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Most approaches in molecular phylogenetics treat gaps iltiplfeusequence alignments as missing data or even com-
pletely exclude alignment columns with gaps. Here we shawghp patterns in large-scale, genome-wide alignments are
themselves phylogenetically informative when properhgféd to reduce noise introduced by the alignment method. To
this end, we introduce here split-inducing in/dels (splitiat define an approximate bipartition of the taxon set. kigavs
both in simulated data and in case studies on real-life detiasplids can be efficiently extracted from phylogenomic
data sets. They provide a surprisingly clear phylogendditad and lead to quite accurate phylogenetic trees.

Introduction plasy, e.g. (Belinky et al., 2010). The same authors sug-
est that single-residue gaps should not be removed a pri-

see nG:sz wuirsr]sua:tr:gf iﬁeﬂg?enccjafl'ghnrﬂ,ergﬁeﬁg Tﬁ“ﬂgﬁ from a data set based on a large taxon sampling, since
pnylog X fiv y can still contain a phylogenetic signal.

studies, gaps are treated as missing data or alignmen The few studies of the phylogenetic information con-

columns with gaps are even removed completely. Indqum of gap patterns were mostly conducted on limited sets

stochastic models of sequence evolution that deal expl - : g )
itly with gaps have been investigated only recently (Rll—t):r protein data. With the advent of high-throughput se

N . . guencing (nearly) complete genomes are becoming avail-
vas, 2005; Lebre and Michel, 2010). Detailed evaluay, o o+ o1 increasing pace, from which large-scale genome-
tions show an overall improvement of phylogenetic reco

structions when gaps are modelled exblicit (Redel'n%de alignments can be constructed. Phylogenomics capi-
uct w 9ap Xplcitly Ing lizes on these developments and provides a wide diversity

and Suchard, 2007; Rivas and Eddy, 2008; Dwivedi a g ; :

' ’ ; P eI phylogenetic information (Boussau and Daubin, 2010).
Gadagkar, 2009) but still report a negative effect of e utilize these developments here to address the value of
increasing density of gap characters in multiple sequen

. ) §Sp patterns from a phylogenomic perspective. The use of
al'gnéneet\rl:}se(r?\t’\r’]'ggg' fgr\:\?r(sggrigrl?g(r)’rgg(s)?bproaches o enome-wide datasets allow us to focus on the sub-class

lud d the dismissal of issingl dat indels only that define a “reasonably obvious” binary
clude gaps and the dismissal of gaps as missing data, iy among the taxa. As gaps are not part of sequence it-

dels have been incorporated in several ways into SEqUENLER ) i+ the result of an alignment algorithm, however, we
based phylogenetic analyses. The simplest one is to ¢ ge to systematically investigate the impact of the align-

gaps as 5th character state. Other_authors ha_ve sugge t method on the phylogenetic information of the gap
the replacement of the gapped regions by a binary matﬂ)étterns

that codes presence and/or absence of the respective in-

del (Simmons and Ochoterena, 2000). That is, the binary

matrix is added to the “ungapped” sequence data and ematerials and Methods

ployed in tree inference. An extension of this simple indgdata sets

coding (SIC) maximizes the amount of phylogenetic infor-

mation in a parsimonious way by incorporating all indelS$IMULATED DATA. To test the performance of the

(Miiller, 2006). method on multiple sequence alignments with indel for-
Gaps in alignments are, of course, not features idefation according to a robust tree, we created a number

tifyable from the individual sequences. Instead, they agf different artificial data sets, using\DELi bl e V1.03

pear as derived patterns inferred from sequence compdFiletcher and Yang, 2009). The guide tree and background

son only. Nevertheless, they convey a surprising amount?se frequencies were taken from the phastCons1l7way

phylogenetic information. Shared multi-residue delesionPhastCons tree model file (Siepel et al., 2005) obtained

for instance, have been used to support hypothesis derifm UCSC and rescaled to have a maximum root-to-

from molecular data in recent single gene analyses, see &R distance of 2. Indel rates and indel-size distributions

(Teeling etal., 2005). Multi-residue gaps in DNA as well ag'€ in most cases estimated based on pairwise alignments

protein sequences have been reported as useful indicaf§§- human-mouse, primates, rodents (Lunter, 2007; Brit-

of monophyletic groups (Lloyd and Calder, 1991). Singlden et al., 2003; Ogurtsov et al., 2004; Gu and Li, 1995))

residue gaps, on the other hand, occur more frequently tH# differ quite considerably. For example, estimates for

multi-residue gaps and show a higher amount of hom#1€ ratio of substitution rates to indel rates between mouse
and human are ranging from 8 (Lunter, 2007) to 14 (Britten

