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Most approaches in molecular phylogenetics treat gaps im multiple sequence alignments as missing data or even com-
pletely exclude alignment columns with gaps. Here we show that gap patterns in large-scale, genome-wide alignments are
themselves phylogenetically informative when properly filtered to reduce noise introduced by the alignment method. To
this end, we introduce here split-inducing in/dels (splids) that define an approximate bipartition of the taxon set. We show
both in simulated data and in case studies on real-life data that splids can be efficiently extracted from phylogenomic
data sets. They provide a surprisingly clear phylogenetic signal and lead to quite accurate phylogenetic trees.

Introduction

Gaps in multiple sequence alignments are usually
seen as a nuissance in molecular phylogenetics. In most
studies, gaps are treated as missing data or alignment
columns with gaps are even removed completely. Indeed,
stochastic models of sequence evolution that deal explic-
itly with gaps have been investigated only recently (Ri-
vas, 2005; Lèbre and Michel, 2010). Detailed evalua-
tions show an overall improvement of phylogenetic recon-
structions when gaps are modelled explicitly (Redelings
and Suchard, 2007; Rivas and Eddy, 2008; Dwivedi and
Gadagkar, 2009) but still report a negative effect of an
increasing density of gap characters in multiple sequence
alignments (Dwivedi and Gadagkar, 2009).

Between these few recent rigorous approaches to in-
clude gaps and the dismissal of gaps as missing data, in-
dels have been incorporated in several ways into sequence-
based phylogenetic analyses. The simplest one is to code
gaps as 5th character state. Other authors have suggested
the replacement of the gapped regions by a binary matrix
that codes presence and/or absence of the respective in-
del (Simmons and Ochoterena, 2000). That is, the binary
matrix is added to the “ungapped” sequence data and em-
ployed in tree inference. An extension of this simple indel
coding (SIC) maximizes the amount of phylogenetic infor-
mation in a parsimonious way by incorporating all indels
(Müller, 2006).

Gaps in alignments are, of course, not features iden-
tifyable from the individual sequences. Instead, they ap-
pear as derived patterns inferred from sequence compari-
son only. Nevertheless, they convey a surprising amount of
phylogenetic information. Shared multi-residue deletions,
for instance, have been used to support hypothesis derived
from molecular data in recent single gene analyses, see e.g.
(Teeling et al., 2005). Multi-residue gaps in DNA as well as
protein sequences have been reported as useful indicators
of monophyletic groups (Lloyd and Calder, 1991). Single-
residue gaps, on the other hand, occur more frequently than
multi-residue gaps and show a higher amount of homo-
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plasy, e.g. (Belinky et al., 2010). The same authors sug-
gest that single-residue gaps should not be removed a pri-
ori from a data set based on a large taxon sampling, since
they can still contain a phylogenetic signal.

The few studies of the phylogenetic information con-
tent of gap patterns were mostly conducted on limited sets
of protein data. With the advent of high-throughput se-
quencing (nearly) complete genomes are becoming avail-
able at an increasing pace, from which large-scale genome-
wide alignments can be constructed. Phylogenomics capi-
talizes on these developments and provides a wide diversity
of phylogenetic information (Boussau and Daubin, 2010).
We utilize these developments here to address the value of
gap patterns from a phylogenomic perspective. The use of
genome-wide datasets allow us to focus on the sub-class
of indels only that define a “reasonably obvious” binary
split among the taxa. As gaps are not part of sequence it-
self but the result of an alignment algorithm, however, we
need to systematically investigate the impact of the align-
ment method on the phylogenetic information of the gap
patterns.

Materials and Methods
Data sets

SIMULATED DATA . To test the performance of the
method on multiple sequence alignments with indel for-
mation according to a robust tree, we created a number
of different artificial data sets, usingINDELible V1.03
(Fletcher and Yang, 2009). The guide tree and background
base frequencies were taken from the phastCons17way
phastCons tree model file (Siepel et al., 2005) obtained
from UCSC1 and rescaled to have a maximum root-to-
tip distance of 2. Indel rates and indel-size distributions
are in most cases estimated based on pairwise alignments
(e.g. human-mouse, primates, rodents (Lunter, 2007; Brit-
ten et al., 2003; Ogurtsov et al., 2004; Gu and Li, 1995))
but differ quite considerably. For example, estimates for
the ratio of substitution rates to indel rates between mouse
and human are ranging from 8 (Lunter, 2007) to 14 (Britten
et al., 2003; Ogurtsov et al., 2004). It seems to be a good
approximation to apply an indel rate in vertebrates at least

1 http://hgdownload.cse.ucsc.edu
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as large as between human and mouse, however. Estimates
suggest that the frequency of deletions is somewhat higher
than the insertion frequency (Gu and Li, 1995; Zhang and
Gerstein, 2003; Arndt and Hwa, 2004), with a ratio of dele-
tion rateλd to insertion rateλi ranging from 1.3 to 4. We
therefore created three different data sets using the F81
model (Felsenstein, 1981), two indel-size distributions and
three different indel-rates, each consisting of 100 align-
ments with a length of 100.000 nt. The first two datasets
use a simple geometric distribution with similar insertion
and deletion rates (λi = 0.03106 andλd = 0.04037) but dif-
ferent probability values (q1 = 0.7 andq2 = 0.55, respec-
tively). The third data set follows a Lavalette Distribution
(a = 1.5, M = 120) withλi = 0.02899 andλd = 0.03768.

