types. While this prefactor is incorsetty
large, we nevertheless obtain @tn?) folding algorithm instead of
the exponential run-time dfiC-Fold .

The problem with this general form of energy parameterirsis
the unmanageable number of parameters that need to be measur
estimated, or learned from a rather limited set of experismand
known RNA structures.

2.2 Parameterization and Implementation

Since the folding problem for thélC-Fold model can be solved in
polynomial time, the associated parameter estimationl@nolalso
becomes amenable to advanced parameter optimizationigeelsn
(Do et al, 2008; Andronesciet al., 2007). At present, however,
we have opted to extend the origindiC-Fold parameters only

by simple sparse data corrections that can be applied on top

MC-Fold also considers interactions between adjacent unbranche@ the originalMC-Fold database. This also has the advantage

loops (hairpins, stacked pairs, bulges, and general antéyops).
Dispensing with details of the parameterization, the sepfiinction

of MC-Fold for a structureS on sequence can be paraphrased as
follows:

E(&|x) =) Ee(%|2[%))
€

>

%/7%//
(k,\)=¢'nE""

2.1)

+ Ej+h(%/7(5”§ 0; x[k], x[l])

where¢, %’ ,¢" are the loops of5, E. tabulates the sequence-
dependent contributions of the loops, afg,, accounts for the
“junction” and “hinge” terms in stem-loop regions that dede
on the type of the adjacent loops, and the typand sequence

of allowing a direct comparison between the original versad
MC-Fold and our dynamic programming versidfC-Fold-DP .

In contrast to the original version, large data sets and $egiences
(33s for 250nt, about 100s for 500nt, compared to 660s font)00
become tractable withlC-Fold-DP .*

In terms of algorithmic design, we have made several changes
The grammar underlyingC-Fold-DP follows the ideas of
(Wuchty et al, 1999), which enables the generation of all
suboptimal structures in an energy band above the groune. sta
We note that the decomposition of interior loops into small
loops implies thatMC-Fold-DP runs in O(n®) time without
the need for the usual explicit truncation of long interioops.
The recursion that fills stems can now be reduced to a function
NCM(é, 5, type, ;, k, I, type, ;) where bothi and j are determined
by the motif to be inserted. This function minimizes for the

(z[k], z[1]) of the base pair that connects them. For multiloops onlymatrix entry (i, j, type; ;) over all (k,, type, ;). NCM stands for

the loop-term is considered.

Let us ignore multiloops for the moment. A basegairj; ) then
encloses a loop of typ&” which is either a hairpin or connected to
a single enclosed loog?” by a base paitk, ;) with i < k <
I < j. Let By;(0;.%) be the minimal energy of a structure on
z[i..j] enclosed by a base pdit, j; 6) with outermost loop of type
<. Note that, in our notation, the loop typ# also specifies its
length and hence implicitly determines the coordinatesefihner
base pair of an interior looptk,l) = (i + 1(%),J — £2(X)).
For simplicity we write (k(.2),1(%)). If £ is a hairpin, then

Nucleotide Cyclic Motif§ollowing the nomenclature of Parisien
and Major (2008). Hairpins are even simpler: they follow
NCM(i, j,type, ;, ... ) but there is no inner patk, [, type, ;).

The total number of motif types is small (15 in the original
set, of which not all are actually used). Both the time- andcsp
complexities are therefore small enough to handle RNAs with
length of several hundred nucleotides, i.e., in the range ith

1 Note that the implementation hast been aggressively optimized apart
from using the polynomial-time algorithm.
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Fig. 2. A simple unambiguous grammar for non-crossing 2-diagra@minected parts of diagrams correspond to terminal (iddali bullet = unpaired
nucleotide; arc with circular end points = base pair; ardwitangular endpoints = part of base triple) or non-terth{harizontal lines and semi-circle)
symbols of the grammar. It is important to realize that thelsgls< > refer to the same nucleotide when they are adjacent. In tefmsecursion, the index

for both< andr is therefore the same. One triangle “points” to the outeraait one to the inner arc incident to the same nucleotide.

typically of interest. In fact, the the time complexity isrslar to
ordinary secondary structure prediction where interioplsize is
bounded by a constant. Since the grammar is unambiguous, is
also straightforward to compute partition functions ansidyaairing
probabilities, although this feature is not yet availabléhe current
implementation.