K y . . et al., 2003; Ogurtsov et al., 2004). It seems to be a good
ey words: in/del, splits, molecular phylogeny, phylogerics - ! . .
E-mail: {alex,studia@bioinf.uni-leipzig.de approximation to apply an indel rate in vertebrates at least
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as large as between human and mouse, however. Estimageiced the final data set to 54 species and removed all
suggest that the frequency of deletions is somewhat highercoli strains except K12 MG1655Buchnera aphidicola
than the insertion frequency (Gu and Li, 1995; Zhang andas used as outgroup to root the trees. A complete taxon
Gerstein, 2003; Arndt and Hwa, 2004), with a ratio of deldist is given in Suppl. Table 1.
tion rateAq to insertion rate\; ranging from 1.3 to 4. We
therefore created three different data sets using the F,Bil:lgnments
model (Felsenstein, 1981), two indel-size distributiond a
three different indel-rates, each consisting of 100 alig§SENOME-WIDE ALIGNMENTS. We usedlBA/ MULTI Z
ments with a length of 100.000 nt. The first two datasetBlanchette et al., 2004) for both the ENCODE and the en-
use a simple geometric distribution with similar insertioterobacteria data sets. This toolkit has been widely used
and deletion rates\(= 0.03106 andhyg = 0.04037) but dif- for whole-genome alignments in large-scale comparative
ferent probability valuesoy = 0.7 andg, = 0.55, respec- genomics studies (Birney et al., 2007; Bauer and Bailey,
tively). The third data set follows a Lavalette Distributio 2008).TBA/ MULTI Z needs a guide tree that describes the
(a=1.5,M = 120) withA; = 0.02899 and\y = 0.03768. relationship of the species to be aligned. In case of the EN-
CODE data set this tree is largely based on taxonomic in-

ENCODEDATA. In order to address the problem howormation. The guide tree for the Enterobacteria data set
the method behaves under real-life data and different-aligmnas created on a set of orthologous proteins for an earlier
ment lengths we created two data sets from the ENCODABalysis (kindly provided by Sven Findeif3, unpublished re-
(Birney et al., 2007) project data, based on the Decemltzits): In brief, a set of orthologous proteins was derived
2007 Multi-Species Sequence Analysis sequence freemsingPr ot ei nOrt ho (Lechner et al., 2011) and pruned
The ingroup taxa include four apes (human, chimpanzde,contain only proteins presentin all input taxa; theseawer
Sumatran orangutan, and Northern white-cheeked gibligned withCl ust al W(Larkin et al., 2007); a neighbor-
bon), four Old World monkeys (Eastern Black-and-whit@ining tree was calculated, using SplitsTree (Huson and
colobus, vervet monkey, baboon, and rhesus macaqugjyant, 2006). Sinc&BA/ MULTI Z was not able to align
four New World monkeys (dusky titi, owl monkey, mar-the complete set 75 enterobacterial genomes (due the lim-
moset, and squirrel monkey), two prosimians (small-eard@dtions in the internal data handling, M. Hou, pers. com-
galago and mouse lemur), tree shrew, four rodents (mous®jnication), we sub-selected 54 taxa for inclusion in our
rat, guinea pig, and thirteen-lined ground squirrel), ratalignment.
bit, cow, horse, two carnivores (dog and cat), three bats A genome-wide alignment is the result of an exten-
(greater horseshoe bat, little brown bat, and large flyirgijve similarity search between at least two species. Due to
fox), two insectivores (middle-African hedgehog and Ewevolutionary changes in genome organization, such as in-
ropean shrew), armadillo, African elephant, tenrec, roalersions and duplications, two genomes are virtually never
hyrax, platypus, and the South American short-tailed opasampletely co-linear, resulting in a decomposition of alig
sum. Chicken was used as outgroup to root the trees. Tients into syntenic blocks. Practical procedure such as
first data set contains only those alignments in which allBBA/ MULTI Z also use other features, such as large inser-
36 organisms were included. Alignments of only two ENtions, missing data in individual species, or low complex-
CODE regions fulfilled this criteria: ENmMO001 (498 align-ty regions, as additional breakpoints, so that relativalsm
ments) and ENmO013 (67 alignments). To investigate hasligment blocks are produced. Not all of these blocks con-
the method behaves under a considerable amount of missn sequence from all taxa, both due to missing data in the
ing data, as it is usually the case for genome wide aligeequence assemblies and because highly diverged regions
ments, a second data set was created, based on all BNsome taxa can not be reliably recognized as homologs.
CODE alignment regions with at least three species.

) RE-ALIGNMENT WITHOUT GUIDE TREES. The use of a
ENTEROBACTERIACEAE  The genomes of Bacteria areguide tree for the genome alignments could conceivably
by far smaller than metazoan genomes. This makes cregtate a bias in indel positioning. We therefore checked
ing whole-genome alignments computationally more fegzhether such a bias really exists and how other com-
sible. On the other hand, their genomes_frequently underg@my used a|ignment programs perform_ To this end
recombination and they are known to import DNA fromjye considered individual alignment blocks produced by
other organisms into their genomes. The imported DNABA/ MULTI Z and removed the gaps again. The genome-

can then replace a homologous sequence. This often c@ide alignments thus are used only as a convenient means
stitutes a problem for sequence based phylogenetic anayextracting homologous regions.

