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We present a computational method for finding attractors (ergodic sets of states) of

Boolean networks under asynchronous update. The approach is based on a systematic

removal of state transitions to render the state transition graph acyclic. In this reduced
state transition graph, all attractors are fixed points that can be enumerated with little

effort in most instances. This attractor set is then extended to the attractor set of the

original dynamics. Our numerical tests on standard Kauffman networks indicate that
the method is efficient in the sense that the total number of state vectors visited grows

moderately with the number of states contained in attractors.
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1. Introduction

Complex disordered systems with many degrees of freedom can often be approxi-
mated by Boolean dynamics [8, 5]. In particular, gene-regulatory systems in living
cells [7] have been modeled by Boolean dynamics since the 1960s [14]. Each gene
is represented by a node with two possible states. In this coarse-grained state rep-
resentation, only high (Boolean true = 1) and low (Boolean false = 0) chemical
concentration of the gene product are distinguished. The regulatory biochemical in-
teractions between gene product concentrations are captured as logical rules in the
Boolean model. Each unit is assigned a Boolean function (truth table) according
to which it updates its state based on the states of other units. In recent years,
such Boolean models have been shown to capture the dynamics of real regulatory
systems [2, 16, 6, 17].

The long-term behaviour of Boolean dynamics is of particular interest. It is
characterized by attractors (ergodic sets) as minimal subsets of the state set from
which the dynamics does not escape. Attractors in a Boolean system have been
interpreted as distinct cell types in multicellular organisms [15, 20]. The computa-
tional problem of finding all attractors in a Boolean system is difficult. Even the
simpler problem of deciding whether the system has a fixed point (the smallest
possible attractor) is NP-complete [18, 10]. In many instances of Boolean networks,
however, the state space to be searched may be largely reduced [4, 21], allowing for
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attractor detection in sparse networks with several dozens of nodes. Known meth-
ods [13, 24, 9] are tailored for dynamics under deterministic synchronous update.
The assumption of fully deterministic operation of all nodes in the network may not
be justified when modeling real regulatory systems. In fact, the number and size of
attractors change dramatically when giving up deterministic synchronous update
[22] and using stochastic asynchronous update instead [11].

Here we present a generally applicable exact method for attractor search in
Boolean dynamics under asynchronous single-node update. In non-rigorous terms,
the method works as follows. Departing from the asynchronous Boolean dynamics
to be analyzed, we modify the Boolean functions of a subset X of the nodes such
that they cannot leave a “preferred” state (0 or 1) once they have reached it. This
reduction of the allowed state transitions is guaranteed not to eliminate any of the
original attractors: While additional attractors may appear, the existing ones may
lose some of their states but never disappear. In fact, we can choose the set X of
nodes such that all attractors lose all but one state, i.e. they become fixed points.
This is the case when each directed cycle of the Boolean network contains at least
one vertex in X. In other words, removal of the nodes in a so-called feedback vertex
set X leaves the Boolean network acyclic. On sparse networks, feedback vertex
sets X can be found with a cardinality |X| much smaller than that of the whole
node set. Then the number of attractors (all fixed points) is not greater than 2|X|.
These attractors can be found by systematic enumeration. Now by construction,
each attractor of the original dynamics must contain at least one fixed point found
for the reduced dynamics. Finally the attractors are found by depth first searches
seeded at each fixed point of the reduced dynamics.

The rigorous description of this method in section 3 uses formal notions of
Boolean mappings, operators, attractors and directed graphs. These notions and
their relations are introduced in section 2. Results and concluding remarks are
presented in sections 4 and 5.

2. Technical background

2.1. Boolean dynamics and update operators

A Boolean dynamical system of n units (or nodes) is defined by assigning each node
i ∈ {1, . . . , n} =: nc a Boolean function

fi : Bn → B (1)

where B = {0, 1} is the set of elementary Boolean states. The interaction network
underlying this system is extracted from the functions fi. There is an edge from
node j to node i if and only if function fi explicitly depends on the j-th coordinate.
Put differently, (j, i) is an edge if there are state vectors x, y ∈ Bn differing only at
coordinate j such that fi(x) 6= fi(y).

The time-discrete dynamics of the system is made precise by defining the update
mode where synchronous (parallel) update is often used. Then each node computes
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the state at time t + 1 by applying its Boolean function to the state vector at time
t. A common alternative is the fully asynchronous (serial) update mode. At each
time step, only one node u(t) ∈ {1, . . . , n} is updated while all others keep their
state. As a generalization, a set of nodes potentially containing more than one but
not all nodes may be chosen individually at each time t.

