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Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany.

3Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, D-04103 Leipzig, Germany
4RNomics Group, Fraunhofer IZI, Perlickstraße 1,D-04103 Leipzig, Germany
5Center for non-coding RNA in Technology and Health, University of Copenhagen,
Grønnegårdsvej 3, DK-1870 Frederiksberg, Denmark

6The Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, New Mexico, USA
Received on *****; revised on *****; accepted on *****

Associate Editor: *****

ABSTRACT
Motivation: RNA secondary structure contains many non-canonical
base pairs of different pair families. Successful prediction of these
structural features leads to improved secondary structures with
applications in tertiary structure prediction and simultaneous folding
and alignment.
Results: We present a theoretical model capturing both RNA
pair families and extended secondary structure motifs with shared
nucleotides using 2-diagrams. We accompany this model with
a number of programs for parameter optimization and structure
prediction.
Availability: All sources (optimization routines, RNA folding, RNA
evaluation, extended secondary structure visualization) are published
under the GPLv3 and available at
www.tbi.univie.ac.at/ ˜ choener/segfold/ .
Contact: choener@tbi.univie.ac.at

1 INTRODUCTION
The classical RNA secondary structure model considers onlythe
Watson-Crick AU and GC base pairs as well as the GU wobble pair.
A detailed analysis of RNA 3D structures, however reveals that there
are 12 basic families of interactions between the bases, allof which
appear in nature (Leontis and Westhof, 2001; Leontiset al., 2002).
This has led to the development of an extended presentation of RNA
contact structures with edges labelled by their pairing type. This
extended description of base pairing is commonly termed after its
inventors the Leontis-Westhof (LW) representation.

The LW representation has proved to be a particularly useful
means of analyzing three-dimensional structures of RNA as
determined by X-ray crystallography and NMR spectroscopy
(Leontis and Lescoute, 2006). In particular, it has led to the
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discovery of recurrent structural motifs, such as kink-turns and C-
loops, that act as distinctive building blocks of 3D structures. The
sequence variation in these structural motifs follows combinatorial
rules that can be understood by the necessity to maintain theoverall
geometry when base pairs are exchanged. These isostericityrules
are discussed in detail by Lescouteet al. (2005); Stombaughet al.
(2009).

Since many additional interactions beyond the standard base
pairs are represented in the LW formalism, loops of the classical
secondary structures now appear as complex structures of non-
standard base pairs. Effectively, long loops are thereforesubdivided
into much shorter ones. Parisien and Major (2008) proposed a
model that contains loops with no more than 4 unpaired bases.
For unbranched structures, it is parameterized by a statistical
potential estimated from the available 3D structures by counting
the relative frequencies of base pairs, short unbranched loops
of particular shapes in dependence of their sequences, and
combinations of loops with a common base pair. An accompanying
folding procedure,MC-Fold (Parisien and Major, 2008), which
exhaustively enumerates stem-loop components, is available and
has been used very successfully as a first step towards thede
novoprediction of RNA 3D structures usingMC-Sym(Parisien and
Major, 2008) which takes as input the proposed secondary structure
from MC-Fold .

2 MC-FOLD REVISITED

2.1 Algorithm
Like ordinary secondary structure prediction tools,MC-Fold is
based on a decomposition of the RNA structure into “loops”. In
contrast to the standard energy model, however, it considers the
full set of base types available in the LW representation. Each
base pair, therefore, corresponds to a triple(i, j; θ) where θ is
one of the 12 types of pairs. Ordinary secondary structures,thus,
can be thought of as the subset of pairs where the typeθ = ’WC’

c© Oxford University Press . 1
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Fig. 1. Example of a structure containing base triplets. The inner part (bases
14 to 37) of the PDB structure1dul is shown in a 3D representation
and as a 2D structure plot displaying the non-standard base pairs in LW
representation. The four bases highlighted in the 3D structure form the two
base triplets that can be seen in the upper part of the interior loop in the 2D
structure.

and the two nucleotides form one of the 6 canonical combinations
{AU,UA,CG,GC,GU,UG}. This extension of the structure model
also calls for a more sophisticated energy model. While the standard
model assumes that the contributions of the loops are additive,
MC-Fold also considers interactions between adjacent unbranched
loops (hairpins, stacked pairs, bulges, and general interior loops).
Dispensing with details of the parameterization, the scoring function
of MC-Fold for a structureS on sequencex can be paraphrased as
follows:

E(S|x) =
X

C

Ec(C |x[C ])

+
X

C′,C′′

(k,l)=C′∩C′′

Ej+h(C
′,C ′′; θ;x[k], x[l])

(2.1)

whereC ,C ′,C ′′ are the loops ofS, Ec tabulates the sequence-
dependent contributions of the loops, andEj+h accounts for the
“junction” and “hinge” terms in stem-loop regions that depend
on the type of the adjacent loops, and the typeθ and sequence
(x[k], x[l]) of the base pair that connects them. For multiloops only
the loop-term is considered.