sis. We _have select_ed a subset of th(_e Gram-negative Enter- A similar procedure was applied to the 'true’ align-
obacteriaceae family (Proteobacteria; Gammaproteobggents of the simulated dataset which were at first separated
teria; Enterobacteriales). Enterobacteriaceae normially in blocks with an average size of 140 nt and in the follow-
habit the intestines of animals but are also found in plangg treated as described below.
and water. Many members are pathogens with a consider- The gap-free sequences of each block were re-aligned
able clinically importance. We selected all Enterobaeteriyith a variety of commonly used programs and algo-
listed at? for which complete genomes were available &thms: O ust al W(version 2.0.12) (Larkin et al., 2007),
NCBI. Due to algorithmically limitations (see Section ) wevaf f t (v6.833b) (Katoh et al., 2005)uscl e (v3.7)
(Edgar, 2004),T- Cof f ee (Version 8.97) (Notredame
2 http://ww2.unil.ch/comparativegenometrics/phylmht et al., 2000)Pr ank v.100802 (Ldytynoja and Goldman,
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2010), andDi al i gn- TX (version 1.0.2) (Subramanian,_
etal., 2008)Di al i gn- TXdiffers from all other methods »
as it creates alignments from local pairwise sequence si
ilarities without the use of explicit gap penalties. AppFox e
mately 2% of the ENCODE regions contain coding exorfs
while the majority covers 'non-coding’ sequences, such é
introns, UTRs, and intergenic regions. It has been pointed 2 D *
out that, while performing fairly good on these sequences,
TBA/ MULTI Z’s results on regions containing non-coding
RNAs is not optimal (Wang et al., 2007). We therefore ad-
ditionally selectedPr obConsRNA (version 1.1) (Do etal., &
2005), which is an experimental version of PROBCONS
with parameters estimated from BRAIIBASE Il via unsuﬁ
pervised training (Gardner et al., 2005). All tools wereduse v
with default values except favhf ft which also offers
two substantially different modes: L-INS-i (local optimal
alignment) and G-INS-i (global optimal alignment).
Following realignment, gaps introduced at the 5" and
3’ ends of the sequence blocks were interpreted as artifacts
and hence coded as missing data, see also (Simmons and
Ochoterena, 2000). As individual alignment blocks typi-
cally contain Seq.ue.nce data for only a sul_Js_et of the in- FiG. 1.—Non-trivial example of the determination of splidsinsize
put taxa, such missing taxa were also explicitly coded gfat east 2 from a concatenated alignment set (A and B).niignt A
missing data. The alignment blocks with two or more tax@ntains sequence data for all taxa, whereas B misses tgdrirst, all
ini ggel loci are determined (1, 2, 3, and 4). Second, the lazisaarched
ggtder?g{:g Ialsr:r?ga;é??sgg:& ?:\E)aﬁgal'eas\;ﬁ{] \ﬁl]eefesahp%r;e(_:?g? indels constituting splic(is. From Iocus) 1 indels (4) aByfglfill this

h ] .. criterion [(1) and (3), respectively, do not fulfill the spleriterion]. Indel
mentary Mate”al)' Note that by construction the delimi 8) is too small. Locus 3 contains a set of conflicting spli@ fand (10)].

ing columns of each al_ignmem block do not contain gafhus they are not included. If indel (11) is included in theafiset of
characters; concatenation therefore does not affect e gglids depends on the applied algorithmstrict mode it is not included,
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patterns. due to the single-residue indel (13).flzy mode, it is also included and
taxong is marked as missing data (“?”) in the binary absence/poesen
Splids coding.

Gaps often appear in rather disordered clusters in au-
tomatically generated alignments. The encode of charac-
ters from gap patterns is not entirely trivial as soon aslgde
rather than individual gap characters are to be assessed. In ) ) ) ) )
the first step, the problem is reducedindel loci consist- (such as indel (13)). In this “strict mode” indel (11) is re-
ing of connected indels. More precisely, an indel is a comoved, while it is retained in “fuzzy mode”. These alter-
tiguous stretch of (overlapping) gap characters. Two mddlative treatments of single-position gaps is motivated by
overlap if there is an alignment column that is common fée observation that they occur more randomly than multi-
both of them, see Fig. 1. residue gaps, while still containing some phylogenetic in-
In the second step the individual indel loci are exanformation (Belinky et al., 2010). .
ined in detail. First we identify all distinct intervals ohgs ~ The algorithm for the conversion of alignments to a
(circled numbers in Fig. 1). We call an indebglid (split-  binary character matrix is implemented in the C++ pro-

inducingindel) if it defines an approximate bipartition ofgramgappy. The tool reads multiple sequence alignments
the taxon set according to the fo”owing rules: in FASTA format. The user can select a minimum and max-

v indels found i | havi imum indel length for determining splids. By default, the
1 (an y Indels oug n a;cj eas(; tw_ohseqL_Jences., NaVigtput is a FASTA file, containing the binary coded splid
the same 5" and 3’ end, and with a given miNiMUMpcence/presence information, and some summary statis-

size are considered. By default, all indels of length ; ; ; )
least two are considered. Thus indels (1), (2), (3), ( asf.OUtDUt is also available in PHYLIP and NEXUS for

(7), (8), (12), and (13) in Figure 1 are removed.

