Fast local fragment chaining using sum-of-pair gap costs
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Abstract

Background: Fast seed-based alignment heuristics such as BLAST and BLAT have become indispensable tools in
comparative genomics for all studies aiming at the evolutionary relations of proteins, genes, and non-coding RNAs.
This is true in particular for the large mammalian genomes. The sensitivity and specificity of these tools, however,
crucially depend on parameters such as seed sizes or maximum expectation values. In settings that require high
sensitivity the amount of short local match fragments often becomes intractable. Then, fragment chaining is a
powerful leverage to quickly connect, score, and rank the fragments to improve the specificity.

Results: Here we present clasp, a fast and flexible fragment chainer that for the first time also supports a
sum-of-pair gap cost model. This model has proven to achieve a higher accuracy and sensitivity in its own
field of application. Utilizing a very time-efficient index structure clasp outperforms the only existing tool for
fragment chaining under the linear gap cost model. It can easily be applied to the output generated by alignment
tools such as BLAST or segemehl. As an example we consider homology-based searches for human and mouse
snoRNAs demonstrating that a highly sensitive BLAST search with subsequent chaining is an attractive option.
The sum-of-pair gap costs provide a substantial advantage is this context.

Conclusions: Chaining of short match fragments helps to quickly and accurately identify regions of homology that
may not be found using local alignment heuristics alone. By providing both the linear and the sum-of-pair gap
cost model, a wider range of application can be covered.

The software clasp is available at http://www.bioinf.uni-leipzig.de/Software/clasp/.




Background

The detection of (potentially) homologous sequence
fragments is a basic task in computational biol-
ogy that underlies all comparative approaches from
molecular phylogenetics to gene finding, from de-
tailed analysis of evolutionary patterns of individ-
ual genes to global comparisons of genome structure.
On genome-wide scales, BLAST [1] has become the
bioinformatician’s work horse for homology search,
with a sensitivity and specificity that is sufficient
for most applications in comparative genomics. It
is in particular the basis for the currently available
genome-wide alignments, which in turn underlie a
wide variety of subsequent analyses.

Some specialized tasks, such as the search for distant
homologs of short structured RNAs [2], require more
sensitive techniques. In particular, sequence families
exhibiting only short conserved blocks interspersed
with highly variable regions are difficult for BLAST
or BLAT [3] because the seeds have to be very short
in this case. This typically leads to a huge number
of short match fragments that require sophisticated
post-processing to discriminate single random hits
from sets of adjacent hits potentially indicating true
homologs.

The objective of fragment chaining is to efficiently
find sets of consistent fragments with a maximal
score [4]. The order of fragments is assumed to
be congruent in both query and database sequences.
While the case of overlapping fragments is explicitly
excluded, gaps between fragments are allowed and
may be penalized according to different scoring mod-
els. In the case of a local fragment chaining, the score
of any fragment within a chain must not be smaller
than the penalty that is assigned to the gap to the
successive fragment. Thus, a chain is a sequence
of non-overlapping, i.e., disjoint, ordered fragments
and its score is the sum of their fragment scores mi-
nus the penalties for any gaps between them. Intro-
duced in sequence alignments [5], fragment chain-
ing may be used in several comparative tasks such
as whole genome comparison, cDNA /EST mapping,
or identifying regions with conserved synteny as de-
scribed in [6].

Let fyeg-T, fend-x denote the start and end position
of a fragment f in the database sequence z. The
start and end positions in the query y are denoted
by freg-y and fenq.y, respectively. Let f and f’ be
two non-overlapping ordered fragments, i.e., assume

fena-x < fi.,.w and fenay < fy,-y. Linear gap
costs g1(f’, f) between the fragments f and f’ are
calculated by:

gl(flyf):)‘m'Aw(f/af)‘f'egl'Ay(flyf) (1)

with AT(flaf) = |féeg.$ - fend-x| -1, Ay(f/vf) =
|fpegy — fena-y| — 1, and weighting parameters
Agir€q > 0. A graphical illustration of fragments
and chaining connections is shown in Figure 1.
Hence, for Ay, , €4, > 0 linear gap costs penalize any
distance between fragments on query and database
sequence. This scoring system may not be suitable,
however, when scattered blocks of local sequence
conservation are expected.

