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There are many parallels between historical linguistics and molecular phylogenetics. In this

paper we describe an algorithmic pipeline that mimics, as closely as possible, the traditional

workflow of language reconstruction known as the comparative method. The pipeline consists
of suitably modified algorithms based on recent research in bioinformatics, that are adapted to the

specifics of linguistic data. This approach can alleviate much of the laborious research needed to

establish proof of historical relationships between languages. Equally important to our proposal

is that each step in the workflow of the comparative method is implemented independently, so

language specialists have the possibility to scrutinize intermediate results. We have used our

pipeline to investigate two groups of languages, the Tsezic languages from the Caucasus and

the Mataco-Guaicuruan languages from South America, based on the lexical data from the

Intercontinental Dictionary Series (IDS). The results of these tests show that the current

approach is a viable and useful extension to historical linguistic research.

1. Introduction

Molecular phylogenetics and historical linguistics are both concerned with the recon-
struction of evolutionary histories, the former of biological organisms, the latter of
human languages. Even the underlying data structure — sequences of characters —
are very similar, and the evolutionary process can in both cases be modeled as a change
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of characters influenced by environmental factors. Both fields eventually reconstruct
histories by comparing related sequences and tracking their changes. The apparent sim-
ilarity of these fields has prompted various methodological comparisons, see (Stevick
1963; Platnick and Cameron 1977) for some early visions, (Whitfield 2008) for a recent
review, and (Atkinson and Gray 2005) for a historical overview.

A major distinction between research in historical linguistics and evolutionary
biology concerns the application of computational methods. In the biological context,
computational methods play a dominating role due to the availability of extensive
sequence databases and due to sequences that are much too long to be handled by
manual inspection. In contrast, computational approaches have not taken an equally
strong hold in historical linguistics, presumably because cross-language comparisons of
small sets of words can be handled by human experts and because only a tiny fraction
of linguistic data is readily available in machine-readable form.

There is a recent surge in computational studies in historical linguistics, which
tackle the reconstruction of language phylogenies using typological characteristics and
wordlists. These studies employ computational methods from molecular phylogenet-
ics, for example utilizing Maximum Parsimony algorithms (Gray and Jordan 2000;
Holden 2002; Rexová, Frynta, and Zrzavý 2002; Dunn et al. 2005; Rexová, Bastin, and
Frynta 2006) or Maximum Compatibility algorithms (Warnow 1997; Ringe, Warnow,
and Taylor 2002; Nakhleh, Ringe, and Warnow 2005). A distance-based study of the
Indo-European languages can be found in (Serva and Petroni 2008). Further, stochas-
tic models of language evolution are required to employ Maximum Likelihood and
Bayesian approaches. Models for lexical replacement (Gray and Atkinson 2003; Gray,
Drummond, and Greenhill 2009; Kitchen et al. 2009), typological features (Dediu 2010),
and combinations thereof (Greenhill et al. 2010) have been developed in recent years.

This line of research presents a long overdue innovation of the study of language
history. However, we believe that the traditional approach to historical linguistics,
known as the comparative method (Campbell 2004), can likewise profit from the com-
putational toolkit as developed in the field of bioinformatics in the last few decades.
Even more so as the basic evidence used for language reconstruction in the compar-
ative method (sound change) is in essence very similar to the underlying process of
biological evolution (nucleotide mutation and recombination) as both concern changes
in character sequences.

Despite the fact that the workflow in the comparative method is quite well stan-
dardized, and many of the necessary computational tools are available, there is only a
very limited, and not very active, literature on computational approaches to the compar-
ative method (Hewson 1973, 1993; Hartman 1981; Muzaffar 1997; Lowe and Mazaudon
1994; Lowe 1995; Covington 1996; Boitet and Whitelock 1998). Recently, two important
steps in the workflow of the comparative method (viz. cognate identification and char-
acter alignment) have received renewed computational interest. Cognate identification
has been automatized in severalways. In (Kondrak 2002) pairwise alignments similarity
is used, combined with semantic similarity extracted from WordNet (Fellbaum 1998),
while (Kondrak 2005) employs n-gram similarity. The two approaches are combined
in (Cysouw and Jung 2007). Similarities based on the consonant skeleton of the words
is exploited in (Starostin 2008). Alignments of characters was approached qualitatively
by (Heggarty 2000) and quantitatively by (Kondrak 2000). Alignments within words
are computed with a scoring model based on a priori defined characters features in
(Kondrak 2003; Heeringa 2004). Using the same scoring scheme, multiple alignments
can be created by a profile Hidden Markov Model (Kondrak 2009) or using iterative
strategies (Prokić, Wieling, and Nerbonne 2009).
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D: Multiple alignments

F: Pattern learning

C: Filterimg using meaning

G: Phylogeny Inference

B: Clustering by alignmnent score

A: Pairwise alignments E: Refining using correspondences

Figure 1
Overview of the steps in the pipeline.

Although the application of computational methods is by no means pervasive in
historical linguistics, their usefulness has been amply demonstrated. The next step to
be taken is to combine the various approaches into pipelines that can assist historical
linguistics in the search for a better understanding of language (pre-)history. The com-
putational pipeline described in this paper was explicitly designed to implement the
workflow of the comparative method, much in the spirit of (Lowe andMazaudon 1994),
using suitably modified and adapted algorithms from the toolkit of bioinformatics. The
different steps of the pipeline will be first described in Section 2 without delving into
practical details, but rather focussing on general principles. The details of the implemen-
tation are presented in Section 3. Two case studies are presented, one on the Tsezic lan-
guages from the Caucasus in Section 4, and one on the Mataco-Guaicuruan languages
from South America in Section 5, using data from the Intercontinental Dictionary Series
(Key and Comrie 2007). We choose these two illustrative test cases because they are
of a rather different kind: one example (Tsezic) should be relatively straightforward,
and the other case (Mataco-Guiacuruan) should be difficult, or even impossible because
the groups might not even be related. Further, we decided to aim for two groups from
completely different parts of the world, and there should be lexical data available in
larger amounts (at least about 1000 words per language) for more than five languages
for each case (so we could test multi-way alignments). Finally, the data should have a
comparable orthography for all languages in each group. Given these restrictions, it is
actually not easy to find suitable groups at the current stage of digitization of lexical
data, so we were happy to at least have the two current test cases for our research.

2. Organization of the pipeline

2.1 Input

Our algorithmic pipeline is subdivided into various separate steps, as detailed in
Figure 1. In this section we outline the organization of the pipeline. Details on the
implementation of the individual components can be found in the subsequent Methods
section 3.

The required input data for our pipeline are word lists alike to the well-known
Swadesh-lists (Swadesh 1950). Basically, such lists consist of a set of meanings, and for
each of these meanings translations into the object languages are collected. In practice,
this means that our pipeline starts from a set of parallel dictionaries in the different lan-
guages to be compared. In the Swadesh tradition there is normally an attempt to restrict
the set of meanings to such ones that are supposedly slowly changing, but our approach
does not apply such a restriction. We search for regular sounds correspondences, and
not for lexical replacements. To be able to find regular correspondences, we will need

3



Manuscript BIOINF 10-038

all data that we can possible get. Further, loanwords should in principle be detectable
in the same fashion as they are detectable in the comparative method, namely by using
characteristic sub-regularities in the sound correspondences as indications for different
strata in the lexicon.

In addition to the preparation of parallel dictionaries, the orthographies have to be
harmonized across the languages under investigation. In practice, our pipeline assumes
that the input data uses the same orthographic representation throughout. Preferably,
the orthography uses some kind of phonological or even phonetic representation,
though this is not necessary as long as the orthography remains constant. Further, a
pre-classification of characters is required such that at least vowels and consonants are
distinguished. Ourworkflow in itself can accept amore fine-grained pre-classification of
the difference characters, up to the point of a detailed pre-determined metric of sounds,
as used for example by (Kondrak 2003; Heeringa 2004). But minimally a separation of
vowels and consonants is used, which already gives reasonable results, arguing that it
might not be necessary to provide more detailed knowledge about the precise meaning
of the orthographic symbols. The current attempt to not use more fine-grained infor-
mation about the similarity between characters (e.g. directional preferences of sound
change) can be seen as a necessary first round of analysis using minimal assumptions.
Only if such minimal assumptions turn out to be insufficient, more information should
be added. We do not think it to be methodologically proper to add all possibly relevant
information from the outset, because then it becomes impossible to distinguish neces-
sary from non-necessary prior knowledge.

2.2 Cognates

The first processing step (Figure 1, step A, cf. Section 3.2) consists of a pairwise compar-
ison of words by means of a dynamic programming alignment algorithm (Needleman
and Wunsch 1970; Sellers 1974). Algorithmically, the problem is essentially the same as
in DNA or protein sequence comparison. In contrast to bioinformatics, however, the
linguistic setting requires a more elaborate scoring function that reflects rules of sound
changes and their context dependence, see e.g. (Kondrak 2003, 2009). Since this scoring
is not known from the outset, we resort to an iterative approach to learning the scoring
function from the data, cf. Section 3.7. We start from a very simple scoring scheme that
only considers matches between identical characters and distinguishes mismatches only
between vowels and consonants (cf. Section 3.1). It is plausible to assume that vowels
are more variable diachronically than consonants, thus mismatches between vowels are
penalized less than mismatches between consonants. Since consonants rarely evolve
into vowels and vice versa, mismatches between vowels and consonants carry the largest
penalty. In the second step of our pipeline preliminary cognate sets are identified by
using a clustering approach on the pairwise alignment scores (Figure 1, step B, cf.
Section 3.3).