2. A splid does not overlap another indel that satiesfies . _ _
the first condition. Thus indels (9) and (10) are exPhylogenetic reconstruction and Analysis

cluded. TREE RECONSTRUCTION  Phylogenetic trees were cal-
Splids are coded as binary characters marking their ahilated with the hybrid version dRAXM. v7.2.8 (Sta-
sence/presence pattern in the respective taxon. Missing setakis, 2006), using rapid bootstrapping with 100 random
guence data in the alignment column of a splid was codadditions under the Gamma-model for binary characters
as “missing data”. We optionally filter out splids that over{Stamatakis et al., 2008; Pattengale et al., 2010). Bagtstr
lap an indel of length 1 occurring in at least two taxaupport values were drawn on the best-scoring tree.
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TREE COMPARISON. Many different distance measures Table 1 Comparison of the number of sites of the final aligrimand
are available to compare phylogenetic trees. The mastived splids with lengtl: 2nt for the ENCODE data set containing only
sensitive one is the unweighted Robinson-Foulds distarlg"ments with sequence information for all taxa.

(Robinson and Foulds, 1981), defined as the nurdkeof Tool No. of sites  No. of splids
splits contained in exactly one of the two trees. The scaled Custal W 79,006 793
versiondy: = drr/(n— 3) takes values between 0 and 1, Di al i gn-TX 96,990 2,163
wheren is the number of taxa. Its major drawback is that it Maf f t 84,105 1,021
does not emphasize local similarity, so that trees diffgrin Mafft-1insi 83,578 1,245
by the placement of a single taxon may have large RF dis- Maf f t - gi nsi 83,123 1,279
tances (Penny et al., 1982). As an alternative we therefore Miscl e 84,577 1,378
employ the quartet distance (Estabrook et al., 1985), de- ProbConsRNA 86,277 1,927
fined as the number of quartets that are subtrees of one but ~ Prank 96,622 2,047
not the other input tree. The normalized quartet distance, T-Cof f ee 84,835 1,831
d, = dg/(3), serves as a convenient distance measure be- ~_TBA/ MULTI Z 90,726 2,032

tween large phylogenetic trees. We use Hehgl onet
(version 2.3) (Than et al., 2008) aQ@i st (version 2.0.2)
(Mailund and Pedersen, 2004) to compare the obtained
trees with the underlying guide trees.

Results §— —— Clustalw
Simulated Alignments o ety
. LB —< Mafft (gins)

In order to test the quality of the phylogenetic sig- _ "o Malt (ins)

nal provided by splids we first used simulated sequenges | L e

data generated by NDELi bl e along a known refer- § g | ~=— ProbConsRNA

. . . . ® —&- TBA
ence tree. Alignments were computed using nine differegt % TCoffee

methods, see Supplementary material. Overall, 3000 tree§ -
were calculated from these alignments and the simulated,

| NDELi bl e reference alignments. On these artificial data = |
set we observe nearly correct trees derived from splids (see |

Suppl. Figure 1). On these benign data, the choice of the 10 15 20 25
alignment methods has little effect on the quality of the Gap Size

estimated phylogenies. No RF distances between recon-

structed phylogeny and reference tree larger than 2 was FiG. 2.—Number of splids=2nt for the different alignment methods
?hbes?é}/eer%ni:ng%en% 2r2105tf71(§’ ](_)(];,Eihﬁ mt;ehetfw\évglgn IdR?:n:'iIICS ?‘;ﬁz éhe ENCODE data set containing sequence informatiomlfdaxa.

of 1. Quartet distances draw a similar picture but allow a
better differentiation of the respective methods. The ma-
jority of all trees (97.5%) from all methods havedg <
0.122%, howevelCl ust al Wperformed worst, although
the distance of the tree most dissimilar to the guide tr

1 0,
is only 1.68%. The best performance was observed alignment methods fall into two broad groups. While

Maf ft - 11 nsi . Details can be found in the supplement.é;gtal i gn-TX, T- Cof f ee, Pr ank andPr obCons RNA

In contrast to real data, however, these simulated t - e .
’ ' Id a similar distribution toTBA/ MULTI Z, we obtain
cases are rather homogeneous. Although rate heteroge f@{?half as many splids 5nt fromMuscl e, O ust al W

among sites has long been accepted to be a biological m8

realistic assumption (see e.g. (Yang, 1996)). We therefcﬁ@d e}[I_I trljre%fdf t algoritgms_. Thferetis, hovx;et\;]er, nIQ Sys- .
investigated two real-life examples in detail. ematic dependence on design features of the alignmen

methods such as global versus local alignments or progres-
ENCODE Genomes sive versus con_sistency based methods._ While the splid-
based phylogenies are nearly perfect on simulated data, we
SMALL DATA SET. Depending on the alignment methodpbserve larger deviations that depends at least in pareon th
the concatenated re-alignments of the ENCODE data difignment methods when applying our approach to real-life
fered in length and hence in the total number of gamkta. On the other hand, in real data sets we do not have
that they contain. For the small ENCODE data se&n absolute ground truth to compare to. Thus we discuss in
Cl ust al Wproduced the shortest amil al i gn- TX the following both the quality of the reconstructed phylogenie
longest alignment. It is no surprise that the number aind the position of interesting taxa in some detail.
splids grows with the number of alignment sites, Ta- The monophyly of Afrotheria and the positioning of
ble 1. For the thre&hf f t algorithms, however, the num-tenrec basal to elephant and rock hyrax is always recov-
ber of splids decreases with alignment length. In paered (Stanhope et al., 1998; Arnason et al., 2008), except
ticular, Maf ft - defaul t andMafft-1insi seem to by Mafft-defaul t, which places tenrec basal to ar-
introduce more single-residue gaps or conflicting spliteadillo. The position of the placental root is still, at leas