3 BEYOND 1-DIAGRAMS
3.1 BaseTriplets

An important restriction of secondary structures is thathea
nucleotide interacts with at most one partner. In combirato
terms, secondary structures are 1-diagrams. A closer sinaby
the available 3D structures, however, reveals that manieatides

=<,) =>,and) =X For generab, the number of necessary
symbols grows quadratically, = (b + 1)(b + 2)/2, since each
must encodé; opening and- closing pairs withb,, b2 > 0 and
by + b2 < b.

3.2 A Grammar with Base Triplets

In order to design a dynamic programming folding algorithon f
cross-free 2-structures we need a decomposition, i.e.amrger

for 2-structures. For practical applications it is dedieadb have not
only a minimization algorithm but also a partition functieersion.

To this end, an unambiguous grammar is required (Dowell and
Eddy, 2004; Reedest al, 2005). A simple version, treating base
pairs as the elementary entities is shown in Fig. 2. It tegaslinto

an extension of either a Nussinov-style algorithm for mazing

the number of base pairs or a recursion for counting the nuwibe

form specific base pairs with two other nucleotides, forming non-crossing two-diagrams. L& ; denote the minimum energy of

“base triplets” or, more generally;multi-pairings” . Cross-free-
diagrams with maximal numbeér of interaction partners for each
nucleotide can be treated combinatorially in completeamgaivith
(pseudoknot-free) secondary structures by conceptualigtisg
each node into as many vertices as there are incident arcé As
the case of secondary structures, we say that) and (k, ) cross
ifi<k<j<lork<i<l<j. Ab-diagram is non-crossing
if no two arcs cross. Base pairs can then be well-orderedrathis
extended setting: Two distinct ar¢s j) # (k, 1) are eithemested
(1 <k <l<j)orjuxtaposedi < j < k < I). This observation is
used inRNAMotifScan (Zhonget al, 2010) to devise a dynamic
programming algorithm for sequence-structure alignmaiotsg the
lines of RNAscf (Bafnaet al, 2006) orlocarna (Will et al,
2007), which in turn are restricted variants of the Sankigfbathm
(Sankoff, 1985).

a structure on the sequence intervgl.j]. We have

Fiy1,j

E?J +Ui,j—1

&+ Vit

ef,j + Wi ;

F;; = min Cik + Fry1,j 3.1)

€k +Uik—1+ Fry1j

i € w + Vigr,k + Fitr,

i<k<j | € p + Wik + Fry1j
€+ Fivip—1+ Uk
€+ Uin—1+ Uk,

Here we consider only structures with at most two base pairs

involving the same nucleotide, i.e., 2-diagrams. In thisecthere
is a convenient string representation generalizing thenae(dot-
parentheses) notation for secondary structures by intinguhree
additional symbols<, >,X for position in which two arcs mee(;:

and analogous recursion fdv;;,V;;, and W;;, denoting the
minimum energies over all structures whose left, right, othb
ends, are involved in a triplet. The symh®}; refers to structures
enclosed by a non-triplet base pair. In the simplest ¢dse =
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Fig. 3. Decomposition of one non-terminal in the full loop-baseddeio
with triples. The |.h.s. of the production rule denotes aditire enclosed by a
base pair where the base at the 3’ end is part of a triple. Tdensebase pair
of this triple ends within the structure. The structurahedet is either bulge-
like (1st column) or multi-loop like. In the first case, we baw distinguish
whether the enclosed structure has a normal pair or a tripis &' side.
In the multi-loop case we use the linear decomposition itmponents
familiar from the Turner model with a non-terminal denotegartial multi-
loop containing at least one base pair. Here we need to glissh whether
the 5’ end of the rightmost component and 3’end of the left ponents
are triples or not. As the multi-loop part is not implementedur current
version, it is grayed out.

€ij + Fi+1,5—1 (lower right corner of Fig. 2). The terminal symbols

are the unpaired base the ordinary base pairs, and the three types

of base pairs involved in triplets, contributirg = 0, sequence-

again possibly with shared nucleotides. Fig. 3 gives an elafor
the full loop-based decomposition of one particular namteal.

In our current implementation we use several simplificatiam
particular for multi-loops that involve triplets. Some @nfation
on the complete grammar used in our implementation can belfou
in the appendix, other information is available on tegfold
homepage.