ENCODE DATA . In order to address the problem how
the method behaves under real-life data and different align-
ment lengths we created two data sets from the ENCODE
(Birney et al., 2007) project data, based on the December
2007 Multi-Species Sequence Analysis sequence freeze.
The ingroup taxa include four apes (human, chimpanzee,
Sumatran orangutan, and Northern white-cheeked gib-
bon), four Old World monkeys (Eastern Black-and-white
colobus, vervet monkey, baboon, and rhesus macaque),
four New World monkeys (dusky titi, owl monkey, mar-
moset, and squirrel monkey), two prosimians (small-eared
galago and mouse lemur), tree shrew, four rodents (mouse,
rat, guinea pig, and thirteen-lined ground squirrel), rab-
bit, cow, horse, two carnivores (dog and cat), three bats
(greater horseshoe bat, little brown bat, and large flying
fox), two insectivores (middle-African hedgehog and Eu-
ropean shrew), armadillo, African elephant, tenrec, rock
hyrax, platypus, and the South American short-tailed opos-
sum. Chicken was used as outgroup to root the trees. The
first data set contains only those alignments in which all
36 organisms were included. Alignments of only two EN-
CODE regions fulfilled this criteria: ENm001 (498 align-
ments) and ENm013 (67 alignments). To investigate how
the method behaves under a considerable amount of miss-
ing data, as it is usually the case for genome wide align-
ments, a second data set was created, based on all EN-
CODE alignment regions with at least three species.

ENTEROBACTERIACEAE. The genomes of Bacteria are
by far smaller than metazoan genomes. This makes creat-
ing whole-genome alignments computationally more fea-
sible. On the other hand, their genomes frequently undergo
recombination and they are known to import DNA from
other organisms into their genomes. The imported DNA
can then replace a homologous sequence. This often con-
stitutes a problem for sequence based phylogenetic analy-
sis. We have selected a subset of the Gram-negative Enter-
obacteriaceae family (Proteobacteria; Gammaproteobac-
teria; Enterobacteriales). Enterobacteriaceae normallyin-
habit the intestines of animals but are also found in plants
and water. Many members are pathogens with a consider-
able clinically importance. We selected all Enterobacteria
listed at2 for which complete genomes were available at
NCBI. Due to algorithmically limitations (see Section ) we

2 http://www2.unil.ch/comparativegenometrics/phylo.html

reduced the final data set to 54 species and removed all
E. coli strains except K12 MG1655.Buchnera aphidicola
was used as outgroup to root the trees. A complete taxon
list is given in Suppl. Table 1.

Alignments

GENOME-WIDE ALIGNMENTS. We usedTBA/MULTIZ
(Blanchette et al., 2004) for both the ENCODE and the en-
terobacteria data sets. This toolkit has been widely used
for whole-genome alignments in large-scale comparative
genomics studies (Birney et al., 2007; Bauer and Bailey,
2008).TBA/MULTIZ needs a guide tree that describes the
relationship of the species to be aligned. In case of the EN-
CODE data set this tree is largely based on taxonomic in-
formation. The guide tree for the Enterobacteria data set
was created on a set of orthologous proteins for an earlier
analysis (kindly provided by Sven Findeiß, unpublished re-
sults): In brief, a set of orthologous proteins was derived
usingProteinOrtho (Lechner et al., 2011) and pruned
to contain only proteins present in all input taxa; these were
aligned withClustalW (Larkin et al., 2007); a neighbor-
joining tree was calculated, using SplitsTree (Huson and
Bryant, 2006). SinceTBA/MULTIZ was not able to align
the complete set 75 enterobacterial genomes (due the lim-
itations in the internal data handling, M. Hou, pers. com-
munication), we sub-selected 54 taxa for inclusion in our
alignment.

A genome-wide alignment is the result of an exten-
sive similarity search between at least two species. Due to
evolutionary changes in genome organization, such as in-
versions and duplications, two genomes are virtually never
completely co-linear, resulting in a decomposition of align-
ments into syntenic blocks. Practical procedure such as
TBA/MULTIZ also use other features, such as large inser-
tions, missing data in individual species, or low complex-
ity regions, as additional breakpoints, so that relative small
aligment blocks are produced. Not all of these blocks con-
tain sequence from all taxa, both due to missing data in the
sequence assemblies and because highly diverged regions
of some taxa can not be reliably recognized as homologs.