In these first two steps of the pipeline only the form of the words influenced their
grouping into cognate sets. This results in many superficial lookalikes being grouped
together, simply because there is a reasonable chance of similar words arising inde-
pendently in different languages. To filter out such cases, the comparative method in
linguistics enforces the additional constraint that the meanings of the words in a cognate
set should also be similar. Likewise, we employ a filter to remove unlikely cognates
based on an approximation to the meaning of the words (Figure 1, step C, cf. Section
3.4). We approach similarity in meaning using a method inspired by semantic maps as
used in linguistic typology (Haspelmath 2003).
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Our cognate sets will include various kinds of related words that would not have
been called cognates in historical linguistics. There is a strong tradition in linguistics to
reserve the term “cognacy” for words that are related by descent (i.e. vertical transfer) in
opposition to “loanwords” for words that are related through borrowing (i.e. horizontal
transfer). Further, related words within one language would either be called “lectal
variants” or be analyzed as synchronic “derivations”. In this paper we consider all
these kinds of relations between words to be part of one superordinate kind of cognacy
(cf. the term “allofamy” in (Matisoff 1978)). Basically, in all these situations the words
themselves are reflexes of the same object, though the underlying processes that lead to
the current situation differ. From an empirical perspective, we think it is important to
distinguish the first step of the recognition of words belonging together (i.e. cognacy in
the wider definition) from the second step of deciding what kind of process has led to
this situation (e.g. distinguishing cognates, in the narrow sense, from loanwords).

Because most of the concrete cases in our current research are really cognates (in
the narrow sense of being the result of vertical transfer) we will simply use the term
“cognacy” here. However, for future research we think it would be highly valuable to
make this more all-encompassing perspective explicit by using the term “homology”
for the wider definition of related words, encompassing cognates, loanwords, lectal
variants and synchronic derivations. This usage of “homology” fits perfectly with the
way this term is used in evolutionary biology (Wagner 2007; Scotland 2010).

2.3 Correspondences

In the next step of our pipeline, the cognate sets are combined to extract correspondence
sets, i.e., patterns of corresponding characters in equivalent positions of cognates. In
bioinformatics, this step corresponds to the construction of multiple alignments from
the collection of initial pairwise alignments. Although the multiple sequence align-
ment problem is NP-complete (Wang and Jiang 1994; Just 2001), many excellent ap-
proximation algorithms, such as Clustal W (Larkin et al. 2007), tcoffee (Wallace
et al. 2006), muscle (Edgar 2004), or mafft (Katoh et al. 2005), are routinely used
very successfully in bioinformatics applications. We here use a similar, but specifically
tweaked, progressive alignment algorithm that is more geared towards linguistic data
by starting with simultaneous exact alignments of up to four words (Figure 1, step D,
cf. Section 3.5). Using more than two words in a single step increases the accuracy of the
resulting alignment by reducing the inconsistencies within sets of pairwise alignments,
see (Colbourn and Kumar 2007).

Correspondence sets in historical linguistics are the columns in a multiple align-
ment of cognates, or more precisely, the distinct patterns of characters that appear in
these columns. Correspondence sets that appear multiple times in the data represent
regular transformations between the languages, and hence more strongly support the
hypothesis of common ancestry. Thus, we filter the cognate sets again, disregarding
candidate cognates that are related only by correspondence sets that appear very rarely
throughout the entire data set (Figure 1, step E, cf. Section 3.6).

From these refined cognate sets we learn highly conserved correspondence sets
and their combinations with the help of the LZ78 Algorithm (Ziv and Lempel 1978).
The patterns learned are then used to refine and revise the scoring model of both the
pairwise and the multiple alignments (Figure 1, step F, cf. Section 3.7). The entire proce-
dure is then repeated to producemore accurate alignments, more complete cognate sets,
and more refined correspondence sets. It is possible in principle to iterate this process
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more often. We found, however, that only the first two iterations led to significant
improvements.

2.4 Phylogenetic inference

The resulting cognate sets and their multiple character alignments form the basis for
the inference of language phylogeny. Basically, there are two different approaches to
use this information for the reconstruction of language history. First, the regular sound
changes can be used to infer a tree, parallel to the comparative method in historical
linguistics. From this perspective the multiple character alignments are used for the
phylogenetic inference. Second, the cognate sets themselves also contain phylogenetic
information. Recording the presence/absence of a member of a cognate set within a
particular meaning can be used for historical interpretation, parallel to the Swadesh-list
approach.

In both these approaches the input for the phylogeny inferencewill have the form of
a so-called “character matrix” (or maybe better “characteristic matrix”) with languages
as rows and any comparative characteristics as columns. In the first approach (the one
alike to the comparative method) the columns are the multiple character alignments
themselves. In the second approach, the columns are defined by specific meanings,
and the available cognates within the boundary of such a meaning are marked as
having identical characteristics. Although these two interpretations of the data are not
completely independent of each other, they show rather different aspects of the data.
For example, cognates without any change in their sound structure do not contain any
phylogenetic information as far as the first approach is concerned (because all characters
are identical), but they might be informative as far as the attested distribution over
meanings is concerned (an thus be actually quantifying meaning change).

Several distinct approaches are utilized in bioinformatics to infer the most plausible
tree from any set of such data. In parsimony methods (Fitch 1971; Sankoff 1975), the
task is to find a tree that minimizes the total substitution score required to explain
all columns. Alternatively, the character matrix is translated into pairwise distances of
the languages by defining a metric on the rows. This is actually the most widespread
approach in the linguistic literature when using Swadesh-type lists for historical com-
parison. Basically, the distance between two languages is defined there through a suit-
able function on the number of pairwise non-cognates in the columns of the matrix.
When using pairwise distances, the Neighbor Joining algorithm (Saitou andNei 1987) is
preferably used to infer the language tree. Finally, when stochastic models are available,
Maximum Likelihood methods (Felsenstein 1973) can be employed.

There is a crucial difference between the approach to tree building as sketched out
here (and as is commonly found in molecular phylogenetics) and as it is performed
by the comparative method in historical linguistics. This difference concerns the way
how the reconstruction of historical directionality is handled. In simple terms, the com-
parative method in linguistics states that first the ancestral sounds and the direction of
attested sound changes has to be inferred from the correspondence sets. This inference
is performed using phonetic argumentation or experiences from earlier research (thus
assuming a universal model of sound change). On the basis of such assumed directional
changes a tree can be constructed. Conversely (and again strongly simplified), one of the
central innovations from computational phylogenetics in biology is the insight that the
structure of the tree (the “topology”) can be inferred without assuming directionality.
The distribution of characteristics is sufficient to infer an unrooted tree. The question of
directionality then reduced to the problem of finding the root. The problem of establish-
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ing a root in an unrooted tree is far from trivial in practice, and we will not delve into
that problem in this paper. In our case studies in Sections 4 and 5 we will simply use
a heuristic method called “midpoint rooting” and compare this to linguistic consensus.
This method, which places the root in the most central position of tree assuming that all
branches evolve with similar rates, is not very satisfactory. Themost common procedure
in biology — outgroup rooting (Maddison, Donoghue, and Maddison 1984) — is in
most cases unusable for linguistics, because it assumes a far relative that still can be
compared to the set of languages under investigation. In molecular phylogenetics, sev-
eral alternative source of information, such as a molecular clock, non-reversible models
of DNA substitution, and innovations of complex features, have been investigated for
this purpose. More research is needed to find suitable methods for establishing the root
of language phylogenies.

Even in an unrooted tree, however, the sound changes will automatically be
mapped to the edges of the tree where they occur; we only lack information about the
direction in which they have taken place. Now, assuming a suitable root is found (which
might also be inferred from non-linguistic information like geography, archeology, or
genetics) the directions are automatically given. Using our simplistic rooting method,
we obtain linguistically sensible sound changes as reconstruction. This information
about preferred directional sound changes could in principle be used to again revise the
scoring model for the pairwise and multiple word alignments, starting a next iteration
of the process of finding cognates and correspondences.

A central aspect of the historical-comparative tradition is to propose actual proto-
forms to represent the reconstructed languages. We have not tried to emulate this step
of the traditional approach yet. Given the statistical output available from our method,
it should be possible to propose an even better approximation of the proto-forms as
traditionally possible, because it should be possible to produce probabilities for various
possible proto-forms, and not just one single reconstruction. All this, however, will have
to be postponed for future research.

