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Abstract

Background: The Maximal Pairing Problem (MPP) is the prototype of a class of combinatorial optimization
problems that are of considerable interest in bioinformatics: Given an arbitrary phylogenetic tree 7" and weights
wgy for the paths between any two pairs of leaves (z,y), what is the collection of edge-disjoint paths between
pairs of leaves that maximizes the total weight? Special cases of the MPP for binary trees and equal weights have
been described previously. Algorithms to solve the general MPP are still missing, however.

Results: We describe a relatively simple dynamic programming algorithm for the special case of binary trees. We
then show that the general case of multifurcating trees can be treated by interleaving solutions to certain auxiliary
Maximum Weighted Matching problems with an extension of this dynamic programming approach, resulting in
an overall polynomial-time solution of complexity O(n*logn) w.r.t. the number n of leaves. For binary trees,
we furthermore discuss several constrained variants of the MPP as well as a partition function approach to the
probabilistic version of the MPP.

Conclusions: The algorithms introduced here make it possible to solve the MPP also for large trees with high-
degree vertices. This has practical relevance in the field of comparative phylogenetics and, for example, in the
context of phylogenetic targeting, i.e., data collection with resource limitations.

Availability: The source code of a C implementation of the polynomial algorithm can be obtained under the GNU
Public License from http://www.bioinf.uni-leipzig.de/Software/Targeting.

Background for example, they can be used to detect character
associations [1-3]. In this context, it is important to
Comparisons among species are fundamental to elu-  use statistically independent comparisons, i.e., any

cidate evolutionary history. In evolutionary biology,



two comparisons must have disjoint evolutionary his-
tories (phylogenetic independence). The Maximal
Pairing Problem (MPP) is the prototype of a class
of combinatorial optimization problems that models
this situation: Given an arbitrary phylogenetic tree
T and weights w,, for the paths between any two
pairs of leaves (z,y) (representing a particular com-
parison), what is the collection of pairs of leaves with
maximum total weight so that the connecting paths
do not intersect in edges?

Algorithms for special cases of the MPP that are
restricted to binary trees and equal weights (which
thus simply maximizes the number of pairs) have
been described, but not implemented [2]. Since dif-
ferent pairs of taxa may contribute different amounts
of information depending on various factors (e.g.,
their phylogenetic distance or the difference of their
character states), the weighted version is of consider-
able practical interest. A particular question of this
type is addressed by phylogenetic targeting, where
one seeks to optimize the choice of species for which
(usually expensive and time-consuming) data should
be collected [4]. Phylogenetic targeting boils down
to two separate tasks: (1) estimation of the weight
wyy that measures the benefit or our amount of in-
formation contributed by including the comparison
of species x with species y and (2) the identification
of an optimal collection of pairs of species such that
they represent independent measurements, i.e., the
solution of the corresponding MPP. To date, the only
publicly available software package for phylogenetic
targeting [5] can handle multifurcating trees; how-
ever, it uses a brute force enumeration of subsets of
children and hence scales exponentially in the max-
imal degree.

As a consequence of the ever-increasing amount
of available sequence data, phylogenetic trees of in-
terest continue to increase in size, and large trees
with hundreds or even thousands of vertices are not
an exception any more [6-9]. Most large phyloge-
nies contain a substantial number of multifurcations
representing uncertainties in the actual phylogenetic
relationships. It appears worthwhile, therefore, to
extend previous approaches to efficiently solve the
MPP for multifurcating trees and arbitrary weights.

Algorithms

Definitions and Preliminaries

Let T(V, E) be a rooted (unordered) tree with ver-
tex set V = LU .J, where L are the leaves of T', .J its
interior vertices, |.J| the number of interior vertices,
|L| the number of leaves, and a single vertex r € J
with degree 2, which we call the the root of T'. (Note
that, given an unrooted tree without vertices of de-
gree 2, we can obtain a rooted tree by subdividing
an arbitrary edge with the degree-2 vertex r.)