RE-ALIGNMENT WITHOUT GUIDE TREES. The use of a
guide tree for the genome alignments could conceivably
create a bias in indel positioning. We therefore checked
whether such a bias really exists and how other com-
monly used alignment programs perform. To this end
we considered individual alignment blocks produced by
TBA/MULTIZ and removed the gaps again. The genome-
wide alignments thus are used only as a convenient means
of extracting homologous regions.

A similar procedure was applied to the ’true’ align-
ments of the simulated dataset which were at first separated
in blocks with an average size of 140 nt and in the follow-
ing treated as described below.

The gap-free sequences of each block were re-aligned
with a variety of commonly used programs and algo-
rithms: ClustalW (version 2.0.12) (Larkin et al., 2007),
Mafft (v6.833b) (Katoh et al., 2005),Muscle (v3.7)
(Edgar, 2004),T-Coffee (Version 8.97) (Notredame
et al., 2000),Prank v.100802 (Löytynoja and Goldman,
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2010), andDialign-TX (version 1.0.2) (Subramanian
et al., 2008).Dialign-TX differs from all other methods
as it creates alignments from local pairwise sequence sim-
ilarities without the use of explicit gap penalties. Approxi-
mately 2% of the ENCODE regions contain coding exons
while the majority covers ’non-coding’ sequences, such as
introns, UTRs, and intergenic regions. It has been pointed
out that, while performing fairly good on these sequences,
TBA/MULTIZ’s results on regions containing non-coding
RNAs is not optimal (Wang et al., 2007). We therefore ad-
ditionally selectedProbConsRNA (version 1.1) (Do et al.,
2005), which is an experimental version of PROBCONS
with parameters estimated from BRAliBASE II via unsu-
pervised training (Gardner et al., 2005). All tools were used
with default values except forMafft which also offers
two substantially different modes: L-INS-i (local optimal
alignment) and G-INS-i (global optimal alignment).

Following realignment, gaps introduced at the 5’ and
3’ ends of the sequence blocks were interpreted as artifacts
and hence coded as missing data, see also (Simmons and
Ochoterena, 2000). As individual alignment blocks typi-
cally contain sequence data for only a subset of the in-
put taxa, such missing taxa were also explicitly coded as
missing data. The alignment blocks with two or more taxa
and containing at least one gap character were then con-
catenated using aperl script (available with the Supple-
mentary Material). Note that by construction the delimit-
ing columns of each alignment block do not contain gap
characters; concatenation therefore does not affect the gap
patterns.

Splids

Gaps often appear in rather disordered clusters in au-
tomatically generated alignments. The encode of charac-
ters from gap patterns is not entirely trivial as soon as indels
rather than individual gap characters are to be assessed. In
the first step, the problem is reduced toindel loci consist-
ing of connected indels. More precisely, an indel is a con-
tiguous stretch of (overlapping) gap characters. Two indels
overlap if there is an alignment column that is common to
both of them, see Fig. 1.

In the second step the individual indel loci are exam-
ined in detail. First we identify all distinct intervals of gaps
(circled numbers in Fig. 1). We call an indel asplid (split-
inducingindel) if it defines an approximate bipartition of
the taxon set according to the following rules:

1. Only indels found in at least two sequences, having
the same 5’ and 3’ end, and with a given minimum
size are considered. By default, all indels of length at
least two are considered. Thus indels (1), (2), (3), (5),
(7), (8), (12), and (13) in Figure 1 are removed.

2. A splid does not overlap another indel that satiesfies
the first condition. Thus indels (9) and (10) are ex-
cluded.

Splids are coded as binary characters marking their ab-
sence/presence pattern in the respective taxon. Missing se-
quence data in the alignment column of a splid was coded
as “missing data”. We optionally filter out splids that over-
lap an indel of length 1 occurring in at least two taxa

FIG. 1.—Non-trivial example of the determination of splids with size
of at least 2 from a concatenated alignment set (A and B). Alignment A
contains sequence data for all taxa, whereas B misses taxong. At first, all
indel loci are determined (1, 2, 3, and 4). Second, the loci are searched
for indels constituting splids. From locus 1 indels (4) and (6) fulfill this
criterion [(1) and (3), respectively, do not fulfill the splid criterion]. Indel
(8) is too small. Locus 3 contains a set of conflicting splids [(9) and (10)].
Thus they are not included. If indel (11) is included in the final set of
splids depends on the applied algorithm. Instrict mode it is not included,
due to the single-residue indel (13). Infuzzy mode, it is also included and
taxong is marked as missing data (“?”) in the binary absence/presence
coding.