2.5 Evaluation

Overall, we observe that the well-established methodology of molecular phylogenetics
can be transferred with only relatively minor modifications to implement the com-
parative method as used traditionally in linguistics to reconstruct language evolution.
The modifications have been incorporated into our computational procedure in order
to closely mimic the workflow of the comparative method and to provide access to
intermediate results, such as cognate sets, rules of sound change and reconstructions of
ancestral states, that play a central role in the linguistic discussion while their analogues
are usually of little interest in molecular phylogenetics.

Given the state of the art in historical linguistics, no uncontroversial gold standards
exist to test any approach against. However, intermediate results, when they are pre-
sented in a linguistically sensible way, can be evaluated manually by linguistic experts.
For example, automatically produced cognate sets can be provided for inspection to
linguists, either for correction, for testing, or for simply convincing specialists investi-
gating specific language groups that automatic approaches might not be foolproof, but
can be very helpful.

The pipeline is designed in such a way that intermediate results are available as the
output of onemodule, to be processed furtherwith the next module. Except for allowing
evaluation, this also presents the possibility for prior knowledge to be incorporated
into the workflow. For example, the pipeline can be used to align characters in known
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cognate sets. Also, it can be used to evaluate correspondence sets based on a known
language phylogeny or based on prior knowledge about rules of sound changes for
subsets of languages. Further, it can learn relations between the orthographies used for
different languages or accept character correspondences on input. Finally, the pipeline
can determine similarities of meanings based on cognate distributions, but this infor-
mation can also be supplied as input.

3. Methods

3.1 Alignment model

We use a basic string-edit model for the evaluation of alignments, distinguishing three
different terms in the scoring functions of our implementation: σ is the (mis)match
scoring function, δ is the deletion/insertion scoring function and κ is the contrac-
tion/expansion scoring function. Contractions (and their counterparts, expansions)
of sounds are a frequent phenomenon in languages evolution (Campbell 2004). For
example, correspondences between the English /sk/ and the German /S/, such as
evidenced by cognates like school−Schule, scale−Schale, or scarf−scharf, can of course
be modeled as a combination of a change and a deletion/insertion. However, it makes
more sense to consider this to be one single change, which formally has to bemodeled as
a contraction/expansion. This edit operation has no analog in bioinformatics and hence
alignment software developed for biological applications does not implement such
operations. Fortunately, a pairwise alignment algorithm that includes them is easily
constructed (Oommen 1995) and has been successfully applied in a linguistic context
(Kondrak 2000). Here we use a version that considers contractions of two sounds to a
single one as well as the corresponding expansions.

The dynamic programming recursions to establish the alignment score of two
words then reads as follows, where Sij is, as usual, the optimal score of an alignment
of the prefixes x[1, i] and y[1, j] of the words x and y. This dynamic programming
scheme generalizes directly to three-way and four-way alignments that can deal with
expansions and contractions.

Si,j = max































Si−1,j−1 + σ(i, j) (mis)match

Si−1,j + δ1(i) deletion

Si,j−1 + δ2(j) insertion

Si−2,j−1 + κ1(i− 1, i, j) contraction

Si−1,j−2 + κ2(j − 1, j, i) expansion

(1)

While alignment scores in a biological context are typically symmetric, and hence
most of the commonly used alignment programs implement symmetric scoring mod-
els, asymmetry is a crucial feature in language data. For example, when aligning
English with German words, one might find regular correspondences in word-initial
position between English /Ù/ and German /k/, as exemplified by cognate pairs
like church−Kirche, chalk−Kalk, and cheese−Käse. The reverse situation, however, does
not occur, i.e. German /Ù/ paired with English /k/. (Word-initial /Ù/ in German is
highly unusual, and mainly occurs in names like Tschechien or Tschetschenien. The only
regular English-German cognate pair with German word-initial /Ù/ known to us is
chirp−tschirpen.) So, in the course of learning and fine-tuning the alignment scores when
moving from English to German, the σ(Ù,k) will become higher (as it is a good match),
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while the σ(k,Ù) will become lower (as it is a badmatch). This asymmetry, as commonly
attested in linguistics, is not difficult to implement, but it will not come for free with
standard alignment implementations available in the bioinformatics community. Hence
the pairwise and multiple alignment tools specifically developed for our pipeline had
to be made aware of possible asymmetric scoring functions.

Note that this asymmetry is not making any claims about diachronic directionality.
Most linguists would assume that the change /k/→ /Ù/ is the preferred direction over
a change /Ù/→ /k/. This is an example of diachronic directional asymmetry. However,
the point here is that the underlying scoring function to evaluate cognates is asymmetric
in its own sense. From a linguistic perspective this observation is completely trivial, but
it is important to realize that this is different from common assumptions in molecular
phylogenetics.

Sound changes are often influenced by their context, i.e., by the surrounding
sounds. Hence, the scoring functions σ, δ and κ in equation (1) are implemented in
such a way as to allow for the inclusion of contextual factors In our current case studies
(cf. Sections 4 and 5) we have not yet used the power of such context dependencies for
the specification of the scoring. The difficulty is not so much the principle of learning
such contextual dependencies, but to fine-tune the learning in such a way as to produce
dependencies that are interesting for historical linguistics. Most contexts that are found
by automatic learning will rather refer to frequently occurring phonotactic patterns in
the data instead of diachronically significant contexts.

We have not implemented any attempt to handle metathesis, i.e. the exchange of
the position of sounds, as attested in the following examples comparing English with
Dutch: breast−borst, needle−naald, or fresh−vers.

3.2 Initial scoring model for pairwise alignments

The first step of our pipeline consists of a rough approximation of pairwise alignments
between all pairs of words from all pairs of languages. We define a simple initial
scoring model for this first step. The character alignment task is simplified substantially
when comparable orthographic systems are used. Given such data, we favor matches
of identical characters, setting a score σ(x, x) = 4. Mismatches of characters result in a
lower score. This rule cannot be used when the orthographic systems are incomparable,
though note that even completely different orthographies (e.g. latin and cyrillic) can
be matched approximatively when at least a few cognates or loanwords are available
(Cysouw and Jung 2007).

Except for the comparable orthographic representation, we furthermore require a
pre-classification of the characters into vowels and consonants for the initial iteration.
This initial scoring function then prefers matches of two arbitrary vowels, σ(V, V ) = 2
over matches of consonants, σ(C, C) = 1, and vowel/consonant mismatches are maxi-
mally dispreferred σ(C, V ) = 0. Optionally, a different list of correspondences between
characters that should be considered as “identical” can be supplied. For example, the
ASJP orthography (Brown et al. 2008) only distinguishes 41 symbols to represent all
possible sounds of the world’s languages, merging various different sounds into classes.
Such an approach implicitly presupposes a different initial σ function, and could easily
be included in our pipeline by defining this function accordingly.
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3.3 Preliminary clustering of pairwise alignments

The score relative to the optimal alignment of two words is used to preliminarily
distinguish cognates from non-cognates. To this end we employ an affine instead of
a constant or linear threshold value so that pairs of longer words may have a larger
number of mismatches before they are rejected, while short words are accepted as
cognates only when they are nearly identical. After some testing, we determined that
the threshold function

θ(ℓ1, ℓ2) = 4× [2 + 0.2(ℓ1 + ℓ2)] (2)

seems to perform sufficiently for the initial cognacy decision. Here, ℓ1 and ℓ2 are the
length of the two words and the factor 4 is the maximum attainable σ score for identical
characters. The underlying idea is that two words should reach a score higher than the
equivalent of two identical characters plus 40% of the average word length to pass. We
do not think that this definition of the threshold is ideal, but it worked sufficiently well
in our testing to proceed with the pipeline.

Preliminary cognate sets are then constructed from pairwise alignments. Consid-
ering each word a node in a graph Γ, we draw an edge between two words whenever
their pairwise alignment score exceeds the threshold value θ defined in equation (2). The
connected components of the resulting graph Γ are the preliminary cognate sets. The
well-known breadth-first search algorithm described already in (Hopcroft and Tarjan
1973) is used to determine the connected components in the graph.

3.4 Filtering of cognate sets using meaning

The overwhelming majority of cognates retain similar meanings. Nevertheless, the
meanings of many words change in the course of their historical development. The
search for cognate sets should thus not be restricted to expressions of identical meanings
across languages. Because it is difficult to decide which ‘similar meanings’ to include
in such a search, the approach taken in the first two steps of our pipeline completely
ignored meaning, and investigated only similarities in form. This approach strongly
overgeneralizes and produces many diachronically spurious sets of superficial look-
alikes. To filter out the real cognates from the look-alikes, we used a metric on meaning
inspired by the tradition of semantic maps as used in linguistic typology (Cysouw 2010).

In order to quantify meaning, we used two matrices S and D with entries con-
structed as follows: For every pair of meanings i and j, the entry Dij of D is the average
Levenshtein distance (Levenshtein 1966) of words with meanings i and j, averaged over
many different languages. Similarly, the entries Sij of S count how often the meanings i
and j are expressed by the sameword inmany different languages. Empirically, we used
the word lists of all Indo-European languages from the Intercontinental Dictionary Series
(Key and Comrie 2007) as the set of languages to determine these values. In total, data
for 29 Indo-European languages was available. Note that the matrices D and S could
also be computed from the input world lists themselves, provided the data set covers a
large enough set of languages. Such an approach would have the additional benefit that
locally occurring semantic shifts might be better represented in these approximations of
the similarity of meaning.