Let us ignore multiloops for the moment. A basepair(i, j; θ) then
encloses a loop of typeL which is either a hairpin or connected to
a single enclosed loopK by a base pair(k, l;ψ) with i < k <
l < j. Let Bij(θ; L ) be the minimal energy of a structure on
x[i..j] enclosed by a base pair(i, j; θ) with outermost loop of type
L . Note that, in our notation, the loop typeL also specifies its
length and hence implicitly determines the coordinates of the inner
base pair of an interior loop:(k, l) = (i + ℓ1(L ), j − ℓ2(L )).
For simplicity we write(k(L ), l(L )). If L is a hairpin, then

Bij(θ; L ) = H [i, j; θ; hairpin], a tabulated energy parameter.
Otherwise, we have the recursion

Bij(θ; L ) = min
ψ,K

`

I[i, j; θ; L ;ψ,K ] +Bk(L ),l(L )(ψ; K )
´

(2.2)
If desired, this could even be expanded to a full “next-nearest-
neighbor” model by enforcing an explicit dependence on the type
of the inner base pair:

Bij(θ; L ;ψ) = min
ψ,K ,φ

„

I[i, j; θ; L ;ψ; K ;φ]

+Bk(L ),l(L )(ψ;K ;φ)

«

(2.3)

The effort to evaluate this recursion equation for a fixed base pair
(i, j) is L3T 3, whereL is the number of loop types andT is the
number of base pair types. While this prefactor is inconveniently
large, we nevertheless obtain anO(n2) folding algorithm instead of
the exponential run-time ofMC-Fold .

The problem with this general form of energy parameterization is
the unmanageable number of parameters that need to be measured,
estimated, or learned from a rather limited set of experiments and
known RNA structures.

2.2 Parameterization and Implementation
Since the folding problem for theMC-Fold model can be solved in
polynomial time, the associated parameter estimation problem also
becomes amenable to advanced parameter optimization techniques
(Do et al., 2008; Andronescuet al., 2007). At present, however,
we have opted to extend the originalMC-Fold parameters only
by simple sparse data corrections that can be applied on top
of the original MC-Fold database. This also has the advantage
of allowing a direct comparison between the original version of
MC-Fold and our dynamic programming versionMC-Fold-DP .
In contrast to the original version, large data sets and longsequences
(33s for 250nt, about 100s for 500nt, compared to 660s for 100nt)
become tractable withMC-Fold-DP . 1

In terms of algorithmic design, we have made several changes.
The grammar underlyingMC-Fold-DP follows the ideas of
(Wuchty et al., 1999), which enables the generation of all
suboptimal structures in an energy band above the ground state.
We note that the decomposition of interior loops into small
loops implies thatMC-Fold-DP runs in O(n3) time without
the need for the usual explicit truncation of long interior loops.
The recursion that fills stems can now be reduced to a function
NCM(i, j, typei,j , k, l, typek,l) where bothi andj are determined
by the motif to be inserted. This function minimizes for the
matrix entry(i, j, typei,j) over all (k, l, typek,l). NCM stands for
Nucleotide Cyclic Motifsfollowing the nomenclature of Parisien
and Major (2008). Hairpins are even simpler: they follow
NCM(i, j, typei,j , . . . ) but there is no inner part(k, l, typek,l).

The total number of motif types is small (15 in the original
set, of which not all are actually used). Both the time- and space
complexities are therefore small enough to handle RNAs witha
length of several hundred nucleotides, i.e., in the range that is

1 Note that the implementation hasnot been aggressively optimized apart
from using the polynomial-time algorithm.
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Fig. 2. A simple unambiguous grammar for non-crossing 2-diagrams.Connected parts of diagrams correspond to terminal (individual bullet = unpaired
nucleotide; arc with circular end points = base pair; arc with triangular endpoints = part of base triple) or non-terminal (horizontal lines and semi-circle)
symbols of the grammar. It is important to realize that the symbols⊳ ⊲ refer to the same nucleotide when they are adjacent. In termsof a recursion, the index
for both⊳ and⊲ is therefore the same. One triangle “points” to the outer arcand one to the inner arc incident to the same nucleotide.

typically of interest. In fact, the the time complexity is similar to
ordinary secondary structure prediction where interior loop size is
bounded by a constant. Since the grammar is unambiguous, is is
also straightforward to compute partition functions and base pairing
probabilities, although this feature is not yet available in the current
implementation.