(such as indel (13)). In this “strict mode” indel (11) is re-
moved, while it is retained in “fuzzy mode”. These alter-
native treatments of single-position gaps is motivated by
the observation that they occur more randomly than multi-
residue gaps, while still containing some phylogenetic in-
formation (Belinky et al., 2010).

The algorithm for the conversion of alignments to a
binary character matrix is implemented in the C++ pro-
gramgappy. The tool reads multiple sequence alignments
in FASTA format. The user can select a minimum and max-
imum indel length for determining splids. By default, the
output is a FASTA file, containing the binary coded splid
absence/presence information, and some summary statis-
tics. Output is also available in PHYLIP and NEXUS for-
mat.

Phylogenetic reconstruction and Analysis

TREE RECONSTRUCTION. Phylogenetic trees were cal-
culated with the hybrid version ofRAxML v7.2.8 (Sta-
matakis, 2006), using rapid bootstrapping with 100 random
additions under the Gamma-model for binary characters
(Stamatakis et al., 2008; Pattengale et al., 2010). Bootstrap
support values were drawn on the best-scoring tree.
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TREE COMPARISON. Many different distance measures
are available to compare phylogenetic trees. The most
sensitive one is the unweighted Robinson-Foulds distance
(Robinson and Foulds, 1981), defined as the numberdRF of
splits contained in exactly one of the two trees. The scaled
versiond′

RF = dRF/(n−3) takes values between 0 and 1,
wheren is the number of taxa. Its major drawback is that it
does not emphasize local similarity, so that trees differing
by the placement of a single taxon may have large RF dis-
tances (Penny et al., 1982). As an alternative we therefore
employ the quartet distance (Estabrook et al., 1985), de-
fined as the number of quartets that are subtrees of one but
not the other input tree. The normalized quartet distance,
d′

Q = dQ/
(n

4

)

, serves as a convenient distance measure be-
tween large phylogenetic trees. We use herePhylonet
(version 2.3) (Than et al., 2008) andQDist (version 2.0.2)
(Mailund and Pedersen, 2004) to compare the obtained
trees with the underlying guide trees.

Results
Simulated Alignments

In order to test the quality of the phylogenetic sig-
nal provided by splids we first used simulated sequence
data generated byINDELible along a known refer-
ence tree. Alignments were computed using nine different
methods, see Supplementary material. Overall, 3000 trees
were calculated from these alignments and the simulated
INDELible reference alignments. On these artificial data
set we observe nearly correct trees derived from splids (see
Suppl. Figure 1). On these benign data, the choice of the
alignment methods has little effect on the quality of the
estimated phylogenies. No RF distances between recon-
structed phylogeny and reference tree larger than 2 was
observed. Indeed 82.57% of the trees were identical to
the reference, and another 16.67% showed an RF distance
of 1. Quartet distances draw a similar picture but allow a
better differentiation of the respective methods. The ma-
jority of all trees (97.5%) from all methods have ad′

Q 6

0.122%, however.ClustalW performed worst, although
the distance of the tree most dissimilar to the guide tree
is only 1.68%. The best performance was observed for
Mafft-linsi. Details can be found in the supplement.

In contrast to real data, however, these simulated test
cases are rather homogeneous. Although rate heterogeneity
among sites has long been accepted to be a biological more
realistic assumption (see e.g. (Yang, 1996)). We therefore
investigated two real-life examples in detail.

ENCODE Genomes

SMALL DATA SET . Depending on the alignment method,
the concatenated re-alignments of the ENCODE data dif-
fered in length and hence in the total number of gaps
that they contain. For the small ENCODE data set,
ClustalW produced the shortest andDialign-TX the
longest alignment. It is no surprise that the number of
splids grows with the number of alignment sites, Ta-
ble 1. For the threeMafft algorithms, however, the num-
ber of splids decreases with alignment length. In par-
ticular, Mafft-default andMafft-linsi seem to
introduce more single-residue gaps or conflicting splits

Table 1 Comparison of the number of sites of the final alignments and
derived splids with length> 2nt for the ENCODE data set containing only
alignments with sequence information for all taxa.

Tool No. of sites No. of splids
ClustalW 79,006 793
Dialign-TX 96,990 2,163
Mafft 84,105 1,021
Mafft-linsi 83,578 1,245
Mafft-ginsi 83,123 1,279
Muscle 84,577 1,378
ProbConsRNA 86,277 1,927
Prank 96,622 2,047
T-Coffee 84,835 1,831
TBA/MULTIZ 90,726 2,032
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FIG. 2.—Number of splids>2nt for the different alignment methods
for the ENCODE data set containing sequence information forall taxa.

thanMafft-ginsi. Figure 2 shows the distribution of
splid lengths for the different alignment algorithms. The
alignment methods fall into two broad groups. While
Dialign-TX, T-Coffee, Prank andProbConsRNA
yield a similar distribution toTBA/MULTIZ, we obtain
only half as many splids6 5nt fromMuscle,ClustalW,
and all threeMafft algorithms. There is, however, no sys-
tematic dependence on design features of the alignment
methods such as global versus local alignments or progres-
sive versus consistency based methods. While the splid-
based phylogenies are nearly perfect on simulated data, we
observe larger deviations that depends at least in part on the
alignment methods when applying our approach to real-life
data. On the other hand, in real data sets we do not have
an absolute ground truth to compare to. Thus we discuss in
following both the quality of the reconstructed phylogenies
and the position of interesting taxa in some detail.