The idea behind these metrics is that similar meanings have a larger probability
to be expressed similarly in human language than different meanings. Individual lan-
guage might (and will) deviate strongly from general trends, but on average across
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many languages the formal similarity in the linguistic expression of meaning will reflect
the similarity in meaning itself. Small values of Dij thus indicate that the meanings are
often expressed by similar words across all languages, while large values of Sij provide
evidence that meanings i and j are likely to be expressed by related words, including
cognates, within a given language. This information can be used to identify unlikely
candidates for cognates.

The matrices S and D are of course strongly (inversely) correlated, because when
two meanings are expressed by the same word in a languages, then these two meanings
also will have a small Levenshtein distance. Nevertheless it make sense to use both
metrics, since they react with different sensitivities to different levels of semantic sim-
ilarity. For highly similar meanings, S will give the best results, because only highly
similar meanings will sometimes be expressed using the same word in any language.
However, this measure will quickly reach saturation, because differences in meaning
will quickly become too large to be expressed by the same word. The matrix D is a
more approximate, but more robust, measurement of semantic similarity. It will also
produce results over larger semantic ranges, while becoming rather imprecise in regions
of highly similar words, where in turn S is informative.

In the practical application of these approximation to meaning in our pipeline, the
averages D̄ and S̄ serve as thresholds. Two words are accepted as cognates if Dij <
D̄ and Sij > S̄. Using these constraints, we applied the following greedy procedure
to compile cognate sets: Each word x is tested against all other words in any already
established groups C whether x satisfies the above condition for each y ∈ C. If so, x is
retained in C. Otherwise a new cognate group {x} is created. At the end, all singletons,
i.e., words without cognates, are removed. There was no test data on which to base
our threshold decisions, and all thresholds proposed in this paper should thus be taken
as just preliminary proposals. The resulting cognate sets are therefore subsets of the
connected components of Γ described in Section 3.3.

3.5 Multi-way alignments

Computational efficiency of alignment algorithms is a major issue in computational
biology since the strings that need to be handled are usually very long, typically in
the range of n = 103 characters. The multiple sequence alignment problem is NP-
hard (Wang and Jiang 1994; Just 2001), hence heuristics are used in most applications
that compose multiple alignments from a collection of pairwise alignments. For our
problem at hand, however, the sequence lengths are small, because for most words
the number of characters n ≤ 10. This means that we can afford to solve the alignment
problem for 3 and 4 words exactly by means of dynamic programming. Exact dynamic
programming algorithms for three-way alignments have been used in computational
biology (Gotoh 1986; Konagurthu, Whisstock, and Stuckey 2004). Workable approaches
that avoid the computation of all entries in the dynamic tables also exist for more than
three sequences (Carrillo and Lipman 1988; Lipman, Altschul, and Kececioglu 1989;
Stoye 1998) but are rarely used because of their resource consumption. Since existing
tools are not applicable to our extended edit problem, we use our own implementation
which currently is restricted to simultaneous comparison of N ≤ 4 words. In order to
score alignments of N strings (“words”) the sum-of-pair cost model is used, i.e. the score
of a multiple alignment is the sum of the costs of the N(N − 1)/2 pairwise alignments
that are contained in it. In extension of previously available software, we use three-way
and four-way alignments that directly generalize the recursions in equation (1).
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Like pairwise alignments, three-way or four-way alignments can be combined into
multiple sequence alignments (Kruspe and Stadler 2007), an approach that leads to
significant increase in accuracy. Here we use a simple progressive alignment approach
inspired by clustalw, one of the most frequently used tools in computational biology
(Higgins, Thompson, and Gibson 1996). Instead of a binary guide tree, however, we use
a guide tree in which each interior node has up to four children. In each progressive
alignment step, the words (or alignments of words) associated with the 2 to 4 child-
nodes are aligned by the exact dynamic programming as outlined in the previous
paragraph. The guided tree is then constructed by amodified UPGMA clustering (Sokal
and Michener 1958). In our modification, we determine the two most similar words
x and y in each step, and then the two words u and v that are most similar to x or
y, respectively. These words become the children of the newly created node z. The
similarity matrix is updated by deleting the rows and columns belonging to u, v, x,
and y and inserting a row and column for z, whose distance dzq is the average distance
of u, v, x, and y to a word q.

This simple update rule can easily be replaced by a weighted average if more fine-
grained control is deemed necessary.

3.6 Analysis of Correspondence Sets

All correspondence sets are extracted from the multiple alignments as distinct columns.
Since most alignments do not contain words from all languages and dialects, most
correspondence sets are incomplete. In many cases, an incomplete correspondence set
Φ is contained in a larger one, Θ, in the sense that the patterns of Θ and Φ agree for
all languages that are represented in Φ. Clearly, Φ can be seen as support for every
correspondence set of which it is a subset. More generally, we say that two correspon-
dence sets are consistent if they are identical for all languages that are represented in
both of them. Consistent correspondence sets can be merged, representing the common
practice in historical linguistics tomergematching correspondences even if the evidence
is not available for all languages under investigation. However, there is not necessary
just one single possibility to merge correspondence sets. If Φ is consistent with two or
more mutually inconsistent correspondence sets Θi, we decided to merge Φ to the most
frequently occurring Θi. We use here a simple greedy heuristic to determine the order in
which cognate sets are merged. This problem to determine a suitable merging strategy
for incomplete correspondence sets is a problem that to our knowledge has never been
noted as a possible problem in the linguistic literature.

One reason for merging correspondence sets is that “missing” cognates distort the
estimated branch lengths by forcing transitions to ∅ from the reconstructed internal
nodes of the phylogenetic tree. The merged cognate sets make it possible to “recon-
struct” hypothetical words that either are missing from the data set, because the words
have either been lost completely from a given language, or because its meaning has
diverged too far so that it is not included in the data set, or because it has been removed
by the filtering steps of the cognate recognition algorithm.

A second filter for cognacy is then derived from these generalized correspondence
sets. Since only recurrent correspondences can be used in support for a common origin
of words, we retain only those correspondences that appear at least twice in the word
alignments. Candidate cognates that are not supported by the remaining correspon-
dences are rejected. This filter represents the constraint in the linguistic comparative
method that sound changes have to be regular, and cognates are only accepted when
they can be shown to be related by using regular sound changes. In our practice, for
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example, two or more cognate sets are sometimes lumped together in the initial align-
ments. Using the filtering on reliable correspondences allows us to split them into much
more plausible units. To this end, we start with an arbitrary word x in the alignment A

and determine for all words y ∈ A whether all correspondence sets connecting x and y
appear at least twice in the entire data set.

3.7 Learning regular correspondences

Recently, a modification of the classical LZ78 string compression algorithm (Ziv and
Lempel 1978) has shown to be highly efficient in learning recurrent patterns (Begleiter,
El-Yaniv, and Yona 2004). In the compression step, LZ78 step-by-step creates a dictio-
nary of the most frequently appearing patterns, irrespective of their length. When a pair
of aligned strings is fed to LZ78, the dictionary records recurrent local alignments. Since
our scoring model handles only patterns with a maximum length of four characters
including the context (cf. Section 3.1), we need to limit the size of recorded patterns. At
the same time, we are also interested in the frequency of the patterns. Both requirements
make it necessary to further modify LZ78, as shown in Algorithm 1.

Note that in our case data, pattern, suffix, and prefix are pairwise alignments instead
of simple strings. Step 2 to 8 are performed for all pairwise alignments referring to the
same pair of languages. When the algorithm has finished, the dictionary contains all
frequent local alignments and the frequency of their their occurrence across all cognates
of two languages.

Algorithm 1 Variant of the LZ78 algorithms to learn a dictionary of aligned patterns of
limited length
Input: pairwise_alignment data, integer limit /∗ max pattern size ∗/

1: dictionary← ∅

2: prefix← ′′

3: while (data 6= ∅) do
4: suffix← firstOf(data)
5: pattern← concatenate(prefix,suffix)
6: if (pattern /∈ dictionary) then
7: add pattern to dictionarywith frequency 1
8: else
9: increase frequency of pattern in dictionary by 1

10: if (length(pattern) ≥ limit) then
11: prefix← suffix
12: else
13: prefix← pattern

Based on the results of the learning algorithm, the scoring functions in our align-
ment model are refined. Substitution scores are derived from the patterns frequencies
using a logarithmic transformation. As an alternative, one might consider log-odds
substitution scores (Altschul et al. 2010), which have a more natural probabilistic in-
terpretation. However, our score for the substitution rule x→ y from language i to
language j is simply set to

σij(x, y) = 4
log(fij(x, y))

log fmax

(3)
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where fij(x, y) is the observed relative frequency and fmax is the maximal relative
frequency in the data set. The values are restricted to the interval [0, 4] to be compatible
with the initial scores, which are used for all substitutions that have not been sampled
in the first iteration. The score values of expansions and contractions are estimated
analogously, while gap scores are left unchanged.