3 BEYOND 1-DIAGRAMS

3.1 Base Triplets
An important restriction of secondary structures is that each
nucleotide interacts with at most one partner. In combinatorial
terms, secondary structures are 1-diagrams. A closer analysis of
the available 3D structures, however, reveals that many nucleotides
form specific base pairs with two other nucleotides, forming
“base triplets” or, more generally,“multi-pairings” . Cross-freeb-
diagrams with maximal numberb of interaction partners for each
nucleotide can be treated combinatorially in complete analogy with
(pseudoknot-free) secondary structures by conceptually splitting
each node into as many vertices as there are incident arcs. Asin
the case of secondary structures, we say that(i, j) and(k, l) cross
if i < k < j < l or k < i < l < j. A b-diagram is non-crossing
if no two arcs cross. Base pairs can then be well-ordered alsoin this
extended setting: Two distinct arcs(i, j) 6= (k, l) are eithernested
(i ≤ k < l ≤ j) or juxtaposed(i < j ≤ k < l). This observation is
used inRNAMotifScan (Zhonget al., 2010) to devise a dynamic
programming algorithm for sequence-structure alignmentsalong the
lines of RNAscf (Bafna et al., 2006) or locarna (Will et al.,
2007), which in turn are restricted variants of the Sankoff algorithm
(Sankoff, 1985).

Here we consider only structures with at most two base pairs
involving the same nucleotide, i.e., 2-diagrams. In this case there
is a convenient string representation generalizing the Vienna (dot-
parentheses) notation for secondary structures by introducing three
additional symbols<, >,X for position in which two arcs meet:((

= <, )) = >, and)( = X. For generalb, the number of necessary
symbols grows quadratically,sb = (b + 1)(b + 2)/2, since each
must encodeb1 opening andb2 closing pairs withb1, b2 ≥ 0 and
b1 + b2 ≤ b.

3.2 A Grammar with Base Triplets
In order to design a dynamic programming folding algorithm for
cross-free 2-structures we need a decomposition, i.e., a grammar
for 2-structures. For practical applications it is desirable to have not
only a minimization algorithm but also a partition functionversion.
To this end, an unambiguous grammar is required (Dowell and
Eddy, 2004; Reederet al., 2005). A simple version, treating base
pairs as the elementary entities is shown in Fig. 2. It translates into
an extension of either a Nussinov-style algorithm for maximizing
the number of base pairs or a recursion for counting the number of
non-crossing two-diagrams. LetFij denote the minimum energy of
a structure on the sequence intervalx[i..j]. We have

Fij = min
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:

Ci,k + Fk+1,j

ǫai,k + Ui,k−1 + Fk+1,j

ǫbi,k + Vi+1,k + Fk+1,j

ǫci,k +Wi,k + Fk+1,j

ǫai,k + Fi+1,k−1 + Uk,j

ǫci,k + Ui,k−1 + Uk,j

(3.1)

and analogous recursion forUij ,Vij , and Wij , denoting the
minimum energies over all structures whose left, right, or both
ends, are involved in a triplet. The symbolCij refers to structures
enclosed by a non-triplet base pair. In the simplest caseCij =

3
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Fig. 3. Decomposition of one non-terminal in the full loop-based model
with triples. The l.h.s. of the production rule denotes a structure enclosed by a
base pair where the base at the 3’ end is part of a triple. The second base pair
of this triple ends within the structure. The structural element is either bulge-
like (1st column) or multi-loop like. In the first case, we have to distinguish
whether the enclosed structure has a normal pair or a triple at its 5’ side.
In the multi-loop case we use the linear decomposition into components
familiar from the Turner model with a non-terminal denotinga partial multi-
loop containing at least one base pair. Here we need to distinguish whether
the 5’ end of the rightmost component and 3’end of the left components
are triples or not. As the multi-loop part is not implementedin our current
version, it is grayed out.