Every vertex x, with the exception of the root r,
has a unique father, fa(x), which is the neighbor of x
closest to the root. We set fa(r) = (). Furthermore,
for each u € J, let chd(u) be the set of children of u
(i.e., its descendants). Obviously, y € chd(u) if and
only if fa(y) = w and chd(u) = 0 if and only if u € L.
We write T'[u] for the subtree rooted at u. Further-
more, we assume that |chd(u)| # 1 throughout this
contribution. A tree is binary if |chd(u)| = 2 for
all u € J, and multifurcating if |chd(w)| > 2 holds
for some interior vertices. Finally, let T'[u, C] be the
subtree of T rooted at an interior vertex u € J, but
with only a subset C' of its children. All subtrees
Tw] with v € chd(u) \ C are thus excluded from
Tu, C].

For the purpose of this contribution, we inter-
pret a path m in T as a sequence {ej,...,e;} of
edges e; € E such that e; = e; implies i = j and
e; Nejr1 = {x;} are single vertices for all 1 < ¢ < [.
The vertices xg € e and x; € ¢; are the endpoints of
7. For two vertices x,y € V, we denote the unique
path with endpoints « and y by 7,. In the follow-
ing, we will frequently be concerned with paths con-
necting an interior vertex uw € J with a leaf x € L.
This path contains exactly one child of u, which we
denote by u, = n(u,x). The array n(u,x) allows
efficient navigation in 7.

A path-system Y on T is a set of paths m such
that

1. If m =myy € T, then o,y € L and z # y, i.e.,
every path connects two distinct leaves.

2. If 7’ # 7", then #’N7”" = (), i.e., any two paths
in T are edge-disjoint.

Note that two paths in ¥ have at most one ver-
tex in common (otherwise they would also share the
sub-path, and therefore edges, between two common
vertices). In binary trees, two edge-disjoint paths
are also vertex-disjoint (since two edge-disjoint paths
can only run through a vertex of degree at least 4),



Fig. 1. Two edge-disjoint paths can share a vertex u
in two distinct situations: (1) if both paths have u as
the last common ancestor of their respective leaves,
u must have at least four children, (2) if u is the last
common ancestor for one path, while the other path
also includes an ancestor of u, three children of u
are sufficient. These two situations will also lead to
distinct cases in the algorithms that are presented
next.

Furthermore, let wyy, : L x L — R be an arbi-
trary weight function on the leaves of T'. We define
the weight of a path-system Y as

w(Y) = Z Way (1)

Tey€Y

A path-system T that maximizes w(Y), i.e., a solu-
tion of the MPP, will in the following be called optimal
path-system. It conceptually corresponds to Maddi-
son’s “maximal pairing” [2], although we describe
here a more general problem (see Background and
Variants). In the following sections our main objec-
tive is to compute optimal path-systems.

The Maximal Pairing Problem for binary trees
Forward recursion

In this section we reconsider the approach of [4] for
the special case of binary trees. This subsumes also
Maddison’s [2] discussion of the special unweighted
case (see section Variants). We develop the dynamic
programming solution for this class of MPP using a
presentation that readily leads itself to the desired
generalization to arbitrary trees.

For a given interior vertex u € J we use the ab-
breviation Cy, = Cy(u) = chd(u) \ u, for the set of
children of u that are not contained in the path that
connects u with the leaf x. Since T is binary by as-
sumption in this subsection, C, contains a unique
vertex Cp = {uz}.

We will need two arrays (S, R) to store optimal
solutions of partial problems. For each u € V, let
S. be the score of an optimal path-system on the
subtree T'[u]. For each u € V and leaf x € T[u|, we
furthermore define R,, as the score of the optimal
path-system on T'[u] that is edge-disjoint with the
path m,.. Ry, can be decomposed as follows:

For completeness, we set S, = R, = 0 for all leaves
x e L.