3.8 Phylogenetic inference

Several distances matrices are derived from the cognate sets and the alignment data.
Neighbor joining (Saitou and Nei 1987), UPGMA clustering (Sokal and Michener 1958),
and split decomposition (Bandelt and Dress 1992) are used to construct phylogenetic
trees from these distance data.

One possibility to establish distances is to compute the total similarity score of all
aligned cognate pairs between two languages. To account for biases in coverage, this
value is normalized by the length of extracted pairwise alignments. The normalized
similarity scores can then be translated to a distances measure using e.g.

dα,β = (sα,α + sβ,β)/2− sα,β (4)

Alternatively, Holm’s Separation Base method (Holm 2000) can be employed. Here
one counts from the multiple alignments the number cα,β of alignments containing cog-
nates in languages α and β. In addition, for each language the number cα of alignments
containing a word from α is determined. The parameter

hα,β =
cαcβ

cα,β

(5)

measures a distance between the languages, based on the assumption that the probabil-
ity of finding cognates is hypergeometrically distributed. This method is used for both
data sets, Tsezic and Mataco-Guaicuruan.

A further distancemeasurement is based on the frequencies of n-grams. For any two
languages, their Pearson’s correlation rij coefficient provides a convenient similarity
measurement with rij ∈ [0, 1] (in the field of information retrieval this measurement
is more widely known as the cosine of the angle between the normalized n-gram
vectors). The corresponding distance measure is 1− rij . In bioinformatics, 3-grams are
commonly used e.g. in the context of gene expression analysis (Eisen et al. 1998), and in
linguistics it is known to functionwell as an approximation of genealogical relationships
(Huffman 2003).

Cognate sets can be used to define two different kinds of character tables. First, it
is possible to establish a table for all cognate sets in which all languages are coded by
“1” that have a representative in the cognate set, while non-represented languages are
coded by “0” A phylogenetic analysis of such a table basically quantifies the process
of chances in the vocabulary. The problematic assumption of this approach is that it
assumes that we have complete knowledge about the presence or absence of words in
all languages studied, which mostly we do not have. To remedy this problem, we use a
second method to establish a character table. By sampling a set of meanings, alike to the
approach used with words lists like the Swadesh list, we can construct a character table
for all these meanings by dividing the cognate sets into subgroups according to these
meanings. For each meaning as represented in each cognate set, all languages are coded
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by “1” that have a representative in this cognate set, while all other languages are coded
as “0”. Non-informative columns are immediately removed.

The character tables representing the presence or absence of a language in the cog-
nate sets are used to construct trees by Maximum Parsimony with either the standard
(Fitch 1971) or the Dollo (Farris 1977) model, which allows a word to be invented only
once in the tree. Given the fact that it is highly unlike in linguistics for the same word
to arise more than once in the same language, the Dollo parsimony assumption seems
to be the most useful one for linguistics data. We use the phylip package (Felsenstein
1998) for these calculations.

Finally, partial splits are derived from all alignments containing correspondence set
with at least one change. These can be used directly to infer phylogenetic trees (Semple
and Steel 2000). We use the implementations provided by SplitsTree (Huson and
Bryant 2006). Dendroscope (Huson et al. 2007) was used to visualize sound changes
and related information along the edges of language trees.

3.9 Evaluation of Alignments

In order to evaluate the performance of the alignment procedure we first determined
the trivial alignments, i.e., those that contain no or only a single sound change. These
are correct by construction. All remaining alignments were manually examined by lin-
guistic experts. Alignments were classified as incorrect when there is no correct cognate
pair included. Multiple alignments containing both correct and incorrect cognate pairs
are classified as partially correct. Alignments are deemed questionable if they could be
correct according to expertise but a definitive classification could not be made without
additional investigations into the particular case.

4. Application I: Tsezic

4.1 Data

The Tsezic languages, forming a subgroup of the Nakh-Daghestanian family of lan-
guages, are spoken in small mountain villages with about 500-7000 speakers each in
southern Daghestan, Russia. The family consists of five rather closely related languages
(Hunzib, Bezhta, Tsez, Hinukh, and Khvarshi), about two of which we have data
available for two dialects (viz. for Tsez and Khvarshi), so that our test data comprise
seven taxonomic units.

Historical-comparative studies on the Tsezic language family can be found in
(Bokarev 1959) and (Alekseev 2003). Opinions about the subgrouping of the Tsezic lan-
guages diverge. One of the first researchers of the Tsezic languages (Bokarev 1959) using
the comparative method, divides Tsezic into East Tsezic (Hunzib and Bezhta) and West
Tsezic (Tsez and Khvarshi) with Hinukh in between the two groups. Differently, Van
den Berg (van den Berg 1995) maintains that the West Tsezic languages comprise Tsez
and Hinukh, the East Tsezic languages Bezhta and Hunzib, while Khvarshi constitutes
a separate northern branch. Recent research (Nikolaev and Starostin 1994; Korjakov
2006) proposes the currently favored subgrouping of East Tsezic (comprising Hunzib
and Bezhta) and West Tsezic (comprising Khvarshi, Tsez and Hinukh). Nikolaev &
Starostin have used the historical-comparative method, whereas Korjakov has applied
the lexicostatistical method. Thus, there is a clear consensus that Hunzib and Bezhta
form one branch and that Tsez and Hinukh from another branch. There is no clear
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consensus on the placement of Khvarshi, though the preference of the current research
is that it should be grouped together with Tsez and Hinukh.

Our study is based on the lexical data collected by M. Š. Xalilov, which contains the
lexical equivalences of about 1300 meanings and are made available in the Interconti-
nental Dictionary Series (IDS) (Key and Comrie 2007). Specifically, our dataset consists of
12141 words distributed over 1288 meanings in 7 taxonomic units, i.e. 1.35 words per
meaning/language pair on average (see Supplemental Material A.1).

The Latinate orthographic representation used by Xalilov in the preparation of the
data is phonemic-based and distinguishing 79 characters throughout all languages, of
which 41 are consonant and 38 are vowels. Of the 41 consonants, 33 are used in all
languages, viz. /b c c’ č č’ d g h èQ k k’ l ¬ ¬’ ì m n p p’ q q’ r s š t t’ w x y G z ž/, while
8 are only used by some of the languages, viz. /f gw lj kw x̌ xw yn P/. The large number
of vowels arises because we treated all combination of cardinal vowels with diacritics
(representing length and nasalisation) as separate characters. Some preliminary tests
ignoring the diacritics did not change the results substantially. Like with the consonants
there is variation in the usage of cardinal vowels characters between the languages.
All languages use /a e i o u/, while only some languages use any of the remaining
characters /A ä ö ü 1/. The variation in the usage of these characters is not randomly
distributed across the languages. Actually, treating only the occurrence of characters
in the orthographic representation as a phylogenetic characteristic is already sufficient
to reconstruct the Tsezic family tree (see Supplemental Material A.2). This result is not
very surprising, as the phylogenetic analysis that is performed here actually represents
a crude attempt to reconstruct the evolution of the phoneme system, which is exactly the
underlying model of the comparative method. However, the important implication of this
quick result is that reconstructing the Tsezic family tree appears to be relatively easy, and
is possible with very limited data. The effort of more elaborate phylogenetic analyses
should thus be directed towards providing linguistically interpretable intermediate
results, like cognate sets, correspondences and sound changes.

4.2 Cognates and correspondences

Already the initial very simple scores produced high quality cognates. Not surprisingly,
short words (n ≤ 3 characters) are aligned with reduced precision, hence they were
excluded from pattern learning. With the refined scoring model we observe a signifi-
cantly improved recognition of cognates in particular for short words. After the second
iteration we obtained 6403 pairwise and 1387 multiple alignments (see Supplemental
Material A.4). It should be noted, however, that 76% of the pairwise and 87% of the
multiple alignments are trivial in the sense that they contain none, or only a single
sound change, i.e., only 13% of the multiple alignments contain parsimony-informative
columns. Expert evaluation by D. Forker showed that the overwhelming majority of
these were true cognate sets, see Table 1.

We observed that compound words can cause problems with the alignment pro-
cedure. In those cases in which the components of compound words are separated by
white-spaces, it is straightforward to split the data at the white-spaces and to handle
the components as separate words. In other cases, however, the split points have to be
determined based on the information contained within the multiple alignment. At the
moment no such remedy is implemented; cf. (Kondrak 2002) for a proposal how to deal
with this problem to ignore typically occurring non-aligned parts of the sequence at the
start and the end of words.
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Table 1
Evaluation of pairwise and multiple word alignments of the Tsezic data set.

Classification pairwise multiple
trivial 4904 1208
correct 1360 147
partially correct – 16
questionable 22 9
incorrect 117 7
total 6403 1387

Table 2
Summary of Tsezic cognate sets. Left: Distribution of the language coverage of cognate sets
(alignments). Right: Sets consisting of differing words from the same language.