ǫij + Fi+1,j−1 (lower right corner of Fig. 2). The terminal symbols
are the unpaired base•, the ordinary base pairs, and the three types
of base pairs involved in triplets, contributingǫi = 0, sequence-
dependent energy incrementǫij , and sequence-dependent energy
incrementsǫaij , ǫ

b
ij , andǫcij , respectively. The recursion is initialized

with Fii = 0.
Only certain combinations of types of base-pairs can occur in

triplets. Thus in a refined model we need to replaceUij , Vij , and
Wij by Uij [ν], Uij [µ], andWij [ξ] explicitly referring to the base
pair type(s) of the triplet. Furthermore, the energy parameters also
become type-dependentǫaij → ǫaij [ρ], or evenǫaij [ρ, ν] whereρ is
the type of the pair itself andν is type of the second pair of the
triplet. The first variant is chosen for Nussinov variants, where each
individual basepair is evaluated, splitting triplets, andthe second
variant is more fitting for Turner-like nearest-neighbor models. In
that case, recursion onW changes toWij [ν, µ] to reflect the pairing
choice being made.

3.3 Full Loop-Based Model
The grammar of Fig. 2 can be extended to incorporate the standard
loop-based Turner energy model (Turner and Mathews, 2010)
(which distinguishes hairpin loops, stacks of two basepairs, bulges,
interior loops, and multibranched loops). The modificationof the
grammar is tedious but rather straightforward, Fig. 3. Instead
of treating the base pairs themselves as terminal symbols (as in
Fig. 2) this role is taken over by entire loops. Note that as in
the case of ordinary secondary secondary structures, each loop
in a given structure is uniquely determined by its closing pair.
The energy contributions now depends, in a more complex way,
on the characteristics of the loop, hence we also need additional
non-terminals to describe e.g. the components of multiloops.

We use a decomposition that is similar to that ofMC-Fold
and in addition encompasses 2-diagrams. Ap × q-loop, p ≤ q,
consists ofp nucleotides on one strand andq nucleotides on the
other one. In particular,2 × 2-loops correspond to stacked base
pairs,1 × q-loops,q > 1 are triplets, and2 × 3-loops are stacks
with a bulged-out nucleotide. In addition to hairpin loops and these
p × q-loops, we consider generic bulges with and without a shared
nucleotide, interior loops of larger sizes and multibranched loops,

again possibly with shared nucleotides. Fig. 3 gives an example for
the full loop-based decomposition of one particular non-terminal.
In our current implementation we use several simplifications in
particular for multi-loops that involve triplets. Some information
on the complete grammar used in our implementation can be found
in the appendix, other information is available on theSegfold
homepage.

4 IMPLEMENTATION

4.1 Folding Software
The implementation available on theSegfold homepage is written in the
high-level functional programming language Haskell. While this leads to an
increase in running times (by a constant factor), the high-level notation and
a library of special functions lead to very concise programs, and enable, e.g.,
the use of multiple cores.

Currently, the following algorithms are implemented: (i) An optimizer
which takes a set of melting experiments and the PDB databaseas input
and produces a parameter file optimized as described below. (ii) A folding
program which expects a sequence of nucleotides as input andproduces an
extended secondary structure prediction which includes nucleotide pairs of
non-canonical types. Furthermore it can contain motifs with base triplets.
(iii) An evaluation program which expects both, a sequence and a secondary
structure. The input is then evaluated to return the score ofsaid structure
and, if requested, tries to fill the given (canonical) structure with additional
pairs. This allows to turn a classical secondary structure into an extended
secondary structure by filling large loops with non-canonical pairs.

At the moment, base triplets have been restricted slightly in that shared
nucleotides are only possible in stem structures, not within a multibranched
loop motif. Allowing shared nucleotides between two helices of a multiloop
would slow down multi-loops by a significant factor. Nevertheless, we will
lift this restriction for the full nearest-neighbor model we plan to implement.
In the full model, we will be able to use data gathered from ourcurrent
model to reduce the combinatorial complexity of the algorithm within
multibranched loops.

4.2 Parameter Estimation
In contrast to the Turner model, which considers only canonical basepairs
(i.e., Watson-Crick and GU (wobble) pairs), we include all types of base
pairs. Thus, we also have to derive parameters for all possible basepair
families in our motifs of choice. To this end we need to find sufficient
evidence for each parameter and we need an efficient numerical algorithm
for optimizing the parameters.