An optimal path-system on T'[u] either consists
of optimal path-systems on each of the two trees T'[v]
and T'[w] rooted at the two children v, w € chd(u), or
it contains a path m,, with endpoints = € T'[v] and
y € T[w]. Thus, S, can be calculated as follows:

Sy + Sw

max max {wgy + Rys + Ry
mET[v]yET[w]{ Y v}

S, = max

3)
Recursion (3) can then be evaluated from the leaves
towards the root.

In order to facilitate the backtracing part of the
algorithm, it is convenient to introduce an auxiliary
variable Fy,. If the optimal score in eq.(3) is obtained
by the second alternative, the pair (z,y) that led to
the highest score is recorded in F),; otherwise, we set
F,=0.

Backtracing

An optimal path-system Yp,.x on T = Tr] can be
obtained by backtracing. For binary trees, this is
straightforward. We start at the root r. In the gen-
eral set, at an interior vertex u with v, w € chd(u),
we first check whether F,, = ). If this is the case, all
paths 75, € Tmax are contained within the subtrees
T[v] and T[w], and we continue to backtrace in both
vand w. If F,, = (x,y), then 7y, is added to YTimax,
and we need to backtrace the optimal path-system
for each of the subtrees “hanging oft” m,,. In other
words, we need optimal path systems for the sub-
trees rooted at the vertices uz and uy for u € myy.
These can be obtained recursively by following the
decompositions of R,; and R, respectively, given
in eq.(2).

Time and Space complexity

All entries S, for interior vertices u can be computed
in O(n3) time, because a total of n(n — 1) € O(n?)
pairs of leaves have to be considered in eq.(3) and
computation of each S, entry takes at most O(n)
time. Since we need to store the quadratic arrays
R, and n(u,z) as well as the linear arrays S, and
F,, we need O(n?) memory.
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Figure 1: Three different path-systems on a tree with 15 leaves. Each path is shown in a distinctive color,
unused edges of the tree are shown as thin black lines. Clearly, no two paths share an edge, i.e., the corre-
sponding collection of pairs of leaves is phylogenetically independent. Note that the paths are not necessarily

vertex-disjoint.

The Maximal Pairing Problem for multifurcating
trees

Forward recursion

In trees with multifurcations, for a path-system T,
more than one path can run through each vertex
m € J with |chd(m)| > 2. In addition to the opti-
mal score S, we also define the optimal score Q.
of all path-systems Y7, on T'[u] \ T'[uy], i.e., of all T/,
that avoid not only the path m,, but the entire sub-
tree T'[u,], where u, is as usual the child of u along
Tuz- We therefore have

The computation of S, and @Q,, are analogous
problems. In general, consider an (interior) vertex
u € J and a subset C' C chd(u) of children of u. Our
task is to compute the optimal path-system on the
subtree T'[u, C] of T. We first observe that any path-
system on T'[u,C] contains 0 < k < ||C|/2] paths
7, through u. Each of these paths runs through ex-
actly two distinct children v}, and v}/ of u. For fixed
v, and vy, the path ends in leaves ) € T'[v,] and
xy € T(v}] (Fig. 1). The best possible score contri-
bution for the path 7y, is

QI’,I” = vawl + R,UN:E// —|— wm/m// (5)

and the best possible score for a particular pair of
children v’,v"” € C is therefore

Q,UI)UN = max max {Rv’w’ + R'U”;E” +wm’m”}
z' €T x” €T [v"]
(6)

For the purpose of backtracing, it will be convenient
to record the path m.,, or rather its pair of end
points (z,y), that maximized Qv/w// in eq.(6) in an
auxiliary variable Fy/ 4.

Since there are k paths through u covering 2k
of the |C| subtrees, there are |C| — 2k children vy,
1 < ¢ < |C| = 2k, of u, each of which contributes
to the optimal path-system a sub-path-system that
is contained entirely within the subtree T'[vg]. Since
these contributions are independent of each other,
they are obtained by solving the MPP on T[vg], i.e.,
their contribution to the total score of the optimum
path system is .S, .

