Robustness of Boolean dynamics under knockouts
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The response to a knockout of a node is a characteristic feature of a networked dynamical system.
Knockout resilience in the dynamics of the remaining nodes is a sign of robustness. Here we study
the effect of knockouts for binary state sequences and their implementations in terms of Boolean
threshold networks. Besides random sequences with biologically plausible constraints, we analyze the
cell cycle sequence of the species Saccharomyces cerevisiae and the Boolean networks implementing
it. Comparing with an appropriate null model we do not find evidence that the yeast wildtype
network is optimized for high knockout resilience. Our notion of knockout resilience weakly correlates
with the size of the basin of attraction, which has also been considered a measure of robustness.

PACS numbers: 87.16.Yc, 05.10.Ln

I. INTRODUCTION

Living systems show a ubiquitous robustness against
mutations, environmental changes and intrinsic non-
determinism [1-3]. In particular, each single cell must
control its growth and eventual division by regulating
concentrations of proteins in a precise temporal pattern.
Using a Boolean state dynamics [4], this cell cycle net-
work has been argued to be robustly designed for budding
yeast as a model organism [5]. The robustness has been
pinpointed as reproducibility of the dynamics in the pres-
ence of stochastic perturbations [5-7]. Resilience against
mutations, i.e. changes of the interactions among the
proteins, has been studied as well [5, 8, 9].

A vparticular type of mutation, either intrinsic or by
intervention, is a complete knockout of a single protein.
A gene is made dysfunctional such that it is no longer
transcribed and its product is effectively removed from
the cell. Some knockouts can be tolerated or compen-
sated by the cell, whereas others are lethal. Knockouts
are often used to infer the function of specific proteins.
This is only appropriate, if the knockout is neither lethal
nor fully compensated, but disables a specific function of
the cell. Importantly in real experiments, knockout re-
silient systems are more difficult to analyze and identify
because knockout mutants do not exhibit a measurable
difference.

In this contribution we study the resilience against
knockouts in two scenarios. First, the system under con-
sideration is defined only by a sequence of activation
patterns regardless of the specific mechanism produc-
ing them (“black box”). Here, resilience with respect to
knockout of a node means that the information contained
in the activation patterns of all other nodes is still suf-
ficient to unambiguously produce the original sequence.
In the second scenario, we consider the sequence together
with a given implementation by a Boolean threshold net-
work. Knocking out node j means that we remove its in-
teractions with the other nodes. The network is resilient

against this knockout if all other nodes still perform the
original sequence of activation patterns.

After defining these notions of knockouts and resilience
we apply them to the yeast cell cycle sequence and its net-
work implementations. Significance of the results is as-
sessed by comparison of random sequences as null models
with various constraints.

II. KNOCKOUTS AND ROBUSTNESS OF
FUNCTION

A. Definitions

Molecular processes within cells are frequently mod-
eled as dynamics with Boolean states [4, 10, 11]. Com-
ponents of a Boolean state vector correspond to different
molecules which can be present in either high or low con-
centrations. The dynamics is thus described as a tempo-
ral sequence of activation patterns z(0),z(1),..., where
each activation pattern x has n binary components x;,
i =1,...,n. Low and high concentration of molecule 4
at time ¢ are denoted by x;(t) = 0 and ;(t) = 1, respec-
tively. Each component i computes a Boolean function f;
mapping the present concentration pattern to its activa-
tion at the next time step x;(t+1) = fi(x1(f),. .., zn(t)).
As the interaction between the components may be given
in terms of a network (see section III), the components
are henceforth called nodes.

Let us define what we mean by robustness of a sin-
gle node i against knockout of another node j. We as-
sume that the input nodes follow a certain dynamics
x1(t),...,zn(t), where t > 0. The set of possible acti-
vation patterns which the input takes is called the input
support. It can be represented as a set of binary strings
of length n.

Node i is robust against knockout of node j if the state
information of node j is either irrelevant for the correct
functioning of 4 or if this information is already contained



in the other available inputs.

Definition: A node ¢ with mapping f; : {0,1}" — {0,1}
is robust against knockout of node j if x; is independent
of z; given x1,...,2;_1,%j41,...Tn. With this we mean
that

fi(l'l, .
= fi(l'l, ..

.,xj_l,O,;ij,...xn)
.,xj_1,1,$j+1,...l‘n) (1)

whenever the two states (z1,...,2;-1,0,211,...2,) and
(1,...,2j-1,1,%j41,...2,) both lie in the input sup-
port. Robustness against simultaneous knockout of mul-
tiple nodes is defined in a similar fashion.