The more flexible sum-of-pair gap cost model intro-
duced by Myers and Miller [7] allows to penalize
differences of the distances between adjacent frag-
ments on query and database only. The sum-of-
pair gap costs gsop(f’, f) between non-overlapping
ordered fragments f and f is given by

gsop(flyf) = )\gsop ) (maX{Aw(fla f)7Ay(flyf)} (2)
—min{A;(f', ), Ay(f', £)})
+ €Gsop min{AﬂC(f/a f)7 Ay(f/v f)}

with parameters Ay, ,€4,,, = 0. Intuitively, Ay
expresses the penalty to align an anonymous char-
acter with a gap position while €, , is the penalty
to align two anonymous characters. With ¢, =0,
the chaining only minimizes the distance difference
between fragments.

The software tool CHAINER, a part of CoCoNUT
[8,9], implements fragment chaining with linear gap
costs. AXTCHAIN, part of the UCSC genome browser
pipeline, also uses the linear gap model [10,11]. The
tool expects pairwise alignments alignments as in-
put and hence cannot be used “as is” with plain
fragment files produced from external applications.
The SeqAn library provides algorithms for fragment
chaining with different gap cost models [12]. A run-
ning tool that implements these models, however, is
not available at present.

Implementation

We implemented the local fragment chaining algo-
rithm introduced by [4,6]. In addition to the linear
gap cost model in CHAINER, the more flexible sum-
of-pair gap cost model has been incorporated for the
first time in a standalone tool.



The chaining algorithm is based on sparse dynamic
programming [13], since for any fragment only a
small set of possible predecessors needs to be con-
sidered in order to find the optimal one. More pre-
cisely, the optimal predecessor is a non-overlapping
chain preceding the fragment in both database and
query sequence that leads to the maximal combined
score considering the gap cost penalty between them.
In the case of local fragment chaining, the frag-
ment is chained to the optimal predecessor only if
its score is equal to or higher than the necessary gap
costs. Using theoretical results on both gap cost
models [4], priorities can be assigned to chains in
such a way that the optimal predecessor has the
maximal priority. Using the line-sweep paradigm,
the algorithm scans through the list of fragment
start and end points ordered by their database po-
sition. For any start point, the optimal predeces-
sor is identified by means of range maximum queries
(RMQs) over the set of active chains, i.e., chains only
comprised of fragments with already processed end
points. The RMQ reports the element with maximal
priority within a given range that involves only non-
overlapping chains preceding the current fragment
in both database and query sequence. For any end
point, a novel chain is generated by connecting the
optimal predecessor to the current fragment and is
marked as active. In the end, the algorithm groups
together chains with common first fragment and re-
ports the best-scoring chain of each group. Note that
a fragment does not necessarily have to be the first
fragment of any best-scoring chain.

In contrast to CHAINER, we implemented Johnson
priority queues [14] and range trees padded with
Johnson priority queues instead of simple kd-trees
to support RMQs. One-dimensional RMQs are an-
swered using Johnson priority queues, i.e., semi-
dynamic tree structures permitting non-recursive bi-
nary searches on tree paths. The priority domain,
i.e., the range of possible priorities, is defined at
the point of initialization. Hence, the balanced
tree structure provides binary search information
at tree nodes. In order to condense the priority
domain, we linked the priorities to the sorting or-
der of all potential elements. Let n be the length
of the priority domain. Johnson priority queues
support predecessor, successor, insert, and delete
operations in O(log(log(n))) time. To efficiently
implement sum-of-pair gap costs we need to con-
sider two distinct sorting dimensions [4]. For the

two-dimensional RMQs, range trees were padded
with Johnson queues (see Figure 2). More pre-
cisely, the range tree is a primary binary search tree
for all elements sorted by their first-dimension or-
der. Additionally, each node v stores a Johnson
priority queue containing all elements in the sub-
tree beneath v, referred to as the canonical sub-
set C'S(v). Elements in Johnson priority queues
are sorted by the second-dimension order. In sum-
mary, the implemented fragment chaining algorithm
requires O(nlog(n)) in time with linear gap costs
and O(nlog(n)log(log(n))) in time with sum-of-pair
gap costs.