4 IMPLEMENTATION
4.1 Folding Software

The implementation available on ti8=gfold homepage is written in the
high-level functional programming language Haskell. Whiiis leads to an
increase in running times (by a constant factor), the héyell notation and
a library of special functions lead to very concise prograansl enable, e.g.,
the use of multiple cores.

Currently, the following algorithms are implemented: (i Aptimizer
which takes a set of melting experiments and the PDB datahsseput
and produces a parameter file optimized as described belpv folding
program which expects a sequence of nucleotides as inpytraddces an
extended secondary structure prediction which includegentide pairs of
non-canonical types. Furthermore it can contain motif$veiase triplets.

dependent energy incremesy;, and sequence-dependent energy (jiiy An evaluation program which expects both, a sequemekaasecondary

increments:;, e‘;j, ande;;, respectively. The recursion is initialized

Only certain combinations of types of base-pairs can ocour i

triplets. Thus in a refined model we need to replage V;;, and
Wi; by Ui;[v], Uisu], andWi;[€] explicitly referring to the base
pair type(s) of the triplet. Furthermore, the energy patensealso
become type-dependedt; — €7;[p], or evenef;[p, v] wherep is
the type of the pair itself and is type of the second pair of the
triplet. The first variant is chosen for Nussinov variantheve each
individual basepair is evaluated, splitting triplets, ahé second
variant is more fitting for Turner-like nearest-neighbordats. In
that case, recursion diY changes tdV;;[v, u] to reflect the pairing
choice being made.

3.3 Full Loop-Based Model
The grammar of Fig. 2 can be extended to incorporate the atdnd

structure. The input is then evaluated to return the scorgamf structure
and, if requested, tries to fill the given (canonical) stoetwith additional
pairs. This allows to turn a classical secondary structnte an extended
secondary structure by filling large loops with non-canahpairs.

At the moment, base triplets have been restricted slightl$hat shared
nucleotides are only possible in stem structures, not wihinultibranched
loop moatif. Allowing shared nucleotides between two heliog¢ a multiloop
would slow down multi-loops by a significant factor. Nevettrsss, we will
lift this restriction for the full nearest-neighbor modetlan to implement.
In the full model, we will be able to use data gathered from current
model to reduce the combinatorial complexity of the aldnit within
multibranched loops.

4.2 Parameter Estimation

In contrast to the Turner model, which considers only carairihasepairs
(i.e., Watson-Crick and GU (wobble) pairs), we include giyes of base
pairs. Thus, we also have to derive parameters for all plessiasepair
families in our motifs of choice. To this end we need to findfisignt

loop-based Turner energy model (Turner and Mathews, 2010%vidence for each parameter and we need an efficient nurhatgeaithm

(which distinguishes hairpin loops, stacks of two basepéiulges,
interior loops, and multibranched loops). The modificatarthe
grammar is tedious but rather straightforward, Fig. 3. dadt
of treating the base pairs themselves as terminal symbelsn(a

for optimizing the parameters.

(i) Even if a large body of sequence/structure pairs is al&l to train
the parameters, it is still highly unlikely that each pargenés witnessed. A
simple calculation for canonical stacked pairs alreadylpeesi* x 122 =
36864 (ignoring symmetries) parameters to be trained. While sgines

Fig. 2) this role. is taken over by entire loops. Note that as iNreqyce the number of distinct parameters, canonical statiksrequire

the case of ordinary secondary secondary structures, @ath |~ 10000 independent parameters. In total, the number of paramedsily

in a given structure is uniquely determined by its closingr.pa reaches10°, which means that only a very small set of parameters will

The energy contributions now depends, in a more complex wayactually be observed in experimentally verified structures

on the characteristics of the loop, hence we also need adaliti (i) The second problem is of numerical nature in that it getsd

non-terminals to describe e.g. the components of multdoop to estimate a solution iR0%990 even under ideal circumstances. In
We use a decomposition that is similar to that ME-Fold addition, the computational effort for the computation b tsolution

and in addition encompasses 2-diagramsp A g-loop, p < g, vector is rather' high_. There are MO different types of apphes to this

consists ofp nucleotides on one strand agdnucleotides on the problem, described in some detail by Andronestial. (2007). In max-

th | ticul o d to stacked b margin formulations, parameters are optimized such asite them away
other one. In particular2 x 2-loops correspond to stacked base from wrongly determined structures and toward correctlierined ones.