For each subtree T[u,C] we therefore face the
problem of determining the optimal combination of
pairs and isolated children. This task can be re-
formulated as a weighted matching problem on an
auxiliary graph I'(C') whose vertex set consists of
two copies of the elements of C, denoted v and v*.
Within one copy of C, there is an edge between any
two elements. The remaining |C| edges of T'(C') con-
nect each v with its copy v*. The associated edge

weights are wy v = Qv and wy, + = S,, respec-
tively. An example is shown in Fig. 2.

Clearly, an optimal path of the form
. v w0, .o 2" is represented by the edge

(v',v") of T'(C), while a self-contained subtrees T'[v]
is represented by an edge of the form (v,v*). It
remains to be shown that every maximum matching
of the auxiliary graph I'(C) corresponds to a legal
conformation of paths, i.e., we have to show that
in a maximum matching M, each vertex v € C is
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contained in an edge. First, note that v* covered by
an edge of M if and only if (v,v*) € M. Suppose v
is not covered in M. Since w, ,~ is non-negative, we
can exclude matchings that do not cover all edges of
C from the solution set.

We can thus compute the entries of S, and @,
respectively, in polynomial time by solving maxi-
mum weighted matching problems with non-negative
weights. Introducing the symbol MWM(T") for the max-
imum weight of a matching on the auxiliary graph
I', we can write this as

S, = MWM(T(chd(u)))

Que = MM(D(chd (1) \ {u,})) @)

Here we make use of the fact that the weight of a
matching equals the sum of the weights of the path
systems that correspond to the edges of the aux-
iliary graphs. In order to facilitate backtracing, we
keep tabulated not only the weights but also the cor-
responding maximum matchings for each I'(chd(u))
and T'(chd(u) \ {us})).

Backtracing
Backtracing for multifurcating trees proceeds in
analogy to the binary case. Again we start from the
root towards the leaves, treating each interior vertex
u. If [chd(u)| = 2, see the backtracing for the binary
case. If |chd(u)| > 2, we first need the solution M
of the MWM for chd(u). For each edge (v,v*) € M, v
is called recursively to determine its optimal path-
system. Each edge (v',v"”) € M, however, represents
a path 7., that belongs to the optimal path-system.
Each of these paths 7, maximizes Qv/)vn for a par-
ticular pair of children v',v” € chd(u) and therefore
has been stored in F,,~» during the forward recur-
sion. Thus, each of these paths 7, can be added to
the optimal path-system.

As in the binary case, it remains to add the
solutions from the optimal path-systems from the

Figure 2: Translation
of a path-system on
T[u] into a match-
ing on the auxiliary
graph I'(chd(u)). See
text for details.

subtrees that are not on the path from z to v/
and y to v, respectively, for each particular edge
(v',v") € M. This can be done as follows. Accord-
ing to equs.(2) and (4), R,, can be decomposed
into R, and either Q,, or Sy . If |chd(v')| = 2,
the child node @/, = k that is not on the path from
v to x is called recursively to obtain the optimal
path-system in T'[k]. If |chd(v")| > 2, however, the
solution of the MWM for @,/ is needed to determine
an optimal path-system on the subtree T'[v']\ T[v.],
because multiple paths may go through v'. R,/ can
then be further decomposed until R, is reached.
The same procedure is employed for R,,,.

Time and Space complexity

A maximum weighted matching on arbitrary graphs
with |V vertices and |E| edges can be computed in
O(|V||E|log E) time and O(FE) space by Gabow’s
classical algorithm [10] or one of several more re-
cent alternatives [11,12]. In our setting, |E| €
O(|chd(u)|?), hence the total memory complexity of
our dynamic programming algorithm is O(n?).