(i) Even if a large body of sequence/structure pairs is available to train
the parameters, it is still highly unlikely that each parameter is witnessed. A
simple calculation for canonical stacked pairs already produces44 × 122 =
36864 (ignoring symmetries) parameters to be trained. While symmetries
reduce the number of distinct parameters, canonical stacksstill require
∼ 10000 independent parameters. In total, the number of parameterseasily
reaches105, which means that only a very small set of parameters will
actually be observed in experimentally verified structures.

(ii) The second problem is of numerical nature in that it getshard
to estimate a solution inR100000 even under ideal circumstances. In
addition, the computational effort for the computation of the solution
vector is rather high. There are two different types of approaches to this
problem, described in some detail by Andronescuet al. (2007). In max-
margin formulations, parameters are optimized such as to drive them away
from wrongly determined structures and toward correctly determined ones.
Alternatively, the conditional likelihood of known structures is maximized.
Andronescuet al. (2010) described an extension of the algorithm that can
deal with un-observed configurations by employing a hierarchical statistical
model.
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We have selected yet another way of dealing with the immense number
of features. Instead of optimizing the full set of parameters directly we first
optimize the parameters for a restricted model closely following the simple
unambiguous grammar given in Fig. 2. In short a loop of typem (e.g. stacked
pair, bulge, etc) enclosed by two pairsp1, p2 is assigned an energyǫ(m) +
ǫm(p1)+ ǫm(p2), whereǫ(m) depends on the type and size of the loop but
is independent of sequence, and the pair energies depend on the identity of
the nucleotides as well as the LW type (e.g. GC,cWW).

We call our modelenhanced Nussinovas it distinguishes between loops of
different types (say bulges of different lengths are assigned different scores)
but assumes that pair energies are independent as in the Nussinov model.

This approach has several advantages. First, the resultingalgorithm is an
accessible “toy-model” that can be employed to test different hypotheses.
Second, the estimated parameters provide a useful set of priors for the
full model. This is important since, in contrast to the work of Andronescu
et al. (2007), we cannot derive a complete set of priors from known data.
Finally, the computational requirements are significantlylower. Training a
full Boltzmann model for conditional likelihood maximization might easily
have taken months of CPU time (Andronescuet al., 2010).

Here, we utilize both melting experiments and PDB data for parameter
estimation. Melting experiments yield a small set of sequences, structures
and corresponding free energies. The structural data, unfortunately, provides
almost exclusively canonical Turner features and no information regarding
the basepair family, although it can be assumed that all pairs are of the
Watson-Crick (cWW) style. The PDB data, on the other hand, contain not
only non-canonical base pairs, but also provide information on the basepair
family. In addition, PDB entries typically refer to structures that are much
larger than those used in melting experiments.

Together, both sets provide data required for the estimation of an
extended set of parameters. In order to keep computation times short, we
employ the original no-max-margin constraint-generationapproach used by
(Andronescuet al., 2007). While not providing the most accurate parameters
in the original paper, the relatively short runtimes of approximately one
CPU day are convenient for experimental purposes. In addition, since we
are training an enhanced Nussinov-style model, we can assume that the
prediction accuracy is limited by the structure of the model. More advanced,
and hence computationally more expensive, training methods are therefore
unlikely to lead to substantial improvements of the prediction accuracy.

4.3 Optimization
Our task is to estimate the energy contributionsxj for a given collection
of featuresj. In this context, a feature corresponds to a terminal symbolin
our grammar with a fixed underlying sequence, such as as GC/GCstacked
pair or a1 × 3-loop with sequence (G—AUC) where GA is a Hoogsteen
pair and GC is a Watson-Crick pair. We are given the followingtypes of
data: (1) a matrixA whose entriesAi,j encode how often featurej occurs
in sequence/structure pairi, and (2) a vectory containing measured melting
temperaturesyi for experimenti.

Constraints are now generated as follows. For each entryk of the PDB
we extract the (extended) secondary structure features. This means that
neither pseudoknots nor intermolecular interactions (which require more
complicated grammars) are considered. The entryfTj of the row vectorfT

counts how often featurej is observed in the structure. Using the current
parameter valuesx (see below), the sequence of PDB entryk is folded
and the corresponding feature vectorgT is constructed. If the predicted
fold has a lower free energy than the known structure, a new constraint
(f − g)T x ≤ 0 is introduced. Note thatfT x andgTx are, by construction,
the free energies of the known and the predicted structure evaluated with
the current parametersx. Since the true structure is expected to be the
thermodynamic ground state, its free energy must be smallerthan that of
any other structure. The constraint matrixD contains all currently active
constraints whereDk,. is thek’th active constraint.