We formalize the update modes by defining an update operator UI for each
I ⊆ {1, . . . , n}. The operator affects a Boolean state vector x according to

(UIx)i =
{

fi(x), if i ∈ I

xi, otherwise
(2)

Then the dynamics is given by the set U of such update operators one of which
is chosen at each time step for updating the state vector. For synchronous up-
date, we have U = {U{1,...,n}} because the only allowed update involves all
nodes. Asynchronous update for single nodes is performed with the operator set
U = {U{i} : i ∈ {1, . . . , n}}. Operators may be applied with different probabilities.
However, we do not deal with probabilities here because the attractors of the sys-
tem do not depend on them as long as each operator in U has positive application
probability at any time.

2.2. Attractors and state transition graph

A general definition of an attractor is based on the state transition graph G =
(Bn, T ) having all state vectors Bn as its node set. Directed arcs in this graph are
direct state transitions. So there is an arc (x, y) ∈ T from x ∈ Bn to y ∈ Bn if
there is an operator U ∈ U such that Ux = y and y 6= x. The fixed points of the
dynamics are exactly those state vectors that do not have outgoing edges.

An attractor [12, 11, 23] of the dynamics is a sink component of the state transi-
tion graph. A non-empty set S ⊆ Bn is a sink component of (Bn, T ) if the following
two properties are fulfilled.

(i) For all arcs (x, y) ∈ T with x ∈ S, also y ∈ S.
(ii) No proper non-empty subset of S has property (i).

In plain words, S is a minimal non-empty set of state vectors from which no arcs
point to nodes outside S. For deciding whether or not a given set of states S is
an attractor it is sufficient to know the arcs departing from all states in S. The
presence or absence of arcs from other states is irrelevant. By A we denote the set
of all attractors of the system under consideration. Note that A is a set of pairwise
disjoint sets of state vectors.

2.3. Reduced dynamics

What happens with the set of attractors under small modifications of the dynamics?
Let us consider the case of adding a single arc (x, y) /∈ T to the state transition
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graph. Then the modified state transition graph with arc set T ′ = T ∪ {(x, y)} has
an attractor set A′ such that

(a) |A| ≥ |A′|; and
(b) For all R ∈ A′ there is an S ∈ A such that S ⊆ R.

We outline proofs of these statements, starting with (b). Let R ∈ A′. If x /∈ R, then
the existence of arc (x, y) is irrelevant for R being an attractor, so we are done by
choosing S := R ∈ A. Now we consider the case x ∈ R. Since R is an attractor,
k ∈ R implies l ∈ R for all (k, l) ∈ T ′ (property (i) in attractor definition, cf.
previous subsection). Then the same implication holds for all arcs (k, l) ∈ T ⊂ T ′.
We choose S ⊆ R non-empty and minimal, retaining property (i). For proving (a),
we exploit that (b) ensures the existence of a mapping m : A′ → A with m(R) ⊆ R

for all R ∈ A′. Since attractors are pairwise disjoint, the mapping m is injective.
This directly implies statement (a) and completes the proofs.

In plain words, the addition of arcs to the state transition graph may reduce
but not increase the number of attractors. Each attractor of the augmented state
transition graph is contained in an original attractor. Conversely, the removal of arcs
may only increase the number of attractors; each attractor of the original dynamics
contains at least one attractor of the dynamics reduced by arc removal. This insight
suggests to systematically remove arcs from the state transition graph to obtain a
reduced dynamics in which the attractors are easier to find. The found attractors
can then be used as seeds for the search for the attractors in the original dynamics.

We perform the reduction of the dynamics at the level of the update operators.
Considering the single-node updates again, we define the b-retaining operator U

(b)
i

for a node i and a Boolean state b ∈ {0, 1} by

U
(b)
i x =

{
x if xi = b

Ux otherwise
(3)

If we replace the operator Ui by the corresponding b-retaining operator, node i can
no longer switch from state b to state 1 − b. This causes the removal of arcs (x, y)
with xi = b and yi = 1 − b from the state transition graph while all other arcs
remain unaffected. Consequently, additional attractors may be obtained while the
existing ones become smaller, as discussed in the preceding paragraph.

The goal is now to replace a suitably chosen subset of all update operators by
state-retaining operators such that each attractor shrinks to a single state vector, a
fixed point. This is certainly the case when the reduced state transition graph does
not have a directed cycle. Along such a cycle, the nodes that change state must do
so in both directions, flipping from 0 to 1 equally often as from 1 to 0. On the other
hand, these switching nodes induce a subnetwork of the Boolean network containing
a cycle. Then by contraposition, we see how cycles in the reduced state transition
graph can be suppressed: Each cycle on the Boolean network must contain at least
one node that changes state in only one direction. So we choose a set of nodes X

that hits each cycle of the graph at least once. Such a set is called a feedback vertex
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set. For each node in i ∈ X, the update operator Ui is replaced by a state-retaining
operator, ensuring that each cycle of the Boolean network contains a node that does
not flip in both directions in the reduced dynamics.