pairs,1 x g-loops, ¢ > 1 are triplets, and x 3-loops are stacks  ajernatively, the conditional likelihood of known struges is maximized.
with a bulged-out nucleotide. In addition to hairpin loopsidhese  Andronescuet al. (2010) described an extension of the algorithm that can
p x g-loops, we consider generic bulges with and without a sharedieal with un-observed configurations by employing a hidiaet statistical
nucleotide, interior loops of larger sizes and multibrattoops,  model.
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We have selected yet another way of dealing with the immenseber feasible as otherwise conflicting constraints could redheefeasible set
of features. Instead of optimizing the full set of parametdirectly we first ~ for z to the empty set. The slack variablés are bounded from below by
optimize the parameters for a restricted model closelyp¥dlig the simple 0 < d;, becausd f — g)Tx > 0, with equality for co-optimal structures.
unambiguous grammar given in Fig. 2. In short a loop of typge.g. stacked ~ Norm minimization problems can drive individual variablesto extreme
pair, bulge, etc) enclosed by two pajrs, p2 is assigned an energym) + values. We therefore constrain the energy contributiomdi’idual features
€™ (p1)+€™(p2), wheree(m) depends on the type and size of the loop but to |z;| < 5 kcal/mol. A subsetS of features that act as penalties are
is independent of sequence, and the pair energies depeie afentity of constrained to positive values; > 0 for j € S. The setS is defined along
the nucleotides as well as the LW type (e.g. GC,cWW). the following principles: unpaired loop regions destailithe structure

We call our modeénhanced Nussin@s it distinguishes between loops of relative to a random coil and hence should be penalized.phiair bulges
different types (say bulges of different lengths are asigdifferent scores)  and interior loops fall into this category. In additionx 2 and2 x 3 stems,
but assumes that pair energies are independent as in thenblussodel. which are otherwise modelled asx 2 stems, are penalized. Hence, for e.g.

This approach has several advantages. First, the resaljogthm isan  the2 x 3 loop CAUG®vith Aunpaired, we have(CG) +¢(UG) +¢(2 x 3)
accessible “toy-model” that can be employed to test diffetg/potheses.  wheree(2 x 3) is the penalty term.

Second, the estimated parameters provide a useful set @sgor the Parameter estimation is thus reduced to the constrained otimization
full model. This is important since, in contrast to the wofkAmdronescu problem

et al. (2007), we cannot derive a complete set of priors from knoata.d (A 0 ) . <y) @1
Finally, the computational requirements are significafdlyer. Training a D I ajl, ’
full Boltzmann model for cor?dltlonal likelihood maximizah might easily with the linear constraints
have taken months of CPU time (Andronestial., 2010).

Here, we utilize both melting experiments and PDB data foapeter =5 <z; <5, 0<z, les, 0<dyg. (4.2)
estimation. Melting experiments yield a small set of segasnstructures  sjnce this optimization problem is convex it can be solvditiently.
and corresponding free energies. The structural dataytunately, provides The parameter vector is optimized iteratively. Initially,D is empty and

almost exclusively canonical Turner features and no inédiom regarding g slack variables! are used. After the first step, all PDB sequences have
the basepair family, although it can be assumed that alsg@e of the  peen folded and those for which the predicted structure fierent from
Watson-Crick (c(WW) style. The PDB data, on the other handtaio not  the known structure are included as a rowlinas described above. The
only non-canonical base pairs, but also provide infornmatio the basepair  gjack variables are initialized ab, = Dy, x + ~ for each constraint:,
family. In addition, PDB entries typically refer to struogs that are much  \yherey ¢ R, is a small constant. Iterations of the optimization procedu
larger than those used in melting experiments. continue until no more constraints have to be added.