The monophyly of Afrotheria and the positioning of
tenrec basal to elephant and rock hyrax is always recov-
ered (Stanhope et al., 1998; Arnason et al., 2008), except
by Mafft-default, which places tenrec basal to ar-
madillo. The position of the placental root is still, at least
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to some extent, a matter of debate (Murphy et al., 2004;
Springer et al., 2004; Murphy et al., 2007; Nikolaev et al.,
2007). However,Mafft-default as well as the major-
ity of all alignment programs correctly positions Afrothe-
ria outside of Boreoeutheria (Prasad et al., 2008). Only
splid data obtained from theMuscle, ProbConsRNA,
and T-Coffee alignments places Afrotheria as sister
group to Laurasiatheria (ProbConsRNA andT-Coffee)
or inside Euarchontoglires (Muscle). Not even the origi-
nal TBA/MULTIZ alignments contain enough supporting
splids to position them outside of Boreoeutheria, however.

Three hypotheses concerning the positioning of
Xenarthra are discussed in the literature: (1) basal-
Afrotheria ((Boreoeutheria, Xenarthra); Exafroplacen-
talia), e.g. (Murphy et al., 2004; Nikolaev et al., 2007),
(2) basal-Xenarthra ((Boreoeutheria, Afrotheria); Epithe-
ria), e.g. (Kriegs et al., 2006), and (3) basal-Boreoeutheria
((Afrotheria, Xenarthra); Atlantogenata), e.g. (Wildman
et al., 2007). Splid data is clearly in favor of the basal-
Xenarthra hypothesis.Prank positions armadillo basal
to Afrotheria, whereasProbConsRNA andT-Coffee
place it basal to Laurasiatheria and therefore inside Bore-
oeutheria. No tree supports the ENCODE guide tree which
follows the basal-Afrotheria hypothesis.

Laurasiatheria are in most cases found to be mono-
phyletic, with the exception ofPrank, which places
Insectivora basal to the remaining Boreoeutheria, and
ProbConsRNA andT-Coffee, where Afrotheria are in-
correctly positioned. Monophyly is also preserved for its
major orders Insectivora (Eulipotyphla), Chiroptera (ex-
cept ProbConsRNA and T-Coffee), and Carnivora.
There is no clear result from splid data about the correct re-
lationship within Laurasiatheria, which resembles the con-
clusions obtained elsewhere (Springer et al., 2004; Arna-
son et al., 2008; Prasad et al., 2008), although it seems to
be consensus that Insectivora (Eulipotyphla) form the basal
clade (Springer et al., 2004). All alignment methods sup-
port this view, exceptMafft-ginsi andPrank. The
evolutionary history of bats has long been a subject of dis-
cussion, with conflicting hypothesis depending on whether
morphological or molecular data was employed. Earlier
studies either traditionally suggested the monophyly of the
suborders Megachiroptera (megabats) and Microchiroptera
(microbats), e.g. (Simmons and Geisler, 1998), while other
studies placed megabats together with the rhinolophoid mi-
crobats (Yinpterochiroptera), with the remaining micro-
bats forming the suborder Yangochiroptera, e.g. (Hutcheon
et al., 1998; Teeling et al., 2002). Splid data derived from
most of the alignment methods support the novel view
of chiropteran phylogeny and placeRhinolophus ferrume-
quinum together withPteropus vampyrus, while Myotis
lucifugus (Vespertilionidae) is found basal to them. Only
ProbConsRNA follows the traditional view of a mono-
phyly of megabats and microbats and is therefore similar
to the results of theTBA/MULTIZ alignments which also
clearly resembles the ENCODE guide tree.

The monophyly of Euarchontoglires (Euarchonta and
Glires) could not be recovered from splid data obtained
fromMuscle,T-Coffee, andProbConsRNA, because
of the wrongly positioned Afrotheria, which also leads

FIG. 3.—Cladogram with bootstrap values obtained from 100 rapid
bootstrap inferences byRAxML (BINGAMMA) on the small ENCODE
data set. The alignment was created withMafft-linsi and splids>
2nt were coded.

to a split of rodents (and therefore Glires) forMuscle
andT-Coffee data. However, all other alignment meth-
ods clearly support the monophletic superorder Euarchon-
toglires.