e =T T T, 9=t=4

élgan Maf f t - gi nsi . Figure 2 shows the distribution of
lid lengths for the different alignment algorithms. The
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to some extent, a matter of debate (Murphy et al., 200 Chicken
Springer et al., 2004; Murphy et al., 2007; Nikolaev et al Platypus
2007). Howeverlvaf f t - def aul t as well as the major- Opossum
ity of all alignment programs correctly positions Afrothe: Armadillo
ria outside of Boreoeutheria (Prasad et al., 2008). On [0 100 — Rock hyrax
splid data obtained from thkuscl e, Pr obConsRNA, 72 f_CEIephant
and T- Cof f ee alignments places Afrotheria as siste 100 L Tenrec
group to Laurasiatherid® obCons RNAandT- Cof f ee) 64 Shrew

or inside Euarchontogliredliscl e). Not even the origi- Hedgehog
nal TBA/ MULTI Z alignments contain enough supporting RfBat
splids to position them outside of Boreoeutheria, howeve Flying Fox

Three hypotheses concerning the positioning ¢ SbBat

Xenarthra are discussed in the literature: (1) bas:
Afrotheria ((Boreoeutheria, Xenarthra); Exafroplacer
talia), e.g. (Murphy et al., 2004; Nikolaev et al., 2007)
(2) basal-Xenarthra ((Boreoeutheria, Afrotheria); Egith
ria), e.g. (Kriegs et al., 2006), and (3) basal-Boreoeudhel

Rabbit

((Afrotheria, Xenarthra); Atlantogenata), e.g. (Wildmai 26 o6 ;:Tﬁ::lrew
et al., 2007). Splid data is clearly in favor of the basa " Guinea pig
Xenarthra hypothesisPr ank positions armadillo basal 100 — Mouse

to Afrotheria, wherea®r obConsRNA and T- Cof f ee Rat

place it basal to Laurasiatheria and therefore inside Bot
oeutheria. No tree supports the ENCODE guide tree whi
follows the basal-Afrotheria hypothesis.

Galago

Mouse Lemur
Squirrel monkey
Owl Monkey
Marmoset
Dusky titi
Macaque
Baboon

Vervet monkey
Colobus Monkey
Gibbon
Orangutan
Chimpanzee
Human

Laurasiatheria are in most cases found to be mon
phyletic, with the exception oPrank, which places
Insectivora basal to the remaining Boreoeutheria, ai
Pr obConsRNAandT- Cof f ee, where Afrotheria are in-
correctly positioned. Monophyly is also preserved for it
major orders Insectivora (Eulipotyphla), Chiroptera (ex
cept ProbConsRNA and T- Cof f ee), and Carnivora.
There is no clear result from splid data about the correct
lationship within Laurasiatheria, which resembles the-col
clusions obtained elsewhere (Springer et al., 2004; Arn
son et al., 2008; Prasad et al., 2008), although it seems to
be consengus that Insectivora (Eullpotyphla) form thelbasa FiG. 3.—Cladogram with bootstrap values obtained from 100drapi
clade (_Spr_mger et al., 2004). A_“ a“_gnmem methods SURgotstrap inferences bRAxM. (BINGAMMA) on the small ENCODE
port this view, excepivaf ft - gi nsi andPrank. The data set. The alignment was created witif f t - | i nsi and splids>
evolutionary history of bats has long been a subject of dignt were coded.
cussion, with conflicting hypothesis depending on whether
morphological or molecular data was employed. Earlier
studies either traditionally suggested the monophyly ef th
suborders Megachiroptera (megabats) and Microchiroptera
(microbats), e.g. (Simmons and Geisler, 1998), while oth&r a split of rodents (and therefore Glires) fisliscl e
studies placed megabats together with the rhinolophoid naird T- Cof f ee data. However, all other alignment meth-
crobats (Yinpterochiroptera), with the remaining microeds clearly support the monophletic superorder Euarchon-
bats forming the suborder Yangochiroptera, e.g. (Hutchetoglires.
et al., 1998; Teeling et al., 2002). Splid data derived from  Among all groups analyzed, Glires are the most prob-
most of the alignment methods support the novel vielematic one. While in all cases close taxa (e.g. Muridea)
of chiropteran phylogeny and pla&hinolophus ferrume-  are found to be in a common subtree monophyly was only
quinum together withPteropus vampyrus, while Myotis recovered fromPr obConsRNA and Pr ank data. How-
lucifugus (Vespertilionidae) is found basal to them. Onlyever, our results also reflect the unclear position of tree
Pr obConsRNA follows the traditional view of a mono- shrew. While some authors place them basal to Glires, oth-
phyly of megabats and microbats and is therefore similars consider them to be basal to Primata. Even though our
to the results of th&BA/ MULTI Z alignments which also data set does not allow a clear conclusion, they are of-
clearly resembles the ENCODE guide tree. ten found within or close to Glires. Onlgi al i gn- TX