Together, both sets provide data required for the estimatib an The computational effort required, both to estimate theupeters and
extended set of parameters. In order to keep computatiogstshort, we {5 fold a single sequence, is higher than what is requiredtfer Turner
employ the original no-max-margin constraint-generaépproach used by  model. The additional computational effort required byfthiding algorithm
(Andronesctet al., 2007). While not providing the most accurate parametersig mainly a result of the inclusion of the pair family infortien. In the case
in the original paper, the relatively short runtimes of apfimately one  of 2-oops (stacks, bulges, interior loops), we incur aritimtehl factor of 12
CPU day are convenient for experimental purposes. In andiince we  since each possible pair family has to be considered. Marel@matic are
are training an enhanced Nussinov-style model, we can asshat the  mytibranched loops in the case of shared nucleotides ashere are up to
prediction accuracy is limited by the structure of the modtdre advanced, 12 x 11 possibilities to connect a shared nucleotide with its pgipartners.
and hence computationally more expensive, training mettaod therefore
unlikely to lead to substantial improvements of the prédicaccuracy. 4.4 Comparison with Turner Parameters

A comparison with the parameter sets by Turner (Turner anthéfes,
4.3 Optimization 2010) shows that individual contributions are similar egtodo make the
the “enhanced Nussinov’-model a useful prior in the paremaptimization
for the full model. Consider, for example, canonialk 2 stacks, where
one pair is of typeGC, cWW type and the other pair is of typ€Y, cWW.
In the Turner-2004 model, energy contributions range frein5 to —3.4
kcal/mol, while the base-pair contribution for tC, cWW pair is —1.36
kcal/mol in the optimized “enhanced Nussinov‘-model. Degiag on the
second pair, we observe discrepancieszdi.5 when comparing the sum of
individual pair energies to the total stacking energy. Ténvel of agreement
is expected and suggests that it makes sense in laterdtesaif parameter
estimation to constrain features to tighter intervals tife@ncurrent setting of
]—5,5[.

Our task is to estimate the energy contributiansfor a given collection

of features;. In this context, a feature corresponds to a terminal syrirbol
our grammar with a fixed underlying sequence, such as as GGi&Red
pair or al x 3-loop with sequence (G—AUC) where GA is a Hoogsteen
pair and GC is a Watson-Crick pair. We are given the followipges of
data: (1) a matrixA whose entriesA; ; encode how often featurgoccurs

in sequence/structure pairand (2) a vectoy containing measured melting
temperatureg; for experiment.

Constraints are now generated as follows. For each énof/the PDB
we extract the (extended) secondary structure features mbans that
neither pseudoknots nor intermolecular interactions ¢tvhiequire more
complicated grammars) are considered. The efifyof the row vectorf”
counts how often featurg is observed in the s%cture. Using the current 5 RESULTS AND DISCUSSION
parameter values: (see below), the sequence of PDB enirys folded We compared ouenhanced Nussinoalgorithm to three state-
and the corresponding feature vecigt is constructed. If the predicted of-the-art thermodynamic folding algorithms (RNAfold (fdcker
fold has a lower free energy than the known structure, a newstcaint et al, 1994), UNAfold (Markham and Zuker, 2008), and
(f —9)T@ < 0is introduced. Note that” = andg™ = are, by construction,  pNAstrycture (Reuter and Mathews, 2010)) to assess théctioed
the free energies of the known and the predicted structuai@ed with .

. ; quality of our model. We folded a subset of 550 randomly chose
the current parameters. Since the true structure is expected to be the
thermodynamic ground state, its free energy must be snthiter that of structures from RNAstrand (Androneseual., 2008) and compared
any other structure. The constraint matfix contains all currently active the F-m_easgre of our results with those of the other prograime
constraints wherd®;, _ is thek'th active constraint. results in Fig. 4(top) show that, not unexpectedly, the cemded

Following Andronesctet al. (2007), we use a slack variab, for each ~ Nussinov” algorithm can not compete with state-of-thet@ots due
constraint so thaDy, = < dj. This guarantees that the problem remains to its simplified energy model.
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G basepairs were given) dfdul . Only the central part of the structure is
3 shown. The outer part of the stem contains only canonica¢ pags and
E 2 is not shown.
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6 CONCLUSION
0