Language set #align.

any comb’n of diff. lgs. 1252
only East Tsezic lgs. 77
only West Tsezic lgs. 768
East and West Tsezic lgs. 407
all languages included 56
all West Tsezic lgs. included 96
all East Tsezic lgs. included 250

Language #align.

only Bezhta 38
only Hunzib 21
only Hinukh 11
only Khvarshi Inxokvari 11
only Khvarshi Khvarshi 23
only Tsez Mokok 11
only Tsez Sagadin 20

The left part of Table 2 provides an overview of the distribution of languages over
the cognate sets identified. Despite the close relationships of languages and the fairly
small set of languages there are only 56 cognate sets covering all Tsezic languages. The
comparably large number of cognate sets within the West Tsezic branch is explained by
the dialect pairs for Khvarshi and Tsez. When only cognates sets are counted that cover
allWest Tsezic languages, we retain fewer cognate sets than in the Eastern branch,which
is statistically expected because the Eastern branch comprises fewer languages.

Various alignments proposed by our pipeline consists just of words from a single
language (see right side of Table 2). Such ‘monolingual cognate sets’ occur in each of
the seven taxonomic units. Such sets are a by-product of our all-inclusive approach of
searching for cognates, because we do not restrict our search to just single words per
language. All words from all languages are all compared to each other, so we are bound
to find examples of cognate sets with highly similar words from the same language, be it
because of lectal variation or through derivational processes producing similar lexemes
within one language. Now, it also sometimes happens that a cognate set as proposed
by our pipeline in the end only includes words from one single language. In such a
situation, it is of course illusive to speak of a ‘cognate set’ in the strict sense. However,
there is no way to exclude the occurrence of such ‘monolingual cognate sets’ from the
outset, though it is trivial to separate them post-hoc. As discussed in Section 2.2, we
propose to use the term homology for cognate sets in the wider sense, including these
language-specific ‘monolingual cognate sets’. Homologue words are simply words that
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Hunzib i š l - a p a
Bezhta i š l - a p’ a
Khvarshi Khvarshi i š l y a p a
Khvarshi Inxokvari i š l y a p a
Tsez Mokok š i l y a p a
Tsez Sagadin i š l - a p a
Hinukh š i l - a p a

Figure 2
Metathesis produces erroneous correspondence sets. The highlighted columns in the alignment
occur only in this particular example.

are formally related, be it through descent (vertical transfer), borrowing (horizontal
transfer), lectal variation, or structural processes within a language (or even, taking
this approach to its extreme, orthographic variants from different sources on the same
language). Our pipeline finds ‘homologue sets’, which we see as the first step in an
empirical approach to language phylogeny. The counts of cognate sets as presented in
the leftmost part of Table 2 exclude the monolingual homologue sets, which are listed
in the rightmost part of Table 2. However, we have not yet attempted to distinguish
between sets caused by horizontal transfer from sets originating from vertical transfer.

The pipeline identified 1902 correspondence sets, of which 1165 appear only once.
These were condensed to 251 distinct maximal correspondence sets using the greedy ap-
proach, of which 103 appear only once. Such a high number of correspondences is much
too high for a reasonable reconstruction according to the comparative method. Following
that method strictly, each correspondence set represents an ancestral phoneme, and a
language distinguishing hundreds of phonemes is highly unlikely. There are various
reasons for this high number of correspondence sets. Most importantly, we did not
search for contextual factors influencing differential behavior of ancestral phonemes.
Also, we have not yet tried to identify historical strata (i.e. horizontal influences), each
of which will ideally cause its own specific type of correspondences. Further, there are a
few examples of metathesis in the data (cf. Figure 2), a phenomenon we did not include
in our model yet. Errors in the alignments are of course also a reason for the inflation
of the number of correspondences. Finally, it might very well be the case that the actual
changes in the complete lexicon aremuchmore variable than assumed in the comparative
method, an effect that we are faced with immediately when analyzing large amounts of
data instead of hand-selecting crucial evidence.

4.3 Phylogenetic inference

Several methods were used to infer phylogenetic trees of the Tsezic language family:
(1) Neighbor joining based on Holm’s separation distance, (2) Maximum Parsimony
interpreting the characters in the multiple alignments as characteristics, (3) 1-covariance
of 3-grams vectors with subsequent neighbor joining. All approaches agree on the same
unrooted tree, which we conveniently rooted by midpoint at the edge separating the
Eastern and Western branches, cf. Figure 3. Additional outgroup languages would be
necessary to demonstrate the correctness of the location of the root. (Cysouw and Forker
2009) used other Nakh-Daghestanian languages as outgroup, which resulted in the
same root as we use here.
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Figure 3
Total number of sound changes per edge inferred from all cognate sets (A) and reconstructed
directly from the correspondence sets (B).

Table 3
Some well-supported sound changes among Tsezic languages.

Languages sound change
East Tsezic→ Bezhta è→ h
East Tsezic→Hunzib o→ u, u→ o
West Tsezic→ Tsez/Hinukh l→ r
Khvarshi→ Inxokhvari e→ i †

Tsez/Hinukh→ Tsez e→ i †

† These two sound changes are derived from different correspondence sets, reconstructed as eA and eB in (Nikolaev and

Starostin 1994).

Maximum parsimony was used to reconstruct both ancestral states of words from
the multiple alignments and ancestral characters directly from the correspondence sets.
After annotating the internal nodes of the trees, the numbers of changes were counted
by comparing the reconstructions at adjacent vertices. The total numbers of inferred
changes is shown in Figure 3. A few well-supported sound changes are compiled in
Table 3. These changes fit very well in with the developments sketched out in (Nikolaev
and Starostin 1994). In general, the number of changes needed on each branch to account
for the development of the attested correspondence sets is bewildering from a linguistic
point of view. To some extend this is due to the still strongly underanalyzed status of the
correspondence sets, as indicated above. However, we would also like to suggest that
the sound changes occurring in natural language diachrony might be more variable
than often assumed. A less cluttered result might only be achieved through a strong
selection of relevant evidence.

5. Application II: Mataco-Guaicuruan

5.1 Data

The second test set consists of seven members of the Mataco-Guaicuruan language
family spoken by 1500 to 42000 speakers in Argentina, Paraguay, Brazil, and Bolivia.
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Although these languages are are often found grouped together as one large family,
the relationship between the Mataco and the Guaicuruan groups is not proven and
should be considered at best as a working hypothesis (Campbell 1997; Dryer 2005).
Our decision to chose Mataco-Guaicuruan for application with our pipeline was driven
by the question whether any interesting lexical similarities between these two groups
could be found, possibly enforcing the hypothesis. Further, there has not been in-
depth historical-linguistic research into the internal grouping of the Mataco and the
Guaicuruan groups, so any results of our pipeline will provide a useful collection of
basic evidence for future research.

As in the previous case study, the dataset was retrieved from the Intercontinental
Dictionary Series (IDS) (Key and Comrie 2007). In this case, the dataset consists of 9665
words distributed over 1266 meanings in seven languages, i.e. on average 1.09 words
per language/meaning pair (see Supplemental Material B.1). The data is encoded using
a custom-made phoneme-based character set developed by Mary Ritchie Key for the
compilation and comparison of various South American word lists. For our current
selection of languages the orthography consists of in 41 characters, of which 35 are
consonants [č č’ / /’ d f fw g h hw k kw k’ k. k. ’ l l

y ì m n ñ p p’ r K s š t t’ w x y ǰ PX] and 6 are vowels [a e i o O u]. For this count we have ignored marginal characters that
only occurred once or twice per language. These probably represent errors in the data.
The occurrence of such errors does not have any influence on the results as produced
by our pipeline, because they occur only extremely infrequently.

We used the differences in occurrence of these characters in the various languages
to infer a genealogy, and this very limited evidence immediately gives a strong division
between the Mataco and the Guaicuruan languages, though the internal grouping
within these two sets of languages is not clearly resolved from just this limited evidence
(see Supplemental Material B.2).

5.2 Cognates and correspondences

We found a total of 730 cognate sets; some statistics are shown in Table 4 (see Sup-
plemental Material B.4). Most of the 730 cognate sets are confined to the Guaicuruan
subgroup (583), and a smaller number of cognate sets contains only languages the Mat-
aco subgroup (58). While 253 cognate sets contain all four Guaicuruan languages, there
is only a single alignment covering all three Mataco languages and just 65 alignments
containing at least two of the Mataco languages. Most unfortunate, there is not one
cognate set comprising all seven languages, and only 89 cognate sets contain languages
of both the Mataco and the Guaicuruan groups. These 89 cognate sets are particularly
intriguing because they offer possible evidence for a relationship between the two
groups. We have manually inspected this set, and unfortunately not very much of the
possible evidence remains after scrutiny.