The monophyly of Euarchontoglires (Euarchonta angbsitions them basal to Primata, although with rabbit as
Glires) could not be recovered from splid data obtainesister taxon. Splid data derived frofmn obCons RNA and
fromMuscl e, T- Cof f ee, andPr obConsRNA, because T- Cof f ee places them basal to (Afrotheria, Laurasiathe-
of the wrongly positioned Afrotheria, which also leadsia) and (Afrotheria, Boreotheria), respectively.




Table 2 Overview of how the different monophyletic groups egcovered by the applied alignment tools. Trees were leédziion the small ENCODE data set, usiRéx M. (splids> 2nt, BINGAMMA
model). For single taxa and groups with more than two memtberposition in the tree is provided. For each tree the symergifference (Robinson-Foulds distance), the quartestsdce, and the normalized
= false positioginSee text for details.

w

quartets distance to the ENCODE guide tree is given. Carrarai@®ra. “X” = correctly recovered,

Clustal W Dialign-TX Maf f t Maf ft-ginsi Mafft-1insi Miscl e Pr ank ProbConsRNA T-Coffee TBA/ MILTIZ
Afrotheria X X - X X X X X X X
sister group  sistergroupto  sister group to  sister group testersgroup to  sister group to  sister group to  sister group gister group to  sister group to
Boreoeutheria Boreoeutheria Boreoeutheria BoreoeatheBoreoeutheria Euarchontoglires Boreoeutheria  Lautesia Laurasiatheria Euarchontoglires
((elephant, rock hyrax), tenrec) X X - X X X X X X X
Xenarthra basal to basal to (basal to basal to basal to lmasal t basal to basal to basal to basal to
Epitheria Epitheria Epitheria) Epitheria Epitheria E pitia Afrotheria Laurasiatheria  Laurasiatheria Epitheria
Boreoeutheria X X X X X - X - - -
Laurasiatheria X X X X X X - X X X
Insectivora X X X X X X X X X X
Chiroptera X X X X X X X X X X
((rfbat, flying fox), sbbat) X X X X X X X - X -
Carnivora X X X X X X X X X X
sister group to
(Hystricognathi,
Sciurognathi)

horse (bats, horse)  (Carn., horse) (bats, horse) ((batg, co (cow, horse) ((bats, cow), ((bats, cow), (((bats, cow),(cow, horse)  (Carn., horse)

horse) horse) horse) Carn.), horse)

cow ((bats, horse), (((Carn., horse), (((bat, horse),  s(lmaiw) (cow, horse) (bats, cow) (bats, cow) (bats, cow) (tmrse) (((Carn., horse),

cow) bats), cow) Carn.), cow) bats), cow)
Euarchontoglires X X X X X - X - - X

Glires X - - - - - X X - X
Rodentia - - - X X - X - - X
Muroidea X X X X X X X X X X
Rabbit sister taxon sister taxon to basal to sister taxon tgsterg¢axon to basal to basal to in Rodentia; basal basal to sal ba

to Muroidea tree shrew; basal Euarchontoglires tree shyasal tree shrew; basal ~ Euarchonta Rodentia to (Hystratbgn  Primata Rodentia
to Primata to Rodentia to Rodentia Sciurognathi)

Primata X X X X X X X - X X
Strepsirrhini X X X X X X X X X X
Platyrrhini X X X X X X X X X X
(((squirrel m, marmoset), X - - - - - - - X -
owl m), dusky titi)

Catarrhini X X X X X X X X X X
Cercopithecidae X X X X X X X X X X
(((baboon, macaque), - - - X X X X - X -
vervet), colobus)

Hominoidea X X X X X X X X X X
(((chimp, human), X X X X X X - - X -
orangutan), gibbon)

tree shrew in Glires; sister taxon to in Rodentia; sisteometo  sister taxon to basal to basal to basal to basal to lmsal t

basal to rabbit; basal basal to rabbit; basal rabbit; bas#&lystticognathi, Euarchontoglires Afrotheria and Afraiheand Glires
(Hystricognathi, to Primata  (Hystricognathi, to Rodentia to Rodentia Sciurognathi) Laurasiatheria  Boreoeutheria
Sciurognathi) Sciurognathi);
Robinson-Foulds distance 9 9 11 9 8 11 9 13 10 7
Quartets distance (at most 58,905) 2,314 2,980 3,052 2,664 ,0432 7,024 4,028 9,714 9,458 3,932
Normalized Quartets distance 0.0393 0.0506 0.0518 0.0452 .0340 0.1192 0.0684 0.1649 0.1606 0.0668

6 Donath & Stadler
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Table 3 Comparison of results for the large ENCODE data gdsS Table 4 Characteristics of the Enterobacteria data seidsSpl 2nt
> 2nt were coded and trees were calculated viRdx ML using the were coded and trees were calculated using the Gamma maodehéoy