Since X is a feedback vertex set of the Boolean network, the subnetwork induced
by the remaining nodes Y = nc\X does not have cycles. It is a feed-forward network.
Therefore there is a topological sorting of Y : The indices of the nodes in Y can be
permuted such that arcs between nodes in Y go only from a lower index to a higher
index. Given that the system is in a fixed point, the states of the nodes in X are
sufficient to calculate the states of the remaining nodes Y as well. This is useful
for finding all fixed points of the reduced dynamics: For each state vector on X,
complete it to a state vector on the whole network and check if this state vector is
a fixed point or not.

The set P of all fixed points of the reduced dynamics serves as a starting point
for constructing the attractor set A of the original dynamics. Each attractor S ∈ A
contains at least one of the state vectors in P . Thus for each x∗ ∈ P we calculate the
set of all state vectors reachable from the x∗. If this set contains another element
of P then x∗ may be discarded. Otherwise this set is an attractor.

3. Method for finding attractors

The computational method for finding attractors falls into three stages: (A) Es-
tablish a feedback vertex set that defines which update operators are made state-
retaining. (B) Find the fixed point set A∗ of the reduced dynamics by enumeration
(C) Traverse the original state transition graph departing from the state vectors in
A∗. A small example is illustrated in Figure 1.

3.1. Feedback vertex set

A feedback vertex set X of the given Boolean network is determined as follows.
Initialize X as the whole node set nc. Loop: Draw a node i ∈ X at random (flat
distribution). If X \{i} is a feedback vertex set, set X \{i}. Repeat this loop until X

does not have a proper subset being a feedback vertex set. This very simple method
tends to generate a small but not necessarily globally minimal feedback vertex set.

3.2. Fixed points of reduced dynamics

In addition to the feedback vertex set X, the retained state bi needs to be determined
for each i ∈ X. Here we choose bi to be the state that fi assumes for most values
of the argument. If there is a tie between 0s and 1s, bi is drawn at random from B

with equal probabilities.
Without loss of generality we assume an indexing of the nodes such that X =

{1, . . . ,m} and m + 1, m + 2, . . . , n is a topological sorting of the feed-forward
subnetwork induced by the remaining nodes nc \ X =: Y . After initializing the
set P of fixed points as the empty set, we perform the following nested loops. The
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Fig. 1. (a) A Boolean network with three nodes and (b) its state transition graph G for asyn-

chronous single node update. Since G is strongly connected, there is a single attractor comprising
all states. The Boolean network may be made acyclic by removing node 2 or by removing nodes 1

and 3. Thus {2} and {1, 3} are the minimal feedback vertex sets (FVS). Panel (c) is the reduced

state transition graph for FVS {2} and b2 = 0, where node 2 cannot leave state x2 = 0. Network
state 101 is a fixed point of this reduced dynamics. Panel (d) shows the reduced state transition

graph for the larger FVS {1, 3} with retained states b1 = b3 = 0. Here the reduced dynamics has

a set of three fixed points, P = {000, 001, 100}, inside the original attractor.

outer loop runs over all partial state vectors x ∈ Bm. The first inner loop runs
over the vertices in i ∈ Y in the order of topological sorting, calculating the state
xi = fi(x1, . . . , xi−1). After finishing the first inner loop, a second inner loop checks
if

U
(bi)
i x = x (4)

for all i ∈ X. If yes, x is a fixed point of the reduced dynamics so x is included in
P . Otherwise x is discarded.

3.3. Original attractors

After initializing the set of attractors A as the empty set, attractor finding is per-
formed as the following steps. (1) Draw an element x∗ ∈ P and remove it from P .
(2) Perform a depth first search on the state transition graph starting at x∗ ∈ P .
(3) If the search encounters an element x ∈ P , it terminates immediately and the
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Fig. 2. Computational effort of attractor finding measured as the ratio r between the number of

states t calculated and the number of states s actually contained in attractors. The inset shows a

linear-log plot of the same data pointing out the weak increase of r with s. The method is applied to
Random Boolean networks with K = 2 inputs per node (critical Kauffman networks). Ensembles

contain 104 independently generated network instances for each system size n ∈ {13, 25, 63}. An

instance yields a data point (s, r) with s and r as defined in the main text. Each plotted point is
an average over data points with s ∈ [2k, 2k+1 − 1], k = 0, 1, 2, . . . (logarithmic binning). Error

bars indicate the maximum value of r falling into the given bin. For n = 63, only 8551 data points

are used. On the remaining instances, the computation runs out of memory.

search result is discarded. Otherwise the search runs until no further unvisited state
vectors are found. Then the set S of state vectors visited during the search is in-
cluded in A as an attractor. (4) If P is not empty, resume at (1), otherwise all
attractors have been found. Figure 1 shows a case where the reduced dynamics has
several fixed points contained in the same original attractor so search results would
be discarded in step (3).