Most cognate sets linking Mataco and Guaicuruan that were proposed by our
pipeline are not convincing because our method tries to find cognate sets by allowing
some freedom both on the form and on the meaning level. As an effect, most of the
89 cognate sets are strongly similar regarding one of these two aspects only. Of the
89 possible cognate sets, 63 are very similar in meaning, but the form is too far off to
be convincing. Conversely, there are 12 cognate sets for which the form is strikingly
similar across the two groups, but the meaning is too diverse to allow for a historical
interpretation. The remaining 14 cognate sets (see Figure 4) represent a promising col-
lection of possible cognate sets. This collection is too small for more detailed linguistic
interpretation, as there are, for example, no regular correspondences discernible linking
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Table 4
Summary of Mataco-Guaicuruan cognate sets (alignments). Left: Distribution of the language
coverage of cognate sets. Right: Cognate sets consisting of different words from the same
language..

Language set #align.

any comb’n of diff. lgs. 730
only Guaicuruan lgs. 583
only Mataco lgs. 58
Mataco and Guaicuruan lgs. 89
all languages included 0
all Guaicuruan lgs. included 253
all Mataco lgs. included 1

Language #align.

only Mocoví 20
only Toba 17
only Pilagá 13
only Nivaclé 90
only Maca 65
only Chorote 192
only Wichí 42

Mataco and Guaicuruan in these few possible cognate sets. However, these 14 sets can
be a basis for future research.

Note that there are still various rather large semantic changes necessary in some
of these cognate sets (esp. “scar-footprint”, “hit/kill-call by name” and “hawk-frog”).
Although we evaluate these changes as highly unlikely, the matches in form are still
deemed so strong that we decided to report these ‘lookalikes’ here for the sake of
completeness.

Not only can we produce such lists of promising cognates, we are also rather
certain that we have exhausted all evidence that is available in the IDS on the Mataco-
Guaicuruan languages. Given the approach of our pipeline, we do not think that there
are further cognates that we have not yet found. This also implies that when these 14
cases could all be explained by non-phylogenetic arguments (e.g. through borrowing,
data errors, or chance) then we would be certain that there is no evidence for a link
between the Mataco and the Guaicuruan languages in the IDS data.

So, although we have not been able to find substantial evidence for a relationship
between Mataco and Guaicuruan, the results indicate how our current approach allows
for a fruitful collaboration of computational techniques and manual scrutiny.

5.3 Phylogenetic inference

Although our cognate sets do not provide convincing support for the hypothesis that
Mataco and Guaicuruan form branches of a common language family, we attempted
to infer phylogenetic trees for the entire data set. Several different methods were em-
ployed, including covariance of 3-grams, Maximum Parsimony using the individual
alignment columns, and Holm’s “Separation Base” method. In contrast to the Tsezic
data, where all methods agreed on a single tree, we consistently find two alternatives
for the Mataco-Guaicuruan dataset, as shown in Figure 5. Both topologies clearly dis-
tinguish the Mataco and Guaicuruan subfamilies, but they disagree on the placement of
Nivaclé within the Mataco subfamily. Nivaclé appears either as sister of Maca, or as the
most basal branch of the Mataco group. In contrast, the sister-relationship of Pilagá and
Toba, as well as the basal position of Mocoví within the Guaicuruan subfamily appear
to be stable across methods.
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Language IDS meaning alignment
Nivaclé 5.124 unripe n i y i P y a
Pilagá 5.125 rotten n i č i P y a
Wichí 10.240 drip n i t o n
Wichí 4.591 dribble n i t u n
Pilagá 5.130 drink n i y o m
Wichí 5.370/3.655 spoon/shell l a n e k
Toba 5.370 spoon l e m e k
Pilagá 5.370 spoon l e m e k
Nivaclé 15.830 wet w a P a i
Pilagá 1.329/1.320 ocean/sea w a K a i
Wichí 7.330/10.710 chimney/road n o y i h
Mocoví 10.710 road n a P i k
Nivaclé 14.332 for a long time k a x u P
Mocoví 14.332 for a long time k
 a w a P
Wichí 1.520/14.530 sun/clock hw a l a P
Toba 1.520 sun n a l a P
Wichí 9.220 cut y i s e t
Pilagá 9.110 do/make y i P e t
Wichí 9.210/4.760 hit/kill i l o n
Toba 18.420 call by name i l o n
Wichí 17.172 imitate i t e n
Mocoví 16.510 dare i t e n
Wichí 4.858 scar l a h ñ i
Pilagá 4.374 footprint l i i ñ i
Maca 3.585 hawk m i y o
Toba 3.950 frog m i y o
Nivaclé 19.590 prevent f a P m a t a n
Mocoví 16.670 tell lies n a P m a h a n
Chorote 5.123 ripe y o w e P
Toba 5.123 ripe y a m o k


Figure 4
Promising candidates for cognate alignments between Mataco and Guaicuruan (italicized)
languages.

The fact that different inference methods produce different trees implies that the
data contains inconsistencies. These inconsistent data points are alignments covering
Guaicuruan languages as well as Mataco languages but support different incompatible
tree topologies. These inconsistencies suggest that Guaicuruan and Mataco are unre-
lated. We therefore re-evaluated the word lists separately for both groups.

5.4 Guaicuruan analyzed separately

The Guaicuruan family consists of five languages about which we have information
about only three languages, Toba, Pilagá, and Mocoví. We re-ran our pipeline using
just the data of these three languages. A summary of the attested cognates sets is given
in Table 5. There are 251 cognate sets including all three languages, and another 374
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Mataco

Guaicuruan

Nivaclé

Wich́ı

Chorote

Maca

Nivaclé

Mocov́ı

Toba

Pilagá

Figure 5
Two alternative tree topologies are
obtained for the
Mataco-Guaicuruan language
family depending on the method
employed for phylogeny
reconstruction. The left tree is
supported e.g. by Holm’s distance,
while Maximum Parsimony on the
presence/absence of cognates
supports the tree on the right.

Table 5
Summary of cognate sets in separates analyses of Guaicuruan (left) and Mataco (right). While in
Guaicuruan most alignments involve more than language, we observe that the Mataco data are
dominated by within-language homologues.

Language set #align.

all Guaicuruan lgs. 251
some Guaicuruan lgs. 374
only Toba 20
only Pilagá 13
only Mocoí 25

Language set #align.

all Mataco lgs. 0
some Mataco lgs. 65
only Wichí 52
only Chorote 201
only Maca 67
only Nivaclé 93

comprising two out of the three languages. Only few single-language homologue-sets
are attested.

Although the evidence looks good from the number of cognate sets, the alignments
of Guaicuruan words are much more variable than those encountered in the inves-
tigation of the Tsezic languages. Some examples illustrating a few complications are
compiled in Figure 6. The large variation between the three Guaicuruan languages is
also reflected by the correspondence sets. Of the 756 correspondence sets contained in
the alignments, more than half (viz. 399) appear only once. Even after application of
the greedy condensation, 183 of the 416 condensed sets are singletons (44%), a very
large number compared to the Tsezic languages. Many of these correspondence sets,
however, reflect events of loss. For example, all seven possible combinations of /a/ and
the gap character /-/ appear as correspondence sets in the alignments. A few notable
recurrent correspondences between Pilagá, Toba, and Mocoví are d-d-r, l-ly-ly and s-š-š,
see Figure 7. Also note the unrecognized metathesis in the second example.

Language phylogenies were computed using all methods that were also used in
the combined analysis. With the exception of 3-gram covariance, all methods agreed
on the same tree, shown in Figure 8A. This topology also agrees with the results of the
joint analysis outline above in Figure 5, which places the root of the Guaicuruan subtree
between Mocoví and sister group consisting of Pilagá and Toba. This position of the
Guaicuruan root is specifically supported when using Dollo parsimony on the cognate
distribution. This method is implicitly directed and places the root at the position
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A

Language IDS meaning alignment
Mocoví 18.210/22.220 speak/preach r a P k
 a a t a K a n
Toba 18.210 speak d a P – a k
 t a K a n
Pilagá 22.220 preach d – P – a k
 t a K a n

B

Language IDS meaning alignment
Mocoví 17.140 think i p e e t e t a P a
Toba 17.140 think i p – – – e t a P a
Mocoví 17.440/17.171 guess/suspect i p – e – e t a P a
Toba 17.440/17.171 guess/suspect i p – – – e t a P a

C

Language IDS meaning alignment
Pilagá 9.120 work d – P – – o n a t a K a n
Toba 9.120 work d o P – – o n a t a K a n
Mocoví 9.120 work r o P w e e n a t a K a n
Toba 17.130 think d o – w e n n a t a K a n
Mocoví 17.130 think r a P d e e n a t a K a n
Mocoví 17.110/17.190 mind/idea l a P d e e n a t a K a n a K a k
Toba 17.190 idea l – – w e n n a t a K a – – – – –

Figure 6
Some problems encountered with the alignments of Guaicuruan words.
A This alignment exhibits a metathesis /k
a/ versus /ak
/ separating Mocoví from its sister
group, which is linked to the loss of the 2nd /a/. An additional loss of vowel and /a/ is
observed in Pilagá. Note that all changes are concentrated in the first part of the word.
B This alignment is close to the detection limit due to the large number of losses.
C Three alignments with an identical part (shown in read), while the obvious similarities in the
first parts are more difficult to interpret algorithmically.