It is important to note that this definition depends
on the input support. If the input z1,...,z, takes each
possible value, then robustness against knockout of node
j implies that f; does not depend on z;. However, if the
inputs are highly correlated, then nontrivial robustness
may appear: It may happen that x; can compensate the
knockout of a single input by reconstructing the missing
information from another input with similar dynamics,
but the simultaneous knockout of both inputs leads to
a failure. For example, in the sequence of the yeast cell
cycle (Table I) it is easy to see that all nodes are robust
against knockout of either MBF or SBF, but in general
a simultaneous knockout of both MBF and SBF cannot
be compensated.

Our notion of knockout robustness is based on ideas
of Ay and Krakauer [12]. Within the framework defined
in [12], resilience means that the exclusion dependence
of the system with respect to certain knockouts van-
ishes. Combinatorial conditions characterizing this sit-
uation have been found by Herzog et al. [13]. The theory
becomes much simpler in the present setting restricted
to deterministic dynamics.

Our definition of robustness can be applied to each
node of the cell cycle network shown in Figure 2. In our
studies of the yeast cell cycle the input support will be
the set of activation patterns which appear in this cycle.
We then study each node mapping and ask, which inputs
are “essential” for the functioning of this node and which
inputs can be compensated.

In order to study robustness of the system as a whole
there are multiple possibilities: As a measure of system
robustness we count the number of nodes which are ro-
bust with respect to all single node knockouts, i.e. how
many nodes would remain functional if any one input
would be knocked out. Another possibility is to find the
knockouts under which the behavior of the whole system
is robust. In this case we find the single node knock-
outs which can be compensated by all (other) nodes of
the network. The set of these knockouts is called the
resilience combination. The cardinality of the resilience
combination is called the knockout restlience.

B. Null models of state sequence

System robustness and knockout resilience of a specific
system may be judged as significantly high or low only
in comparison with a null hypothesis from a model. Here
we define two null models of state sequences under con-
straints derived from properties of a cell cycle sequence.

For the first null model, the activation states are drawn
from {0, 1} with probabilities 1/2, independently across
time steps and nodes. As an exception, the last activation
pattern, is taken as the first activation pattern and then
flipping the state of one randomly chosen node. Thus the
first and last activation pattern differ at a single node.
This constraint is to reflect the fact that the cell cycle is
triggered by a single signal protein.

The second null model is further constrained as follows.

e CLN3 acts as an input node. It is active in the
first activation pattern and inactive at all later time
steps.

e The other nodes are activated and inactivated ex-
actly once during the cycle. Their activity (or in-
activity) is therefore constrained to a block of suc-
cessive time steps.

These constraints are motivated by the observation that
switching events (rising and falling edges of activity) are
much rarer in the cell cycle than would be expected for
uncorrelated random state sequences.

As a natural additional constraint for both models,
activation patterns at different steps along the sequence
must be different. Sequences violating this condition are
discarded.

C. Results

We now apply the ideas of section II to the yeast cell
cycle (Table I)and the null models. Starting with the sys-
tem robustness we find that only the four nodes CLN3,
CLN1,2, CLB5,6 and CDC20 are robust against all sin-
gle node knockouts. For CLN3 this is trivial since it cor-
responds to the constant map fcorys = 0. Regarding the
knockout resilience, the cell cycle still functions correctly
if any one of the five nodes MBF, SBF, MCM1/SFF,
SWI5 or CDH1 is knocked out.

Summing up these observations, the yeast cell cycle has
knockout resilience 5 and system robustness 4. We can
now ask whether these values are a special property of the
cell cycle or rather expected for a support containing 13
out of 21t = 2048 possible states. Figure 1 shows that all
null models produce a considerable fraction of instances
whose resilience and robustness values are above those of
the yeast cell cycle sequence.

Formulating this insight in terms of a statistical test,
our null hypothesis is that the yeast cell cycle is a ran-
dom sequence as obtained from the null model consid-
ered. The p-value is the probability that the null model



TABLE I: The cell cycle sequence of the yeast species Sac-
charomyces cerevisiae [5]. The last phase stationary Gi is a
fixed point of the dynamics, i.e. once the system has reached
this state, it stays in this state, until some external event flips
the first node from 0 to 1 and triggers another cell cycle.
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1 1 0 0 0 0 0O O O O 1 1 START
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11 o 0 0o 0 0 0 0 1 1 1 1 M
12 o 0 0 0 o 0 0 0 1 1 1 Gy
13 0O 0 0 0O 0 OO O O 1 1 Stat.G,

generates an instance with an empiricial value greater or
equal to the observed value. The first null model yields
p-values Pf = 0.99999 and P;" = 0.702 for knockout re-
silience and system robustness, respectively. For the sec-
ond null model we obtain Py* = 0.808 and Ps* = 0.226.
It is common practice to reject the hypothesis only for
p-values less than 0.05 [14]. Here all p-values are greater
than 0.2. Therefore the null hypothesis, stating that the
yeast cell cycle sequence is not more optimized for toler-
ating knockouts than a null model sequence, cannot be
rejected.