Following Andronescuet al. (2007), we use a slack variabledk for each
constraint so thatDk,.x ≤ dk. This guarantees that the problem remains

feasible as otherwise conflicting constraints could reducethe feasible set
for x to the empty set. The slack variablesdk are bounded from below by
0 ≤ dk because(f − g)T x ≥ 0, with equality for co-optimal structures.
Norm minimization problems can drive individual variablesxi to extreme
values. We therefore constrain the energy contribution of individual features
to |xi| < 5 kcal/mol. A subsetS of features that act as penalties are
constrained to positive values,xj ≥ 0 for j ∈ S. The setS is defined along
the following principles: unpaired loop regions destabilize the structure
relative to a random coil and hence should be penalized. Hairpins, bulges
and interior loops fall into this category. In addition,1× 2 and2 × 3 stems,
which are otherwise modelled as2 × 2 stems, are penalized. Hence, for e.g.
the2×3 loopCAUGGwith A unpaired, we haveǫ(CG)+ǫ(UG)+ǫ(2×3)
whereǫ(2 × 3) is the penalty term.

Parameter estimation is thus reduced to the constrained norm optimization
problem

‚
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A 0

D −I

«

x −
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y

d
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(4.1)

with the linear constraints

−5 ≤ xj ≤ 5, 0 ≤ xl, l ∈ S, 0 ≤ dk . (4.2)

Since this optimization problem is convex it can be solved efficiently.
The parameter vectorx is optimized iteratively. Initially,D is empty and

no slack variablesd are used. After the first step, all PDB sequences have
been folded and those for which the predicted structure is different from
the known structure are included as a row inD as described above. The
slack variables are initialized asdk = Dk,.x + γ for each constraintk,
whereγ ∈ R+ is a small constant. Iterations of the optimization procedure
continue until no more constraints have to be added.

The computational effort required, both to estimate the parameters and
to fold a single sequence, is higher than what is required forthe Turner
model. The additional computational effort required by thefolding algorithm
is mainly a result of the inclusion of the pair family information. In the case
of 2-loops (stacks, bulges, interior loops), we incur an additional factor of 12
since each possible pair family has to be considered. More problematic are
multibranched loops in the case of shared nucleotides as nowthere are up to
12×11 possibilities to connect a shared nucleotide with its pairing partners.

4.4 Comparison with Turner Parameters
A comparison with the parameter sets by Turner (Turner and Mathews,
2010) shows that individual contributions are similar enough to make the
the “enhanced Nussinov”-model a useful prior in the parameter optimization
for the full model. Consider, for example, canonical2 × 2 stacks, where
one pair is of typeGC, cWW type and the other pair is of typeXY, cWW.
In the Turner-2004 model, energy contributions range from−1.5 to −3.4
kcal/mol, while the base-pair contribution for theGC, cWW pair is−1.36
kcal/mol in the optimized “enhanced Nussinov“-model. Depending on the
second pair, we observe discrepancies of≈ 0.5 when comparing the sum of
individual pair energies to the total stacking energy. Thislevel of agreement
is expected and suggests that it makes sense in later iterations of parameter
estimation to constrain features to tighter intervals thanthe current setting of
] − 5, 5[.

5 RESULTS AND DISCUSSION
We compared ourenhanced Nussinovalgorithm to three state-
of-the-art thermodynamic folding algorithms (RNAfold (Hofacker
et al., 1994), UNAfold (Markham and Zuker, 2008), and
RNAstructure (Reuter and Mathews, 2010)) to assess the prediction
quality of our model. We folded a subset of 550 randomly chosen
structures from RNAstrand (Andronescuet al., 2008) and compared
the F-measure of our results with those of the other programs. The
results in Fig. 4(top) show that, not unexpectedly, the “enhanced
Nussinov” algorithm can not compete with state-of-the-arttools due
to its simplified energy model.
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Fig. 4. Top: Histogram of F-measures for different folding algorithms, given
550 random RNAstrand entries. Bottom: F-measures, given 155 PDB entries
from the RNAstrand, which are a subset of the 550 random RNAstrand
entries.

Interestingly, once we focused on data gathered from the
PDB database (Fig. 4(bottom)), the results showed a remarkable
improvement. This could suggest that the PDB structures used for
training do not sufficiently cover the RNA structure space and that
additional RNAs (for which only secondary structure information is
available) should be included in the training.