Because the database is typically much larger than
the query sequence, we introduced a novel cluster-
ing approach to facilitate local fragment chaining.
It first pools neighboring fragments in a single linear
scan using the following observation: Let f and f’
be two adjacent non-overlapping fragments on the
database sequence. Clearly, f’ and f may never be
chained and can be assigned to different clusters if

)\gsopAw(fl’ f) + mln{o’ Egsop - )\gsop} : maxy

> MaZscore  (3)

where maxscore is the highest possible chain score
and maz, is the maximal distance of fragments on
the query sequence. Note that mazxscore is bounded
from above by the length of the query multiplied
by the maximal score per fragment position. Es-
timates of mawscore and max, are calculated and
updated during the linear scan. Each of the clusters
can be chained separately, improving both running
time and memory consumption. In the worst case,
all fragments are in the same cluster leading to the
same performance as without clustering. We incor-
porated clustering in local fragment chaining with
linear gap costs using an analogous condition.

More details on the implemented data structures and
the chaining algorithm can be found in the Addi-
tional file 1.

Results and Discussion
Performance Tests

In order to evaluate the performance of clasp us-
ing linear gap costs with €5, = 1 and A;,, = 1, we
compared it to CHAINER v3.0 with options -1 -1w 1
producing comparable scores. Each simulated data



set contained fragments of length 100 covering 1KB
query sequences, uniformly sampled from a virtual
100KB large database. Scores were sampled from
a normal distribution. Both programs were exe-
cuted single-threaded on the same 64-Bit machine
with equal data sets. Moreover, the performance of
clasp was analyzed with and without the use of our
clustering method. The results for different num-
bers of sampled fragments are shown in Figures 3
and 4. We measured the performance in terms of
running time in user mode and peak virtual mem-
ory consumption. In terms of running time, clasp
outperforms CHAINER in any tested setting at the ex-
pense of a three-fold increase memory consumption
during execution. Due to the uniform distribution of
query sequences the use of clustering only leads to a
minor performance improvement. In each test case,
the quality of the chains was assessed by comparing
the distributions of chain scores reported by both
programs. In a few cases, only marginal differences
between clasp and CHAINER were observed. These
differences do not require further attention from our
side.

Application: Homology searches with Human box
H/ACA snoRNAs

To assess the performance of clasp in real-life ap-
plications, a sequence-based homology search was
carried out. Human box H/ACA snoRNA fami-
lies, an important class of structured RNAs, were
selected to identify potentially homologous regions
in Mus musculus. BLAST fails to report sufficiently
long hits but, e.g., in the case of Human H/ACA
snoRNA 42 (SNORA42 in the snoRNABase [15]),
dumps more than 10 millions short hits in the mouse
genome when executed in a very sensitive mode with
small word sizes and high minimum expectation val-
ues (options: -W 8 -e le+20 -F F).