Among all groups analyzed, Glires are the most prob-
lematic one. While in all cases close taxa (e.g. Muridea)
are found to be in a common subtree monophyly was only
recovered fromProbConsRNA andPrank data. How-
ever, our results also reflect the unclear position of tree
shrew. While some authors place them basal to Glires, oth-
ers consider them to be basal to Primata. Even though our
data set does not allow a clear conclusion, they are of-
ten found within or close to Glires. OnlyDialign-TX
positions them basal to Primata, although with rabbit as
sister taxon. Splid data derived fromProbConsRNA and
T-Coffee places them basal to (Afrotheria, Laurasiathe-
ria) and (Afrotheria, Boreotheria), respectively.
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Table 2 Overview of how the different monophyletic groups are recovered by the applied alignment tools. Trees were calculated on the small ENCODE data set, usingRAxML (splids> 2nt, BINGAMMA
model). For single taxa and groups with more than two membersthe position in the tree is provided. For each tree the symmetric difference (Robinson-Foulds distance), the quartets distance, and the normalized
quartets distance to the ENCODE guide tree is given. Carn. = Carnivora. “x” = correctly recovered, “-” = false positioning. See text for details.

ClustalW Dialign-TX Mafft Mafft-ginsi Mafft-linsi Muscle Prank ProbConsRNA T-Coffee TBA/MULTIZ
Afrotheria x x - x x x x x x x

sister group sister group to sister group to sister group to sister group to sister group to sister group to sister group tosister group to sister group to
Boreoeutheria Boreoeutheria Boreoeutheria Boreoeutheria Boreoeutheria Euarchontoglires Boreoeutheria Laurasiatheria Laurasiatheria Euarchontoglires

((elephant, rock hyrax), tenrec) x x - x x x x x x x
Xenarthra basal to basal to (basal to basal to basal to basal to basal to basal to basal to basal to

Epitheria Epitheria Epitheria) Epitheria Epitheria Epitheria Afrotheria Laurasiatheria Laurasiatheria Epitheria
Boreoeutheria x x x x x - x - - -

Laurasiatheria x x x x x x - x x x
Insectivora x x x x x x x x x x
Chiroptera x x x x x x x x x x
((rfbat, flying fox), sbbat) x x x x x x x - x -
Carnivora x x x x x x x x x x

sister group to
(Hystricognathi,
Sciurognathi)

horse (bats, horse) (Carn., horse) (bats, horse) ((bats, cow), (cow, horse) ((bats, cow), ((bats, cow), (((bats, cow),(cow, horse) (Carn., horse)
horse) horse) horse) Carn.), horse)

cow ((bats, horse), (((Carn., horse), (((bat, horse), (bats, cow) (cow, horse) (bats, cow) (bats, cow) (bats, cow) (cow, horse) (((Carn., horse),
cow) bats), cow) Carn.), cow) bats), cow)

Euarchontoglires x x x x x - x - - x
Glires x - - - - - x x - x

Rodentia - - - x x - x - - x
Muroidea x x x x x x x x x x
Rabbit sister taxon sister taxon to basal to sister taxon to sister taxon to basal to basal to in Rodentia; basal basal to basal to

to Muroidea tree shrew; basal Euarchontoglires tree shrew;basal tree shrew; basal Euarchonta Rodentia to (Hystricognathi, Primata Rodentia
to Primata to Rodentia to Rodentia Sciurognathi)

Primata x x x x x x x - x x
Strepsirrhini x x x x x x x x x x
Platyrrhini x x x x x x x x x x
(((squirrel m, marmoset), x - - - - - - - x -
owl m), dusky titi)
Catarrhini x x x x x x x x x x

Cercopithecidae x x x x x x x x x x
(((baboon, macaque), - - - x x x x - x -
vervet), colobus)

Hominoidea x x x x x x x x x x
(((chimp, human), x x x x x x - - x -
orangutan), gibbon)

tree shrew in Glires; sister taxon to in Rodentia; sister taxon to sister taxon to basal to basal to basal to basal to basal to
basal to rabbit; basal basal to rabbit; basal rabbit; basal (Hystricognathi, Euarchontoglires Afrotheria and Afrotheria and Glires

(Hystricognathi, to Primata (Hystricognathi, to Rodentia to Rodentia Sciurognathi) Laurasiatheria Boreoeutheria
Sciurognathi) Sciurognathi);

Robinson-Foulds distance 9 9 11 9 8 11 9 13 10 7
Quartets distance (at most 58,905) 2,314 2,980 3,052 2,664 2,043 7,024 4,028 9,714 9,458 3,932
Normalized Quartets distance 0.0393 0.0506 0.0518 0.0452 0.0347 0.1192 0.0684 0.1649 0.1606 0.0668
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Table 3 Comparison of results for the large ENCODE data set. Splids
> 2nt were coded and trees were calculated withRAxML using the
Gamma model for binary data.