All entries for Qv/)vn (the edge weights for the
matching problems) can be computed in O(n?) time,
because a total of n(n — 1) € O(n?) pairs of leaves
have to be considered in eq.(6) and computation of
each Q. entry takes at most O(n) time. The ef-
fort for one of the O(|chd(u)|) maximum weighted
matching problems MWM(.) for a given interior ver-
tex u with more than two children is bounded by
O(|chd(u)|? log(|chd(u)|)?). The total effort for all
MWMs is therefore bounded by

Z |chd(u)|* log(|chd(u)|?) € O(n*logn),

which dominates the overall time-complexity of the
algorithm (see Appendix for a derivation).

As in the binary case, O(n?) space is necessary
and sufficient to store the arrays R and S. Further-
more, O(n?) space is needed to save the array @ and



the endpoints (z,y) of the path 7., that maximized
each @ entry. The latter is needed for the backtrac-
ing. In addition, we keep the quadratic array n(u, )
to allow efficient navigation in 7'. For each interior
vertex u with |chd(u)| > 2, |chd(u)| 4+ 1 different
maximal matchings have to be stored: one that cor-
responds to S, and |chd(u)| that correspond to Q-
Each of these solutions requires O(|chd(u)|) space.
The total space complexity of all MWM solutions is
therefore > [chd(u)* € O(n?) (see Appendix).

Algorithmic variants

Several variants and special cases of the general MPP
algorithm are readily derived for related problems.
In the following, we briefly touch upon some of them.

Special weight functions

It is worth noting that finding a path-system that
simply maximizes the number of pairs, as presented
in [2] and applied in [13], for example, constitutes
a special case of the MPP with unit weights. (Of
course the same result is obtained by setting w,,
to any fixed positive weight.) This case may be of
practical use under certain circumstances, as it max-
imizes the number of independent measurements,
thus improving power of subsequent statistical tests.
In order to maximize the number of edges that are
covered by the optimal path-system, we simply set
Wy = d(z,y), where d(z,y) is the graph-theoretic
distance, i.e., we interpret the edge lengths in the
tree as unity.

Fixed number of paths
A variant of practical interest is to limit the optimal
path-system to k leaf-pairs. This may be relevant
in a phylogenetic targeting setting, for example, in
cases where resources are limiting data acquisition
efforts to a small number taxa so that it pays to make
every effort to choose them optimally (see also [4]).
Typically, £ will be small in this setting.

For binary trees, this variant can be implemented
by conditioning the matrices R and S to a given
number of paths. Eq.(2) thus becomes

Ruz - Ru T Su, — 8
* zerlf(?)li}{ vad + Suy k-1 } (8)

for a given number k£ < k in the partial solutions.
If the optimal path-system on T'[u] is composed of

optimal path-systems on the two trees rooted at its
children v and w, respectively, then the k paths are
arbitrarily contained within T'[v] and T[w]. Thus,
k + 1 different cases have to be considered, and the
case with the highest score has to be identified. This
yields to the following extension of eq.(3) for S, :

Sy Sw. k—
zé?&)zi}{ 1+ Swk—i}

T R’Um Rw -
max xrg%[ii] {way + Rozi + Ruy k—1}
{0,k—1} yeT[w]

Sy, = max

(9)
We set Sy = Rz = Ruzo=0forallz € L, u € J,
and I € {0,k}. The latter condition ensures that
if no path can be selected anymore in a particular
subtree, its score must be 0.

As mentioned above, however, eq.(9) only holds
for binary trees. For multifurcating trees, the auxil-
iary maximum weighted matching problems are re-
placed by the task of finding matchings that maxi-
mize the weight for a fixed number k of edges. We
are, however, not aware that this variant of match-
ing problems has been studied in detail so far. For
small k, it could of course be solved by brute force
enumeration.

Selecting paths or taxa in addition to already selected
paths or taxa

In some applications it may be the case that a sub-
set of taxa or paths is already given, e.g. because
the corresponding data have already been acquired
in the past. The question then becomes how ad-
ditional resources should be allocated. Let Z C L
denote the taxa that are required to appear in the
output. Similarly, we may prescribe a partial path-
system.

In the simpler case, we are given such a partial
path-system II. It then suffices to remove the cor-
responding leaves from T (to ensure that they are
not selected again) and to set the weight of all paths
that have edges in common with II to —oo to enforce
independence from the prescribed pairs.