We executed clasp using the sum-of-pair cost model
with €g,,, = 0, Ag,,, = 0.5 (only punish for dis-
tance differences with half of the match score) frag-
ment scores according to the length of the BLAST hit,
and a minimal required chain score of 30. The use
of clustering greatly reduced the memory require-
ments: Instead of more than 100GB, the fragment
chaining on the 1.2GB BLAST output file consumed
only 1.6GB and took less than 5 minutes on a single
2.33GHz 64-Bit Intel Xeon CPU. In the end, clasp

reported 17 chains in disjoint regions of the mouse
genome. In order to check for conservation of H-
box and the ACA-motif, the mouse candidates were
aligned to the initial Human H/ACA snoRNA 42 se-
quence using the multiple alignment tool ClustalW
[16]. We further checked the secondary structure
conservation and stability by folding each candidate
using RNAsubopt [17] with constraints, i.e., demand-
ing single-stranded regions at the H-box and ACA-
motif. In total, we identified 7 of the 17 regions
as H/ACA snoRNA candidates homologous to the
Human H/ACA snoRNA 42 (see Additional file 2).
The sequence alignment of the final candidates and
the Human H/ACA snoRNA 42 including consen-
sus secondary structure and sequence conservation is
shown in Figure 5. By checking with previous anno-
tations, all of the final candidates were confirmed as
snoRNA orthologs by the Ensembl database [18,19].
However, ncRNAs in the Ensembl database were
annotated using extensive Infernal screens with
Rfam covariance models [20], i.e., profile stochastic
context-free grammars comprising primary sequence
and secondary structure information.

To illustrate the benefits of the sum-of-pair gap cost
model, we additionally compared the performance
of clasp using both models in a snoRNA homol-
ogy search experiment. We selected the entire set
of 19 annotated Human SNORA42 homologs in the
Ensembl database as a positive set. In the compar-
ative study, clasp was executed with sum-of-pair
gap costs (with ey, = 0, Ag,,, = 0.5) and linear
gap costs with several different parameter selections
(g, = Ag, = 0.01,0.05,...,4,8). For each parame-
ter setting, the true positive rate (i.e., the fraction
of SNORA42 that was covered by at least one chain)
was recorded with respect to the total number of re-
ported chains, a function of the minimum required
chain score. In the average as well as the best case
of parameter selection the linear gap cost is outper-
formed by the sum-of-pair model (Figure 6). Using
sum-of-pair, eleven out of 19 annotated snoRNAs are
among the 19 best chains. With linear gap costs and
optimal parameter settings a list of 900 best scoring
chains has to be scanned to find the same number
of annotated snoRNAs (49-fold increase). With sub-
optimal parameters, about 6000 chains (314-fold in-
crease) need to be screened on average to retrieve
the same amount of snoRNAs.

Using the same methods and parameters as in
the search for homologs, the Human genome was



screened with the entire set of annotated Human
H/ACA snoRNAs in the snoRNABase to identify di-
vergent paralogs. Fragment chaining of the 155GB
of BLAST output, comprising more than 1.3x10? hits,
took only 11 hours on a single 2.27GHz 64-Bit Intel
Xeon CPU with a peak virtual memory consumption
of 18GB. In the end, 2294 non-overlapping chains
were reported with sum-of-pair gap costs. Requir-
ing conservation in the H-box, the ACA-motif, as
well as in the secondary structure, 1550 candidates
were retained. To filter out non-paralogous regions
different sequence identity cutoffs in the ClustalW
alignment to known Human H/ACA snoRNAs were
applied. The number of remaining chains including
their fragment counts and their overlap with exist-
ing annotations are summarized in Table 1. The
annotations comprise the snoRNABase, the set of
snoRNAs and snoRNA pseudogenes from the En-
sembl database and the Eddy-BLAST-snorna lib.
The latter is a set of snoRNA candidates retrieved by
post-processing WU-BLAST screens starting from Hu-
man snoRNAs [21]. By requiring more than 70 %
sequence identity to a snoRNABase annotated se-
quence, our set of final candidates comprises 295 se-
quence of which 187 are not annotated in the snoRN-
ABase (see Additional file 3). 29 final candidates
were not previously annotated in the snoRNABase
and are detectable only by chaining two or more
BLAST hits. Overall, more than 98% of the final
candidates have been annotated previously, most of
them by the covariance approach of the Ensembl
database. This points out the high accuracy of this
rather simple homology search. Figure 7 shows a
region that was identified with a chain of only 3
fragments. It is a paralog to the Human H/ACA
snoRNA 77 (SNORATT7 in the snoRNABase) from
the set of remaining unknown snoRNA candidates.