Mafft-linsi ProbConsRNA TBA/MULTIZ

# sites 35,505,276 36,464,967 37,689,662
# splids 529,153 946,184 919,908
dRF 7 8 4
dQ 4,936 4,746 862
d′

Q 0.0838 0.0806 0.0146

Almost all methods support the monophyly of Pri-
mates, as well as a monophyly of the respective sub- and
parvorders. OnlyProbConsRNA positions Strepsirrhini
as sister group to Glires and (Laurasiatheria, Afrotheria).

As a quantitatively evaluation of the mammalian tree
we consider their RF and quartet distances to the EN-
CODE reference tree, which – although not undisputed
– well reflects the state of the art in mammalian phy-
logeny. TheProbConsRNA tree is most different from
the reference with respect to both the RF and the quartet
distance. Trees computed withT-Coffee andMuscle
are only slightly better. However, when comparing the
values of the two metrics for the other methods it be-
comes apparent that their results are quite different and
show no clear correlation. While the RF distances of the
Mafft-default andMuscle are similar, the quartet
distanceMafft-default is smaller by about a factor
of two. Overall, theMafft-linsi algorithm clearly per-
formed best, having the second lowest symmetric RF dis-
tance and a quartet distance of only 3.5% if compared to
the ENCODE reference tree (Fig. 3). Surprisingly, trees
based on splids fromClustalW, Dialign-TX, and all
threeMafft algorithms outperformed the guide tree based
TBA/MULTIZ alignments. The Probabilistic Alignment
Kit Prank (Löytynoja and Goldman, 2010) has been ad-
vertised to produce gap placements that are phylogenetic
more consistent compared to other alignment algorithms.
In line with another recent study (Dessimoz and Gil, 2010),
we were unable to confirm this claim for our data sets, how-
ever. We note, finally, that misplaced taxa in all trees gen-
erally had low bootstrap support.

LARGE DATA SET. Because of the computational re-
sources required from the phylogenetic reconstruction we
selected two methods for comparison on the large EN-
CODE data set:Mafft-linsi was chosen because it
performed best on the small set. In order to check whether
the increase in the size of the dataset improves the per-
formance we also includedProbConsRNA, the method
with the poorest performance on the small data set. In ad-
dition, we included the splid set derived from the orig-
inal TBA/MULTIZ alignment, Table 3. An overall im-
provement was observed for bothProbConsRNA and
Mafft-linsi. Two problematic nodes were observed
in set, however. In theMafft-linsi tree Afrotheria are
now found as sister clade to Euarchontoglires even though

Table 4 Characteristics of the Enterobacteria data set. Splids > 2nt
were coded and trees were calculated using the Gamma model for binary
data implemented inRAxML.

Mafft-linsi ProbConsRNA TBA/MULTIZ

# sites 4,131,192 4,449,170 4,547,794
# splids 19,448 47,757 51,077

they were placed in a more plaubsible position in the small
ENCODE set. Also,Mafft-linsi places hedgehog and
shrew outside of Afrotheria and Boreoeutheria and does
not even recognize them as sister taxa. On the other hand,
ProbConsRNA still positions Afrotheria as sister clade to
Laurasiatheria and favors now an implausible position of
tree shrew basal to Afrotheria and Boreoeutheria. However,
the split of Euarchontoglires and (Afrotheria, Boreoeuthe-
ria) shows very low bootstrap support of 45. Of all species
included in the large ENCODE data set, tree shrew has by
far the smallest sequence coverage (approx. 10% of hu-
man), which likely contributes to its unstable position.

Unexpectedly,ProbConsRNA andMafft-linsi
yield similar results in terms of tree distances. For
Mafft-linsi, the Robinson-Foulds distance dropped
only slightly (7 vs. 8) whileProbConsRNA showed a
much better result (8 vs. 13). On the other hand, a com-
parison based on local similarity showed a different pic-
ture. The quartet distance of theMafft-linsi tree in-
creased, with its normalized value more then twice as large
as for the small ENCODE data set (0.0838 vs. 0.0347). The
ProbConsRNA alignment-based tree, however, showed
a normalized quartet distance of less than a half when
compared to the result on the small ENCODE data set
(0.0806 vs. 0.1649). Local as well as global similarity of
theTBA/MULTIZ alignment-based tree to the ENCODE
guide tree increased when compared to the performance
on the small data set.