Gamma model for binary data. data implemented iRAXM..
Maf ft-1insi ProbConsRNA  TBA/ MULTI Z Maf ft-1i nsi ProbConsRNA  TBA/ MULTI Z
# sites 35,505,276 36,464,967 37,689,662 # sites 4,131,192 4,449,170 4,547,794
# splids 529,153 946,184 919,908 # splids 19,448 47,757 51,077
drr 7 8 4
do 4,936 4,746 862
d’Q 0.0838 0.0806 0.0146

they were placed in a more plaubsible position in the small
ENCODE set. Alsolvaf ft - I i nsi places hedgehog and
shrew outside of Afrotheria and Boreoeutheria and does
Almost all methods support the monophyly of Prinot even recognize them as sister taxa. On the other hand,
mates, as well as a monophyly of the respective sub- arglobConsRNA still positions Afrotheria as sister clade to
parvorders. OnlyPr obConsRNA positions Strepsirrhini Laurasiatheria and favors now an implausible position of
as sister group to Glires and (Laurasiatheria, Afrotheria)tree shrew basal to Afrotheria and Boreoeutheria. However,
As a quantitatively evaluation of the mammalian treghe split of Euarchontoglires and (Afrotheria, Boreoeuthe
we consider their RF and quartet distances to the ENa) shows very low bootstrap support of 45. Of all species
CODE reference tree, which — although not undisputédcluded in the large ENCODE data set, tree shrew has by
— well reflects the state of the art in mammalian phyfar the smallest sequence coverage (approx. 10% of hu-
logeny. ThePr obConsRNA tree is most different from man), which likely contributes to its unstable position.
the reference with respect to both the RF and the quartet UnexpectedlyPr obConsRNA andMaf ft - | i nsi
distance. Trees computed wilh Cof f ee andMuscl e yield similar results in terms of tree distances. For
are only slightly better. However, when comparing th&hafft-1i nsi, the Robinson-Foulds distance dropped
values of the two metrics for the other methods it besnly slightly (7 vs. 8) whilePr obConsRNA showed a
comes apparent that their results are quite different antlich better result (8 vs. 13). On the other hand, a com-
show no clear correlation. While the RF distances of thgarison based on local similarity showed a different pic-
Maf f t - def aul t andMuscl e are similar, the quartet ture. The quartet distance of tihdaf ft -1 i nsi tree in-
distanceMaf f t - def aul t is smaller by about a factor creased, with its normalized value more then twice as large
of two. Overall, thevaf f t - | i nsi algorithm clearly per- as for the small ENCODE data set (0.0838 vs. 0.0347). The
formed best, having the second lowest symmetric RF diBr obConsRNA alignment-based tree, however, showed
tance and a quartet distance of only 3.5% if compared gonormalized quartet distance of less than a half when
the ENCODE reference tree (Fig. 3). Surprisingly, treesompared to the result on the small ENCODE data set
based on splids fror@l ust al WDi al i gn- TX, and all (0.0806 vs. 0.1649). Local as well as global similarity of
threeMaf f t algorithms outperformed the guide tree basethe TBA/ MULTI Z alignment-based tree to the ENCODE
TBA/ MULTI Z alignments. The Probabilistic Alignmentguide tree increased when compared to the performance
Kit Pr ank (Loytynoja and Goldman, 2010) has been adn the small data set.
vertised to produce gap placements that are phylogenetic
more consistent compared to other alignment algorith
In line with another recent study (Dessimoz and Gil, 20107,
we were unable to confirm this claim for our data sets, how- The length of the concatenated alignments of the En-
ever. We note, finally, that misplaced taxa in all trees gegerobacteria does not depend strongly on the alignment
erally had low bootstrap support. method, see Table 4. Nevertheless, the number of obtained
splids is very different. More than twice as many splids
LARGE DATA SET. Because of the computational recould be found inProbConsRNA and TBA/ MULTI Z
sources required from the phylogenetic reconstruction vedignments, respectively, than in theafft-1i nsi
selected two methods for comparison on the large Eldlignments. Unfortunately, the rapid bootstrapping algo-
CODE data set:Maf ft-11i nsi was chosen because itrithm in RAXM. contained a bug and was not able to
performed best on the small set. In order to check whethealculate bootstrap support for thi& obConsRNA and
the increase in the size of the dataset improves the p@BA/ MULTI Z splids. For the splids obtained from the
formance we also includeBr obConsRNA, the method Mafft-1insi alignments clear and distinct clusters
with the poorest performance on the small data set. In atbuld be retrieved for all taxa which largely resemble
dition, we included the splid set derived from the origthe phylogenetic relationships previously reported (Kuh-
inal TBA/ MULTI Z alignment, Table 3. An overall im- nert et al., 2009), see Suppl. Figures 2 and 3. Members
provement was observed for bofr obConsRNA and of the Salmonella genus form a clear cluster with sub-
Maf ft-11insi. Two problematic nodes were observedpeciesS. arizonae (subsp. llla) well separated from the
in set, however. Inth&af ft -1 i nsi tree Afrotheria are S enterica (subsp. 1) lineage. Within th& enterica en-
now found as sister clade to Euarchontoglires even thoutghica subspecies similar serovars cluster togetf@sinia

nterobacteria
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pestis is seen as a clone &frsinia pseudotuberculosisas put more emphasis on modelling indels, in particular those
they cannot be genetically distinguished (Achtman et athat employ an affine gap cost model, perform superior to
1999, 2004). However, high bootstrap values support taéignment algorithm that consider indels only implicitly.
subtrees in which the two different strains are found tBor very large data sets, furthermore, we observe a decreas-
be monophyletic. Als¢. enterocolitica is positioned basal ing influence of the alignment algorithm.