Conclusions

Local alignment heuristics may fail to retrieve se-
quence families with scattered conservation. Chain-
ing of short match fragments can overcome this limi-
tation, thereby substantially enhancing the effective
sensitivity of BLAST and similar approaches in ho-
mology search. The clasp tool implements a fast lo-
cal fragment chaining algorithm supporting the lin-
ear and the sum-of-pair gap model. The latter is
available for the first time in a running tool and is
particularly suitable to cope with scattered sequence

conservation, e.g., evolutionary conserved structured
ncRNAs. In this field of application, it outperforms
optimized linear gap models in terms of accuracy and
sensitivity. We showed that the usage of Johnson
priority queues greatly improves the runtime per-
formance in comparison to the only existing frag-
ment chaining tool CHAINER. The presented cluster-
ing approach allows clasp to tackle large amounts of
short match data generated by alignment heuristics
such as segemehl or BLAST. In a simple homology
search with H/ACA snoRNAs, we were able to iden-
tify 7 H/ACA snoRNA candidates in mouse, all con-
firmed by the annotation in the Ensembl database.
A large-scale survey for Human H/ACA snoRNA
paralogs yielded 295 candidates with more than 70%
sequence identity to Human H/ACA snoRNAs from
the snoRNABase. More than 98% of the candidates
have been annotated previously, in particular with
respect to the extensive Ensembl ncRNA screens,
emphasizing the high specificity of this rather sim-
ple homology search.
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Figures
Figure 1 - Graphical representation of fragment and chaining connections

Graphical representation of fragment as blocks with their respective database and query positions. All valid
chaining connections are depicted as edges including their distance on database x and query sequence y.
Note that f; and f3 can not be chained due to their overlap on the query sequence .
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Figure 2 - lllustration of a Johnson priority queue enhanced range tree as stratified tree structure

Illustration of the stratified tree structure consisting of a primary binary search tree sorted by the first-
dimension order padded with Johnson priority queues in each node sorted by the second-dimension order.

Johnson priority queue
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Figure 3 - Comparison of running times between clasp and CHAINER

Average running time for clasp (linear gap costs with €5, = 1, Ay, = 1) and CHAINER (options: -1 -1lw 1)
by chaining different numbers of randomly generated fragments of length 100 between a 1 KB large query
sequence virtual 100 KB large database under the linear gap cost model. Comparison of running time
between use of clustering (by default) and no clustering in clasp with equal data sets shown in inlay plot
(same units on axes).
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Figure 4 - Comparison of peak virtual memory usage between clasp and CHAINER

Peak virtual memory usage for clasp using linear gap costs with 5, =1, Ay, = 1 (with and without cluster-
ing) and CHAINER (with options -1 -1w 1) by chaining different number of randomly generated fragments
of length 100 between a 1 KB large query sequence virtual 100 KB large database under the linear gap cost
model.
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Figure 5 - Alignment of Human H/ACA snoRNA 42 and homologous H/ACA snoRNA candidates in
mouse retrieved by BLAST and clasp with sum-of-pair gap costs

Alignment of the Human H/ACA snoRNA 42 (SNORA42 in the snoRNABase) and 7 H/ACA snoRNA
candidates in mouse retrieved by combined use of BLAST (with options -W 8 -e 1e+20 -F F) and clasp
(sum-of-pair gap costs with €., = 0, Ag,,, = 0.5, fragment scores according to the length of the BLAST
hit, and a minimal required chain score of 30). Sequence alignment and consensus secondary structure were
computed using ClustalW and RNAalifold with constraints, i.e. demanding single-stranded regions at the
H-box (blue rectangle) and ACA-motif (green rectangle).
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Figure 6 - Comparison between sum-of-pair gap costs and linear gap costs in the retrieval of Ensemble
annotated SNORA42 homologs in mouse