00 o1 02 03 04 o5 o6 o7 o8 o9 1o Large experimentally verified RNA structures contain a aite
F-measure of prediction number of non-canonical base pairs (Stombaeghal, 2009).
However, only a few RNA folding programs predict non-camathi
pairs (Do et al, 2006; Parisien and Major, 2008). With the
Fig. 4. Top: Histogram of F-measures for different folding algomits, given  exception ofMC-Fold , the pair families are not explicitly taken
550 random RNAstrand entries. Bottom: F-measures, giverPIB entries ;0 o ount. Here, we have shown that the prediction of non-
from the RNAstrand, which are a subset of the 550 random RidAdt . ; . . . .
entries. canonical pairs together with the corresponding pair feesiand
their possible interactions in base triples is feasible fiicient
dynamic programming approaches. Although direct thermadtyic
measurements are not available to cover all aspects of such
Interestingly, once we focused on data gathered from thean extended and refined model of RNA structures, meaningful
PDB database (Fig. 4(bottom)), the results showed a rerplerka parameter sets can nevertheless be constructed. To thisttend
improvement. This could suggest that the PDB structured fme  information of the thermodynamic measurements is combivigd
training do not sufficiently cover the RNA structure spacd Hrat  a feature analysis of 3D structures using one of severabappes
additional RNAs (for which only secondary structure infation is ~ to large-scale parameter optimization. The extended avemdniial
available) should be included in the training. model, which in essence covers the Leontis-Westhof reptatens
Because of the large number of base pair types, the “enhancedW) of RNA structures, allows a much more detailed modellaf
Nussinov-algorithm”, has to perform more work than claakic the intrinsic structures in particular of hairpins, interloops, and
secondary structure prediction programs when filling theadyic bulges.

programming matrices. This is reflected by rather high mes We emphasize that our contribution does not yet provide la ful
(25s for 100nt, 110s for 200nt). However, the asymptoticetim fledged loop-based LW-style energy model. In essence, Wiask
complexity is still in@(n?). an implementation for the full model of multi-loops. As thaeple

A constrained folding variant of the “enhanced-Nussinov” of Fig. 5 suggests, interactions of adjacent loops as in ti@ M
algorithm can be used, for example, to predict non-canbnicaFold model may also be required to obtain satisfactory pteuti
basepairs in large interior loops of structures. As an exepfig. 5, accuracies for practical applications. Due to the comparat
shows thaSegfold is able to correctly predict the non-canonical cost it will also make sense to investigate the trade-offvben
basepairs in a situation where the canonical base pairdragdg  further refinements of the model and speed-ups resultinm fro
given, i.e., where the input consists of both the sequendeaaiot-  additive approximations. Another facet that naturally idtobe
bracket string representing canonical Watson-Crick bage,@Only  taken into account is co-axial stacking, in particular ia tontext
the zig-zag motif (upper part of the interior loop) was nadicted,  of multi-loops (Tyagi and Mathews, 2007). We have demoistia
presumably due to the large penalty of +3.89 for each of tioelix2 here that the goal of an accurate, practically applicabldirfg
stacks. algorithm for LW-structures is meaningful and reachabléhe T
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work of Parisien and Major (2008) shows that major improvetse involved in base triples and energy contributions dependim the
of prediction accuracy can be obtained be employing LW-thase type of the pair and on the type of the incident pakg{d, /] if
folding algorithms. AlthoughSegfold does not yet reach the the 5’ nucleotide: is a triplet, €7; [0, ¢] if the 3’ nucleotidei is a
desired levels of accuracy, it allows us to explore the migsi triplet, ande§; [, v, ¢] if both delimiting nucleotides are triplets.
components of the energy model in a systematic manner, and Bimilarly, therefore, non-terminals delimited by triplesust be
demonstrates that this can be achieved without leavingehknr  colored by the base pair type(s) to allow the evaluation @gthergy
of fast, efficient, and exact dynamic programming approsciee  of the enclosing base pair. In the simplest case, as implatden
next step, therefore, is a toolkit for optimizing parameierthe full in Segfold , we may assume thaﬁ’j [0, %] only depends on the
loop-based model. pair type@ for permitted combinations of pair types and-iso
An interesting possibility for further extensions of the aebis otherwise. With explicit representation of the pair famiiypes,
the explicit incorporation of recurring RNA structural rifstwith equ.(3.1) becomes
non-canonical pairs, such as Kink-Turns (Klenal, 2001), into
the grammar and the energy model. This may be particuladfulis Fit1,,Cig, Ul Vi W
in those cases where motifs are not crossing-free and heoglel w

require a pseudoknot version of the folding algorithm. Whte Cl/k + Frng

inclusion of various types of pseudoknots is conceptuadtymore Vitre + Fietrg

difficult than for ordinary secondary structures, the pagterization  F;; = min ) Ui g1+ Fega,;

of such models will be even more plagued by the lack of tranin D2 YW + Fie

data in the LW framework. Fit1.5-1 + min {Ux;[¢)] + €5[0, ¢]}
The folding algorithm introduced here, furthermore, se¢sdtage O .