Language IDS meaning alignment
Pilagá 15.810/15.820 heavy/light d e s a l i
Toba 15.810 heavy d e s a ly i
Mocoví 15.810/15.820 heavy/light r e s a ly i
Pilagá 9.440 build n P o K o – s e g e m
Toba 9.440 build n P o K o o š i g e m
Mocoví 9.440 build n o P K o n š i g i m

Figure 7
Examples of recurrent correspondences in Guaicuruan.

minimizing the number of independent losses, hence can be expected to bemore reliable
than e.g. distance-based methods that are intrinsically undirected.

5.5 Mataco analyzed separately

TheMataco languages consists of the four languagesNivaclé, Chorote, Maca, andWichí.
In total, only 65 cognate sets were found linking two or more of these languages. Like-
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A B

Mocov́ı

Pilagá

Toba

Pilagá

Mocov́ı

Toba

Figure 8
Phylogenetic trees inferred for the
Guaicuruan language family. TreeA is
inferred from all methods with the
exception of 3-gram covariance. The
alternative tree B is supported by the
3-gram method only.

Language IDS meaning alignment
Nivaclé 8.680 tobacco f i n O k
Maca 8.680 tobacco f i n a k
Nivaclé 6.310 to spin O f t i ì
Maca 6.310 to spin a f t i ì
Nivaclé 8.690 to smoke w a n k a ì O n
Maca 8.690 to smoke w a n k. a ì a n
Maca 10.613 carry-on-shoulder t i ì o X
Wichí 10.613 carry-on-shoulder t i ì o h
Maca 9.220 cut i s a X i
Wichí 9.222 chop i hw a h i

Figure 9
Some examples of recurrent correspondences /O/↔/a/ and /h/↔/X in Mataco.

wise surprisingly, we did not find any alignment containing words of all four Mataco
languages. The most frequent combinations of languages attested were 18 alignments
with words fromWichí and Chorote, 13 covering Nivaclé and Maca, and 10 alignments
with Chorote and Maca words. All other combinations of languages only occurred in a
few cognate sets each. This low number of cognates sets between these languages leads
to unstable phylogenies. In addition, the cognate sets often contain just a few changes or
even no changes at all, further diminishing the probability to obtain a good phylogenetic
signal from the data.

From a linguistic point of view, there are verymany interesting and highly plausible
correspondences in the Mataco cognate sets. However, because there are so few cognate
sets, most of these noteworthy correspondences only occur once in the data, and often
only in a cognate set with words from just two languages. Two recurrent correspon-
dences are Nivaclé /O/ ↔ Maca /a/ and Wichí /h/ ↔ Maca /X/, some examples of
which are shown in Figure 9.

Actually, most variation between homologous words in Mataco are detected in
alignments that compare only words from the same language (cf. the rightmost part
of Table 5). Most of these intra-language homologues have the same or at least very
similar meanings. For example, the insertion of a y in Chorote words with the same
meaning appears in 49 alignments, a few examples are shown in Figure 10. Another
very frequent variation within Chorote is k↔s, which appears in 19 alignments. These
cases represent variability within the language, which is highly important information
that could in principle be taken into account to find cognates more easily. However, we
have not yet found a suitable technical approach how to deal with this variability in the
establishment of correspondences and in the counting of changes, as necessary for our
quantitative methods.
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Language IDS meaning alignment
Chorote 4.560 spit fw – a / u x n e n
Chorote 4.560 spit fw y a / u x n e n
Chorote 5.250 oven k – a l a n a t i
Chorote 5.250 oven k y a l a n a t i
Chorote 17.230 insane, crazy t – a y e x e e s
Chorote 17.230 insane, crazy t y a y e x e e s

Figure 10
Examples of variable y in Chorote-only homologue sets.

A B C D

Wich́ı

Chorote

Maca

Nivaclé

Wich́ı

Chorote

Maca

Nivaclé

Wiché

Chorote

Maca

Nivaclé

Wich́ı

Chorote

Maca

Nivaclé

Figure 11
Alternative trees reconstructed for the Mataco languages:A: Dollop parsimony method and
Holm’s method. B: Splitstree based on composition of the alignments and Maximum Parsimony
based on the presence/absence of cognates. C: 3-gram tree.D: Maximum Parsimony of
composition of alignments.

Because of the limited amount of evidence, all reconstructions based on just these 65
cognate sets becomes unreliable. And indeed, we find different clustering when using
different methods to interpret the attested evidence, cf. Figure 11. While tree A and
tree B are supported by 2 reconstruction methods, tree C and D are produced by one
method solely. The difference between the first two trees A and B is only the position
of the root, as their unrooted topology is the same. Tree D can be seen as consensus of
B and C, placing a multifurcation at the root of a subgroup formed by Wichí, Chorote,
and Maca. The only really deviant unrooted topology therefore is C, derived from 3-
gram covariation. This would suggest that the unrooted version of the trees A and B is
the closest we can currently get to the phylogeny of the Mataco languages. Outgroup-
rooting of the Mataco tree using the Guaicuruan data, as shown in in Figure 5, also does
not resolve the discrepancies, since those trees favor a grouping of Chorote with Maca
like tree C, instead of the sister relation of Chorote and Wichí suggested by trees A and
tree B.

6. Conclusion

We have constructed a pipeline implementing the major steps of the workflow of
traditional historical linguistics: the recognition of cognates, the determination of corre-
spondence sets, and the construction of phylogenetic trees. The pipeline is constructed
in such a way that is can perform both an essentially unsupervised exploratory analysis
of the input data and at the same time allows to incorporate a large amount of expert
knowledge if such information is available.
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We applied the software to two test cases: the Tsezic family consisting of closely
related languages and the Mataco-Guaicuruan languages comprising of two groups of
more distantly related languages. In both cases we obtain very encouraging results.
Most word alignments are correct and hence correctly identify homologous words. In
the case of the Tsezic family we obtained an unambiguous phylogeny consistent with
previous studies, andwe correctly identified several of the previously recognized sound
changes. The investigation of the Mataco-Guaicuruan languages was less conclusive,
though we have produced numerous cognate sets that can be used for future scrutiny.
The fact that only very few cognate sets are attested linking the Mataco and the Guaicu-
ruan groups implies that there is hardly any evidence to link these two families in the
data-set that we used. This negative evidence is worthwhile, because we are reasonably
certain that we have found all possible evidence in the current data through our all-
encompassing search strategy.

The pipeline offers several benefits over the traditional hand-crafted approach of
historical linguistics. It can provide a preliminary analysis of language families for
which little detailed knowledge is available. Further, the pipeline provides a large
amount of intermediate output in the sense of actual proposed cognate sets and sound
changes mapped on a phylogenetic tree. This information, while not without errors,
provides a suitable set of hypotheses to be investigated further, possibly also without
quantitative methods.

For example, the algorithm produced 89 possible cognate sets between Mataco and
Guaicuruan from a set almost 10.000 words without any manual input. This number
of 89 possible cognate sets is an amount that is easily inspected manually, whereas the
manual search for those 89 cases in the 10.000 words is highly laborious. In this way, the
current approach can be used to precede and complement manual work, in the sense
that it can sort out large amount of data and present a selection that is worthwhile
looking at manually. This approach will not replace or verify manual work. In contrast,
manual inspection can be used to verify the automatic approach, not vice versa.

The pipeline produces results that are interpretable manually ( we have provided
all output for manual inspection as Supplemental Material to this paper). We do not test
our pipeline against any gold standard or test case, because there is no gold standard,
nor any other accepted test case to evaluate linguistic phylogenic methods. Whether the
results are convincing or not does not depend on some general test of precision, but on
the individual proposals as present in the output (and as summarized in the paper).

Of course, the results of the automatic computational procedures are not perfect. For
example, there are false positives in cognate detection, which introduce some noise into
the subsequent steps. However, since they form a small minority of cases, they do not
compromise frequent correspondence sets and hence have little impact on the outcome
of tree reconstruction algorithms. As in molecular phylogenetics, it is possible to extract
robust features by focussing on the consistency of results between different variants of
data analysis. For instance, there is little doubt about genealogy of Tsezic language as
all lines of evidence agree on a single tree.

The approach described in this paper only provides a first step in the direction of
the wider application of quantitative methods in the comparative method, and many of
the details of the pipeline will need to be further investigated and improved before it
can be used in the daily practice of historical linguistics. However, the general approach
outlined is highly needed, given that only a few dozen of the 460 linguistic genera as
listed in (Dryer 2005) are investigated historically in any detail, and even fewer higher
order groupings are backed by solid evidence. The problem is not that it is impossible to
investigate these questions: the methodology and the data to improve this situation are
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available. The problem is that the research is too laborious to be performed by hand on
paper, as it has traditionally been done. To speed up the research in historical linguistics,
and to finally improve our understanding of the world-wide historical developments of
human languages, methods like the ones that we have proposed are duly needed.

Supplemental Data

All word lists and summaries of the individual analysis steps, including alignments
and trees, are available for download at http://www.bioinf.uni-leipzig.de/
publications/supplements/10-038.
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