and therefore clearly distinguishable from the two species  As with all other phylogenetic approaches, taxon sam-
In contrast toYersinia, Escherichia andShigella are found pling has a major influence on branch positions in very di-
in one common subtree and cannot be separated freergenttaxonomic orders. This can been seen for example
each other. This resembles the results found in several éarthe Laurasiatheria, where a small set of closer related
lier studies (Karaolis et al., 1994; Stevenson et al., 19%xa (e.g. bats or Carnivora) are embedded in a larger set
Fukushima et al., 2002) and further supports the view that species more distantly related to the respective smaller
Shigella strains are in fact clones &. coli. Enterobacter  subgroup. While the Chiroptera are always monophyletic
sp. is clearly separated fro@ronobacter sakazakii. Thisis and the correct phylogenetic position within their subtree
also reported by Baldwin et al. (2009) and reflects the rean be recovered, their position within Laurasiatheria can
cent reclassification of thEnterobacter sakazakii species not be unambiguously determined.

within the novel genu€ronobacter (Iversen et al., 2008). Increasing sequence length, and therefore splid infor-
mation, does not lead to improved trees in all examples.
This effect is likely related to the observation that align-
ments computed for large datasets have relatively large

Indels are not features of individual sequences. lefror rates, and maximum likelihood phylogenies com-
stead they are inferred by comparative analysis and, pated on these alignments also have high error rates (Liu
practice, appear as gaps in multiple sequence alignmereitsal., 2010). In the case of low but roughly equal sequence
In some alignment methods they are explicitly modelleamount for all taxa, the choice of the alignment algorithm,
and contribute to the score e.g. by means of affine gapems to have a higher effect within lower taxonomic or-
costs. In other approaches they are given only implicitlders, while groups resembling higher taxonomic orders are
It is not unexpected, therefore, that the number and pogglatively stable and mostly correct positioned.
tion of gaps depends quite strongly on the alignment algo-
rithm. Nevertheless, gap positions can be phylogenegicaupplementary material
informative.

We have focused here on a subclass of indels, namel
those which can be found in more than one taxon and the
fore define a split in the sequence set. Our definition af
inference of such split-inducing indels (splids) is based o
two basic principles that are largely accepted in the Iiter%\
ture. First, indels at the same position, i.e. sharing theesa”\Cknowledgements

end points in two sequences, are likely homologous. Sec- The authors want to thank Yvo Wezel and David Lan-
ond, independent single-residue insertions and deletiofignberger for fruitful discussions on the subject of char-
tend to occur more frequently than multi-residue indelgcter loss, Petra Pregel and Jens Steuck for making work
Hence they are expected to contribute a more noisy sigh much easier, and the Center for Information Services
nal and hence are disregarded in our analysis. In additigfhd High Performance Computing (ZIH) of the TU Dres-
we employ technical conditions that help to reduce thgen for allowing us to use their resourgeEhis work was
noise introduced by single mis-aligned sequences, whiihded by the Deutsche Forschungsgemeinschaftunder the

are quite frequently observed in genome-wide alignmentgyspices of SPP-1172eep Metazoan Phylogeny (project
We have tested the information content of splids o8TA 850/2).

three simulated and three real-life data sets and analyzed

the capability of splids introduced by nine different akigny_jterature Cited

ment programs for phylogenetic inference by Maximum _ _

Likelihood (ML). For artificial data sets, which are genAchtman, M., G. Morelli, P. Zhu, et al. 2004. Microevo-

erated from a known underlying phylogeny, we find that lution and history of t.he plague bacillus, Yersinia pestis.

splid-based ML reconstruction leads to nearly perfecstree Proc. Natl. Acad. Sci. U.S.A101:17837-17842.

On the real-life data sets we observe larger discrepancies _ )

between different a”gnment methods. AChtman, M., K. ZUrth, G. Morelll, G. Torrea, A. GUly-
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niques. While expected a large influence of the guide trégnason, U., J. A. Adegoke, A. Gullberg, E. H. Harley,

on the reconstructed phylogeny. In particular for the indel A.Janke, and M. Kullberg. 2008. Mitogenomic relation-

based approach, we observed that this effect is small when

only splids are considered. Overall, alignment methods tha 3 http://tu-dresden.de/zih/

Discussion

Supplemental data, in particular the source code for
Appy can be found at
Hp://www.bioinf.uni-Ieipzig.de/Puincations/SUPEMENTS/ll—OOl
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