4. Results

Standard random Boolean networks with K = 2 inputs per node are generated
as test instances for the method as follows. Each node i is assigned randomly and
independently one out of the 16 Boolean functions of two variables and a pair of
nodes from which node i receives input.

We test the method with various system sizes up to n = 63 and several in-
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Fig. 3. Scatter plot of computational steps t versus number of states on attractors s. Each data

point represents a network instance with n = 63 nodes. See caption of Figure 2 for details.

dependent instances of a network. As a first qualitative result we find that the
computational time of steps A and B of the method (finding X and P ) is negligible
compared with the final effort of searching the state transition graph. Therefore we
measure the computational cost in terms of the number t of successor states com-
puted. Note that t may be larger than 2n because a state with several predecessor
states may be computed more than once. A lower bound for t is the number s of
state vectors actually contained in attractors where

s =
∑
S∈A
|S| . (5)

The method is efficient if the ratio r := t/s is small. Figure 2 shows that low values
of r are obtained for intermediate values of s. With increasing s, the value of r grows
moderately. The functional form might be logarithmic, r ∼ log s. More extensive
numerical simulations or analytical estimates are required to clarify the growth.
The scatter plot in Figure 3 shows that fluctuations of t become small for large s.

Another indicator of performance is the comparison with the brute force method
of enumerating the whole state space. This takes 2n steps in the best case where
each state is computed only once. The performance gain of the present method is
then given by 2n/t for an instance with t successor states computed. Figure 4 shows
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Fig. 4. Distribution of performance gained in comparison to the method of complete enumeration

of the state space. For a given network size n and performance gain 2n/t, the plotted value gives
the fraction of successful instances requiring t or less state computations. A performance loss

(2n/t < 1, left of dashed vertical line) happens for a fraction of 0.0833 (n = 13), 0.0299 (n = 25),

and 0.0000 (n = 63) of all cases.

that the performance gain is large for most instances. The fraction of the instances
with a performance loss, i.e. 2n/t < 1, decreases with system size.

At network sizes n ≥ 30, the computation does not succeed for all the 10000
instances because it exceeds the allocated memory. At n = 63, a fraction of 14.5%
is unsuccessful because the depth first search of G does not stay within a maximum
depth of 3×107. Restarting with a different random number for the 1449 unsuccess-
ful instances leads to a complete computation in merely 19 additional cases. This
suggests that most of the failing instances are intrinsically difficult and do not fail
because of an unfortunate choice of the feedback vertex set.

5. Concluding remarks

As a proof of concept we have introduced and used the method in its simplest form.
Several extensions of the method may help to increase the efficiency and allow
computation of attractors for larger and denser networks.

Smaller feedback vertex sets may be found by replacing our simple greedy ap-
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proach with a more advanced method. Having smaller sets X tends to reduce the
set of fixed points P of the reduced dynamics. It remains to be seen if smaller P

leads to systematically shorter searches of the state transition graph in the last
phase of the computation.

One could attempt to explicitly guide depth first search towards other elements
in P such that futile searches would terminate faster. The search then should first
choose as the next state vector a predecessor that reduces the distance to another
element in P . Alternatively, systematically different graph traversals, e.g. breadth
first search, might be tried out.

As the greatest limitation of the method, we experienced the need to store all
the state vectors of an attractor during the traversal of the state transition graph.
Therefore for some of the instances at large n the computation ran out of memory.
Space efficiency might be gained by a compression of sets of state vectors during
the traversal. Here it may help that attractors of sparse networks often have a
combinatorial product structure [1].

To our knowledge, the procedure is the first exact and efficient method to deal
with the present scope: finding all attractors of a Boolean network with arbitrary
functions under asynchronous dynamics. Another improvement over the pure enu-
meration of the whole state space is made by Ay et al. [3]. That algorithm, however,
defines attractors differently and thus only considers a — typicall small — subset
of the attractors according to the general definition.

Can the present method be modified to work with synchronously updated
Boolean systems as well? Any synchronous system can be emulated with asyn-
chronous update under sufficient extension of the state space [19]. It would be
interesting if the pruning of arcs in the state transition graph is a general principle
applicable to a larger class of discrete dynamics.
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