Because of the large number of base pair types, the “enhanced
Nussinov-algorithm”, has to perform more work than classical
secondary structure prediction programs when filling the dynamic
programming matrices. This is reflected by rather high runtimes
(25s for 100nt, 110s for 200nt). However, the asymptotic time
complexity is still inO(n3).

A constrained folding variant of the “enhanced-Nussinov”
algorithm can be used, for example, to predict non-canonical
basepairs in large interior loops of structures. As an example, Fig. 5,
shows thatSegfold is able to correctly predict the non-canonical
basepairs in a situation where the canonical base pairs are already
given, i.e., where the input consists of both the sequence and a dot-
bracket string representing canonical Watson-Crick base pairs. Only
the zig-zag motif (upper part of the interior loop) was not predicted,
presumably due to the large penalty of +3.89 for each of the two 1x2
stacks.
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Fig. 5. Prediction of non-canonical base pairs withSegfold . Left: Known
structure of PDB entry1dul . Right: Constrained prediction (canonical
basepairs were given) of1dul . Only the central part of the structure is
shown. The outer part of the stem contains only canonical base pairs and
is not shown.

6 CONCLUSION
Large experimentally verified RNA structures contain a sizeable
number of non-canonical base pairs (Stombaughet al., 2009).
However, only a few RNA folding programs predict non-canonical
pairs (Do et al., 2006; Parisien and Major, 2008). With the
exception ofMC-Fold , the pair families are not explicitly taken
into account. Here, we have shown that the prediction of non-
canonical pairs together with the corresponding pair families and
their possible interactions in base triples is feasible by efficient
dynamic programming approaches. Although direct thermodynamic
measurements are not available to cover all aspects of such
an extended and refined model of RNA structures, meaningful
parameter sets can nevertheless be constructed. To this end, the
information of the thermodynamic measurements is combinedwith
a feature analysis of 3D structures using one of several approaches
to large-scale parameter optimization. The extended combinatorial
model, which in essence covers the Leontis-Westhof representations
(LW) of RNA structures, allows a much more detailed modelling of
the intrinsic structures in particular of hairpins, interior loops, and
bulges.

We emphasize that our contribution does not yet provide a full-
fledged loop-based LW-style energy model. In essence, we still lack
an implementation for the full model of multi-loops. As the example
of Fig. 5 suggests, interactions of adjacent loops as in the MC-
Fold model may also be required to obtain satisfactory prediction
accuracies for practical applications. Due to the computational
cost it will also make sense to investigate the trade-off between
further refinements of the model and speed-ups resulting from
additive approximations. Another facet that naturally should be
taken into account is co-axial stacking, in particular in the context
of multi-loops (Tyagi and Mathews, 2007). We have demonstrated
here that the goal of an accurate, practically applicable folding
algorithm for LW-structures is meaningful and reachable: The
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work of Parisien and Major (2008) shows that major improvements
of prediction accuracy can be obtained be employing LW-based
folding algorithms. AlthoughSegfold does not yet reach the
desired levels of accuracy, it allows us to explore the missing
components of the energy model in a systematic manner, and it
demonstrates that this can be achieved without leaving the realm
of fast, efficient, and exact dynamic programming approaches. The
next step, therefore, is a toolkit for optimizing parameters in the full
loop-based model.

An interesting possibility for further extensions of the model is
the explicit incorporation of recurring RNA structural motifs with
non-canonical pairs, such as Kink-Turns (Kleinet al., 2001), into
the grammar and the energy model. This may be particularly useful
in those cases where motifs are not crossing-free and hence would
require a pseudoknot version of the folding algorithm. While the
inclusion of various types of pseudoknots is conceptually not more
difficult than for ordinary secondary structures, the parameterization
of such models will be even more plagued by the lack of training
data in the LW framework.