Another result seen in Figure 1 is that both knock-
out resilience and system robustness in the second null
model are lower than those of the first null model. This
is due to the correlations between activation patterns in
a sequence generated according to the second null model
Fewer state changes lead to more similar patterns along
the sequence. Then a knockout is more likely to make
activation patterns at different times indistinguishable so
the sequence can no longer be performed.

III. ROBUSTNESS OF IMPLEMENTATION
A. Linear threshold networks and neutral graph

The concepts defined up to now apply to the sequence
of activation patterns. They do not take into account the
interaction network implementing this sequence. In order
to investigate the effects of specific network structures
we focus on linear threshold networks. Such a network is
given as a directed graph on n nodes with weighted edges.
We allow loops, i.e. edges starting and ending at the
same node. For simplicity we only allow weights w;; =1
(activating or positive edges) and w;; = —1 (inhibiting
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FIG. 1: (Color online) (a — b) The distribution of the num-
ber of inputs which can be compensated by all other nodes
are shown for the first null model (a) and the more realistic
null model (b). The blue (light gray) bars represent the dis-
tribution of the random cell cycles and the single green (dark
gray) bar represents the knockout resilience of the wildtype
network. (¢ — d) The distribution of the number of nodes
which are robust with respect to all single node knockouts for
the first null model (c) and the more realistic null model (d).
As above, the blue (light gray) bars represent the random cell
cycle sequences while the single green (dark gray) bar shows
the system robustness for the wildtype network. Note the
logarithmic scale of the four diagrams.

or negative edges) for each directed edge ¢ < j. If there
is no edge from node j to node i we write w;; = 0. To
each node ¢ we associate a time-dependent variable z; (t)
with dynamics given by

1 if Z_j wijzzzj(t) > 0,
x;(t)  else.

It is possible to refine this model by allowing more val-
ues for the edge weights. Furthermore it is custom-
ary to assign an activation threshold indiviually to each
node ¢. Then the dynamics is determined by comparing
> wizj(t) to this threshold. In this work we do not
make use of these possibilities and restrict ourselves to
the simple model.

We focus on networks that perform the sequence of
activation patterns of the yeast cell cycle (Table I) when
initialized with the START pattern at time 1. One of
these functional networks called the wildtype is shown in
Figure 2. The interactions of the wildtype are based on
empirical evidence [5]. Note that here the term wildtype
does not denote the actual yeast wildtype organism. It is
used only to distinguish this network (which is believed to
model the actual yeast organism most accurately) from
other functional networks on the level of linear threshold
models.



As a first null model in the assessment of robustness
of an implementation (a particular network) we use a
flat distribution on the set of all functional networks,
containing 5.11 x 1034 elements [8].

As a second null model we consider a restriction to
those networks that may be reached from the wildtype
by an evolutionary path. To make this precise, we define
the neutral graph. Its node set is the set of the functional
networks. Two networks A and B are connected by an
undirected edge if A can be obtained from B by adding or
deleting a single interaction [9, 15]. In our case the neu-
tral graph is disconnected and falls into a large number
of connected components [9]. The 5.66 x 10?5 networks in
the connected component containing the wildype (called
wildtype component) serve as another null model, again
weighted with a flat distribution.

B. Robustness definition

In the context of linear threshold models we can define
a related notion of robustness, which we will call robust-
ness of implementation: A knockout of a node j is mod-
eled by removing a node from the network, together with
all of the edges involving this node. We can then analyze
the dynamics of the changed network and compare it to
the dynamics of the unperturbed network. If the dynam-
ics of the remaining n — 1 nodes is not changed, then we
say that the implementation is robust against the knock-
out of node j. Mathematically this means that the sign
of 37 wikwk(t) equals the sign of >, wikwk(t). The
resilience combination is the set of nodes against whose
knockout the network is robust. Now the knockout re-
silience of the network is the cardinality of the resilience
combination. This is a property of the implementation
and thus depends on the connection structure of the net-
work implementing the cell cycle pattern. Its value can-
not be greater than the knockout resilience of the func-
tion, as defined above.

C. Results

There are 24 different occurring resilience combina-
tions. Out of these, eight are found in the component
containing the wildtype (see Table II).