for a complete suite of bioinformatics tools for LW strusr %%{Ui,k—l[lﬂ + Uk,jo + €ir[0,9, 9]}

Simple extension can cover the co-folding of two or more RNAs

along the lines of (Dimitrov and Zuker, 2004; Bernhait al,, Here we use the abbreviations

2006; Dirkset al, 2007). Consensus structures can be predicted

from given sequence alignments using the same recursioss. A U{j — min (Ui,j71[9] + € [,971/,])

in RNAalifold  (Bernhartet al, 2008), it suffices to re-define 0%

the ener arameters for alignment columns instead o¥ithdl A o b

nucleotidggsP Instead of RIBQ(J)SUM-Iike scores as measures of Vi kX (VZH’J 0+ i [e’w])

conservation (Klein and Eddy, 2003), one naturally woulckm w!

ij = min Wi," 11)7¢ + 5: 971/1#13
the isostericity rules for the individual base pair typesdhtiset al., ! 8 ( sle-9] il ])

2002; Lescouteet al, 2005). Inverse folding algorithms (Hofacker ) ) i L
et al, 1994; Andronescet al, 2004; Busch and Backofen, 2006) Wh'Ch, arfe obtained by.c.arrylng out the. optimization over the
design RNA sequences that fold into prescribed structuses pSombinations of pase pairing typgs atall triples.
iteratively modifying and folding sequences to optimizeithfit T_he non-terml_naIC, _desugnatlng a s_tructure e_n(_:Io_sed_ by an
to substructures of the target. This strategy can immdglidie ordinary base.palrremalns unchan.ged since the W'”'m?@ﬁ):
generalized to LW structures; in fact, in essence is sufftoes 1i+1.j—1 +mine €i;[U] can be carried out in the simplified energy
replace secondary structure folding by LW-style foldingn@bining moo_lel. The triplet-terms however, are now c_ond!noned cm_[thlr
the algorithmic ideas of this contribution with the Sankstijle family at all nodeg rgpresentgd as trlahgles in Fig. 2. F;namne,
alignment approach of Zhongt al. (2010) and the progressive for a structure dellmltgd by trlplgt-vertlces gt both endsal are
multiple alignment scheme oflocarna  (Will et al, 2007) not connected by a pair, we obtain a recursion of the form
directly leads to to an LW-variant of structural alignmelgoaithms.

Fit1 k-1 + €5[0] + Ug1,5[¢]
AcknowledgmentsThe authors thank the participants of the W.;[0, ] :ig}jgj ming Fiy1 51 + €50, &) + Wit [, ]
R_efined_ presentation _o_f RNA _structuremrk_shop for_ lively ming Vi1 x[d] + €% [0, ] + Virr; [¥]
discussions, Marc Parisien for kindly answering questiabsut
MC-Fold , the curators of the FR3D database, and Ronny Lorenz,nqyy. 9 ] = W7 [0, 4] if 0 # 4 and
for providing comparative data for other folt_jlng prograrﬁ'shls_ Wiy [0, 0] = min{W;[0,0], Fir1,-1 + €55[0].
work has been funded, in part, by the Austrian GEN-AU prgject  gimijar recursions are obtained for the full loop-based ehdgor
bioinformatics integration network 111" and “regulatornycRNAs". instance, for the two interloop terms in Fig. 3 we have to cotap

. 3[i, 7, 01k, 1] + Vi [¥]

‘/L 97 =
APPENDIX 9= {ﬁ’h',j, 6|k, 1] + ming Wia[o, 6,
A Pairfamily-Aware Grammar

Here we discuss in some more detail how the base pair typest aff where the matrice¥ ™, V', and W now refer to the non-terminal
the grammar and, hence, the folding algorithm. We start fromsymbols in Fig. 3 and|...] andJ’[...] denote the tabulated energy
Fig. 2 and the corresponding recursion in equ.(3.1). Eask pair  contributions for the two different types of interior loopéth 3'-

is now colored by its LW family. In particular, therefore, dea  triplet. For more detail we refer to the supplementary niakterhich
pairs have type-dependent energy contributiong?] for pairs not ~ we will make available together with the full loop-based rlod
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