Enterobacteria

The length of the concatenated alignments of the En-
terobacteria does not depend strongly on the alignment
method, see Table 4. Nevertheless, the number of obtained
splids is very different. More than twice as many splids
could be found inProbConsRNA and TBA/MULTIZ
alignments, respectively, than in theMafft-linsi
alignments. Unfortunately, the rapid bootstrapping algo-
rithm in RAxML contained a bug and was not able to
calculate bootstrap support for theProbConsRNA and
TBA/MULTIZ splids. For the splids obtained from the
Mafft-linsi alignments clear and distinct clusters
could be retrieved for all taxa which largely resemble
the phylogenetic relationships previously reported (Kuh-
nert et al., 2009), see Suppl. Figures 2 and 3. Members
of the Salmonella genus form a clear cluster with sub-
speciesS. arizonae (subsp. IIIa) well separated from the
S. enterica (subsp. I) lineage. Within theS. enterica en-
terica subspecies similar serovars cluster together.Yersinia
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pestis is seen as a clone ofYersinia pseudotuberculosis as
they cannot be genetically distinguished (Achtman et al.,
1999, 2004). However, high bootstrap values support the
subtrees in which the two different strains are found to
be monophyletic. AlsoY. enterocolitica is positioned basal
and therefore clearly distinguishable from the two species.
In contrast toYersinia, Escherichia andShigella are found
in one common subtree and cannot be separated from
each other. This resembles the results found in several ear-
lier studies (Karaolis et al., 1994; Stevenson et al., 1994;
Fukushima et al., 2002) and further supports the view that
Shigella strains are in fact clones ofE. coli. Enterobacter
sp. is clearly separated fromCronobacter sakazakii. This is
also reported by Baldwin et al. (2009) and reflects the re-
cent reclassification of theEnterobacter sakazakii species
within the novel genusCronobacter (Iversen et al., 2008).

Discussion

Indels are not features of individual sequences. In-
stead they are inferred by comparative analysis and, in
practice, appear as gaps in multiple sequence alignments.
In some alignment methods they are explicitly modelled
and contribute to the score e.g. by means of affine gap
costs. In other approaches they are given only implicitly.
It is not unexpected, therefore, that the number and posi-
tion of gaps depends quite strongly on the alignment algo-
rithm. Nevertheless, gap positions can be phylogenetically
informative.

We have focused here on a subclass of indels, namely
those which can be found in more than one taxon and there-
fore define a split in the sequence set. Our definition and
inference of such split-inducing indels (splids) is based on
two basic principles that are largely accepted in the litera-
ture. First, indels at the same position, i.e. sharing the same
end points in two sequences, are likely homologous. Sec-
ond, independent single-residue insertions and deletions
tend to occur more frequently than multi-residue indels.
Hence they are expected to contribute a more noisy sig-
nal and hence are disregarded in our analysis. In addition,
we employ technical conditions that help to reduce the
noise introduced by single mis-aligned sequences, which
are quite frequently observed in genome-wide alignments.

We have tested the information content of splids on
three simulated and three real-life data sets and analyzed
the capability of splids introduced by nine different align-
ment programs for phylogenetic inference by Maximum
Likelihood (ML). For artificial data sets, which are gen-
erated from a known underlying phylogeny, we find that
splid-based ML reconstruction leads to nearly perfect trees.
On the real-life data sets we observe larger discrepancies
between different alignment methods.

The splid-based phylogenies clearly recovered most
of the undisputed monophyletic groups both in the mam-
malian and the bacterial data sets. Although there are clear
differences in the alignment methods, the approach is sur-
prisingly robust across a wide variety of alignment tech-
niques. While expected a large influence of the guide tree
on the reconstructed phylogeny. In particular for the indel-
based approach, we observed that this effect is small when
only splids are considered. Overall, alignment methods that

put more emphasis on modelling indels, in particular those
that employ an affine gap cost model, perform superior to
alignment algorithm that consider indels only implicitly.
For very large data sets, furthermore, we observe a decreas-
ing influence of the alignment algorithm.

As with all other phylogenetic approaches, taxon sam-
pling has a major influence on branch positions in very di-
vergent taxonomic orders. This can been seen for example
in the Laurasiatheria, where a small set of closer related
taxa (e.g. bats or Carnivora) are embedded in a larger set
of species more distantly related to the respective smaller
subgroup. While the Chiroptera are always monophyletic
and the correct phylogenetic position within their subtree
can be recovered, their position within Laurasiatheria can
not be unambiguously determined.

Increasing sequence length, and therefore splid infor-
mation, does not lead to improved trees in all examples.
This effect is likely related to the observation that align-
ments computed for large datasets have relatively large
error rates, and maximum likelihood phylogenies com-
puted on these alignments also have high error rates (Liu
et al., 2010). In the case of low but roughly equal sequence
amount for all taxa, the choice of the alignment algorithm,
seems to have a higher effect within lower taxonomic or-
ders, while groups resembling higher taxonomic orders are
relatively stable and mostly correct positioned.

Supplementary material

Supplemental data, in particular the source code for
gappy can be found at
http://www.bioinf.uni-leipzig.de/Publications/SUPPLEMENTS/11-001
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