The folding algorithm introduced here, furthermore, sets the stage
for a complete suite of bioinformatics tools for LW structures.
Simple extension can cover the co-folding of two or more RNAs
along the lines of (Dimitrov and Zuker, 2004; Bernhartet al.,
2006; Dirkset al., 2007). Consensus structures can be predicted
from given sequence alignments using the same recursions. As
in RNAalifold (Bernhartet al., 2008), it suffices to re-define
the energy parameters for alignment columns instead of individual
nucleotides. Instead of RIBOSUM-like scores as measures of
conservation (Klein and Eddy, 2003), one naturally would employ
the isostericity rules for the individual base pair types (Leontiset al.,
2002; Lescouteet al., 2005). Inverse folding algorithms (Hofacker
et al., 1994; Andronescuet al., 2004; Busch and Backofen, 2006)
design RNA sequences that fold into prescribed structures by
iteratively modifying and folding sequences to optimize their fit
to substructures of the target. This strategy can immediately be
generalized to LW structures; in fact, in essence is sufficesto
replace secondary structure folding by LW-style folding. Combining
the algorithmic ideas of this contribution with the Sankoff-style
alignment approach of Zhonget al. (2010) and the progressive
multiple alignment scheme ofmlocarna (Will et al., 2007)
directly leads to to an LW-variant of structural alignment algorithms.
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APPENDIX

A Pairfamily-Aware Grammar
Here we discuss in some more detail how the base pair types affect
the grammar and, hence, the folding algorithm. We start from
Fig. 2 and the corresponding recursion in equ.(3.1). Each base pair
is now colored by its LW family. In particular, therefore, base
pairs have type-dependent energy contributionsǫij [ϑ] for pairs not

involved in base triples and energy contributions depending on the
type of the pair and on the type of the incident pairs:ǫaij [ϑ, ψ] if
the 5’ nucleotidei is a triplet, ǫaij [ϑ, φ] if the 3’ nucleotidei is a
triplet, andǫcij [ϑ, ψ, φ] if both delimiting nucleotides are triplets.
Similarly, therefore, non-terminals delimited by triplesmust be
colored by the base pair type(s) to allow the evaluation of the energy
of the enclosing base pair. In the simplest case, as implemented
in Segfold , we may assume thatǫbij [θ, ψ] only depends on the
pair typeθ for permitted combinations of pair types and is+∞
otherwise. With explicit representation of the pair familytypes,
equ.(3.1) becomes

Fij = min
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Cik + Fk+1,j

V ′

i+1,k + Fk+1,j

U ′

i,k−1 + Fk+1,j

W ′

ij + Fi+1,k

Fi+1,k−1 + min
θ,ψ

{Ukj [ψ] + ǫaik[θ, ψ]}

min
θ,ψ,φ

{Ui,k−1[ψ] + Uk,j,φ + ǫcik[θ, ψ, φ]}

Here we use the abbreviations

U ′

ij = min
θ,ψ

`

Ui,j−1[θ] + ǫaij [θ, ψ]
´

V ′

ij = min
θ,ψ

“

Vi+1,j [θ] + ǫbij [θ, ψ]
”

W ′

ij = min
θ

`

Wi,j [ψ, φ] + ǫcij [θ, ψ, φ]
´

which are obtained by carrying out the optimization over the
combinations of base pairing types at all triples.

The non-terminalC, designating a structure enclosed by an
ordinary base pair remains unchanged since the minimizationCij =
Fi+1,j−1 + minθ ǫij [ϑ] can be carried out in the simplified energy
model. The triplet-terms however, are now conditioned on the pair
family at all nodes represented as triangles in Fig. 2. For instance,
for a structure delimited by triplet-vertices at both ends which are
not connected by a pair, we obtain a recursion of the form

W ∗

ij [θ, ψ] = min
i<k<j
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>

<

>

:

Fi+1,k−1 + ǫaik[θ] + Uk+1,j [ψ]

minφ Fi+1,k−1 + ǫbik[θ, φ] +Wk+1,j [φ, ψ]

minφ Vi+1,k[φ] + ǫbik[θ, φ] + Vk+1,j [ψ]

andWij [θ, ψ] = W ∗

ij [θ, ψ] if θ 6= ψ and
Wij [θ, θ] = min{W ∗

ij [θ, θ], Fi+1,j−1 + ǫij [θ].
Similar recursions are obtained for the full loop-based model. For

instance, for the two interloop terms in Fig. 3 we have to compute

V ∗

ij [θ, ψ] = min
k,l,ψ

(

I[i, j, θ|k, lψ] + Vkl[ψ]

I
′[i, j, θ|k, lψ] + minφWkl[ψ, φ, θ]

where the matricesV ∗, V , andW now refer to the non-terminal
symbols in Fig. 3 andI[. . . ] andI

′[. . . ] denote the tabulated energy
contributions for the two different types of interior loopswith 3’-
triplet. For more detail we refer to the supplementary material which
we will make available together with the full loop-based model.
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