The figure shows the true positive rate (TPR) for identifying Ensembl-annotated Human SNORA42 homologs
with respect to the total number of reported chains for both linear and sum-of-pair gap cost models. Note,
that the number of reported chains for a given parameter set is entirely determined by the minimum required
chain score. The average TPR of clasp using the linear gap cost model (dashed red line) is significantly
lower compared to sum-of-pair gap cost model (solid black line). However, the performance of chaining with
linear gap cost models heavily depends on the selection of parameters (shaded area).
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Figure 7 - Alignment of Human H/ACA snoRNA 77 and paralogous H/ACA snoRNA candidate retrieved
by BLAST and clasp with sum-of-pair gap costs

Alignment of the Human H/ACA snoRNA 77 (SNORA77 in the snoRNABase) and a novel paralogous
H/ACA snoRNA candidate retrieved by combined use of BLAST (options: -W 8 -e 1e+20 -F F) and clasp
(sum-of-pair gap costs with €., = 0, Ag,,, = 0.5, fragment scores according to the length of the BLAST
hit, and a minimal required chain score of 30). It shows a highly conserved H-box (blue rectangle) and
ACA-motif (green rectangle) as well as high secondary structure conservation with two separate stem loop
regions. Despite a sequence identity score of 70 reported by ClustalW, BLAST was capable to retrieve only 3
short regions, marked by red rectangles, none of which individually provides sufficient evidence of homology.

HACA 63_H sapi ens
HACA_63-7_H_sapi ens
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Tables

Table 1 - Novel candidates of Human H/ACA snoRNA paralogs

Summary of H/ACA snoRNA candidates in Homo sapiens including their fragment counts and their overlap
with previous annotations, i.e., the snoRNABase, the set of snoRNAs and snoRNA pseudogenes from the
Ensembl database and the Eddy-BLAST-snornalib in the UCSC RNAGenes track. The candidates were
retrieved by combined use of BLAST (with options -W 8 -e 1e+20 -F F) and clasp (sum-of-pair gap costs

with e, =0, A

gsop

= 0.5, fragment scores according to the length of the BLAST hit, and a minimal required

chain score of 30) with the entire set of Human H/ACA snoRNAs, annotated in the snoRNABase. Each
candidate shows a highly conserved H box and ACA motif as well as high secondary structure conservation
with two separate stem loop regions. Moreover, several different sequence identity scores in the ClustalW
alignment to a known Human H/ACA snoRNA were required.

sequence | fragments | number of annotated candidate regions in % unknown
identity | per chain chains snoRNABase Ensembl Eddy-BLAST-snornalib
1 286 37.8 94.4 84.3 6
2 29 0 69 86.2 3
> 60% >3 10 0 70 60 3
all 325 33.2 91.4 83.7 12
1 266 40.6 97.7 84.6 3
2 21 0 85.7 95.2 0
> 10% > 3 8 0 87.5 75 1
all 295 36.6 96.6 85.1 4
1 233 46.4 98.7 85 1
2 10 0 90 100 0
> 80% >3 2 0 100 100 0
all 245 44.1 98.4 85.7 1
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Additional Files
Additional file 1 — More detailed description of data structures and chaining algorithm

Text file containing a more detailed description on the implemented data structures, i.e., Johnson priority
queues and range trees, as well as on the chaining algorithm with both gap costs models and the clustering
approach.

Additional file 2 — Candidates of Human H/ACA snoRNA 42 homologs in mouse

Archive file containing genomic coordinates and sequences of the 7 final candidates of Human H/ACA
snoRNA 42 (SNORA42) homologs found in mouse (mm9).

Additional file 3 — Candidates of Human H/ACA snoRNA paralogs

Archive file containing genomic coordinates and sequences of the final candidates of Human H/ACA snoR-
NAs paralogs, i.e., candidate set requiring more than 70 % sequence identity to a snoRNABase annotated
sequence, found in human (hgl8) including the query sequences from the snoRNABase.
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