The majority of networks, i.e. ~ 99% of all the func-
tional networks of the neutral graph and =~ 90% of the
networks in the wildtype component, cannot cope with
any single node knockout. However, a maximum of four
independent single node knockouts is found. The wild-
type itself stays functional after knockout of node CDH1,
see Figure 3. Networks reachable by a mutational path
from the wildtype can manage at most three independent
knockouts.

One might speculate that high knockout resilience re-
quires redundant wiring of the network which would be
observable as an increased edge density. In Figure 4, we
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FIG. 2: (Color online) The wildtype network of the cell cycle
of the yeast species Saccharomyces cerevisiae [5]. The edges of
the network are directed and can be activating (dashed green
arrow) or inhibiting (solid red arrow). All self-couplings (solid
yellow) are inhibiting. The network comprises 34 different
interactions, 15 of which are activating and 19 are inhibiting.
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FIG. 3: (Color online) The distribution of the specific knock-
out schemes is shown. The filled bars represent the wildtype
component. The open bars represent all components and the
single dashed bar represents the resilience combination of the
wildtype itself. Each column represents one of the 24 differ-
ent resilience combinations which occur among the functional
networks. The nodes of the networks are shown as squares
(see legend for names). If the knockout of a particular node
is functional the square is filled, otherwise it is open. The re-
silience combinations are ordered such that the average basin
size increases.

look at the distribution of the number of positive, nega-
tive and all edges for the different resilience combinations.
There is no clear correlation between the average number
of edges and the knockout resilience.

As suggested by Li et al. [5], the basin of attraction
of the G1 fixed point (stationary state) is a measure of
robustness. The basin consists of all activation patterns
from which the G1 state is eventually reached by follow-
ing the dynamics (2). The average basin size of networks
with a given resilience combination is shown in Figure 5.



TABLE II: The number of networks which allow certain resilience combinations among all networks which implement the cell
cycle sequence (column all components). Among these networks the number of networks in the wildtype components is shown

in the column wildtype component.
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TABLE III: The average basin sizes for the different knock-
out resiliences. Again the wildtype component is considered
separately.

Knockout Wildtype All
Resilience Component Components
0 1663.44 1447.42
1 1629.86 1485.06
2 1675.99 1513.21
3 1779.22 1588.93
4 1594.82

In Table IIT the average basin size for the different knock-
out resiliences is shown. With an increasing capability to
cope with more single node knockouts the average basin
size increases. Additionally, average basins sizes in the
wildtype component are larger than their corresponding
basin sizes in all components. However, all network im-
plementations in the wildtype component have a network
resilience of at most three.

IV. DISCUSSION

We have studied network dynamics with Boolean state
vectors (activation patterns) under knockout of single
nodes using the example of the yeast cell cycle. The
yeast wildtype network is not optimized for knockout re-
silience, given the sequence of activation patterns. There
are networks with significantly larger knockout resilience
implementing the same sequence.

The model of the yeast cell cycle studied in this work
is far from being a complete description of cell function.
For example, a more realistic model could include fur-
ther nodes as well as graded activations (i.e. the con-
centrations of the molecules at the nodes are considered
as real valued activations). An increasing number of
nodes would generically increase the robustness of the
null models since additional state information is avail-
able to compensate node knockouts. Thereby, our con-
clusion that the yeast cell cycle is not especially robust
would not change under this generalization. The analy-
sis of graded concentrations instead of binary activations
would require a notion of state distance taking into ac-
count which disturbances are considered and how they
affect the functioning of the cell. This is beyond reach of
the present idealized model.
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FIG. 4: (Color online) The distribution of positive (dashed
lines), negative (dotted lines) and all edges (straight lines) for
each of the corresponding resilience combinations are shown.
The lighter lines (light gray) represent networks from all com-
ponents, while the darker lines (dark gray) with squares repre-
sent networks only reachable by mutations from the wildtype.
The resilience combinations are depicted as in figure 3.
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FIG. 5: (Color online) The averages of the basin sizes cor-
responding to the specific resilience combination are shown.

The straight line (dark gray) represents networks from all

components, while the line with squares (light gray) repre-
sents networks only from the wildtype component. Addition-
ally, the area between the 10% and 90% quantiles is inked.

The resilience combinations are depicted as in figure 3. For

.1 . . 5
each resilience combination 10° networks were sampled.

Finally we stress that our definition of knockout re-
silience checks whether a node is dispensable for inte-
grating and transmitting information only in the context
of the regulatory network we consider. In reality, the
considered node may be involved in other functions in-
dispensable for survival. This would further reduce the
knockout resilience.
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