The situation is less simple if only the taxa are
given and the pairs are not prescribed. Here, the
goal is to find an optimal path-system that includes
all z € Z. First we note that such a solution not
necessarily exists, e.g. if |Z| = n and n is odd. As
a simple example, consider a binary tree with three
leaves. In that case, only one path and thus two
leaves can be selected. This constraint also holds



for the subtree rooted at any interior vertex u, i.e.,
partial solutions of the MPP (see below).

For binary trees, this variant can be implemented
by conditioning the matrices R and S to a subset
of all possible paths and leaves. This is achieved
by setting the score to —oo for a particular interior
vertex if one of the preconditions cannot be met in
eqns.(2) and (3). For example, if two leaves z,y € Z
have the same father u, the optimal path-system of
both T[u] and T must contain the path ms,, be-
cause otherwise, either x or y would not belong to
the optimal path-system due to the requirement of
independence. Similarly, if a particular path 7, in
the second alternative achieves the highest score in
eq.(3), myy must not be selected if this conflicts with
the possibility to select other prescribed leaves z € Z
(Fig. 3).

To derive the recursions for this variant, let Z,
denote the leaves z € Z with z € T[u] and let L
be the leaves of T[u]. It is convenient to first check
whether a solution exists for T'[u]. If L = Z, and
|L| is odd, S, = —oo (i.e., no path-systems exists
that selects all z € Z,, in T'[u]). Otherwise, the opti-
mal path-system for T'[u] with v,w € chd(u) can be
calculated as follows:

Sy + Sy fvé¢ZandwéZ
—00 otherwise
S, = max
—o0  if Ry, = —00
max or Sy, = —00
z€T[v] .
yeTlw] | Wypy + Ry,z + Sy, otherwise
(10)
Furthermore,

R — {—oo if Ry,o =—00or9,,, =—00 (11)

R, + Sy, otherwise

and
g 0 ife ¢z
"] —00 otherwise

for any € L. In analogy to the algorithm for the
unconstrained MPP we initialize the recursions by
R, = 0 for x € L. This variant does not change
the overall time and space complexity. Backtracing
is also identical to the unconstrained version of the
MPP.

For multifurcating trees, the maximum weighted
matching problems are replaced by finding match-
ings that maximize the weight with the constraint

(12)

that particular vertices must be included in the
matching. Similarly to the variant introduced above,
however, we are not aware that this particular prob-
lem has been studied in detail.

Probabilistic version

Sometimes, not only the optimal solution is of inter-
est. As in the case of sequence alignments [14] or
biopolymer structures [15], one may analyze the en-
tire ensemble of solutions. Both for physical systems
such as RNA, and for alignments with a log-odds
based scoring system, one can show that individual
configurations T with score S(T), in our case path-
systems, contribute to the ensemble proportional its
Boltzmann weight exp(—3S(T)), where the “inverse
temperature” (3 defines a natural scale that is implic-
itly given by the scoring or energy model. In the case
of physical systems = 1/kT is linked to the ambi-
ent temperature T'; for log-odds scores, § = 1; if the
scoring scheme is rescaled, as e.g. in the case of the
Dayhoff matrix in protein alignment, then 3 is the
inverse of this scaling factor. In cases where schemes
without a probabilistic interpretation are used, suit-
able values of 8 have to be determined empirically.
The smaller 3, the more the optimal path systems is
emphasized in the ensemble. The partition function
of the system is

7= exp(—BS(T)). (13)
T

The probability py to pick T from the ensemble is
pr = exp(—BS(Y))/Z.

The recursion in eq.(3) can be converted into a
corresponding recursion for the partition functions
Z,, of path-systems on subtrees T = T[u] because
the decomposition of the score-maximization in un-
ambiguous in the sense that every conformation falls
into exactly of the case of recursion. This is a generic
feature of dynamic programming algorithms that is
explored in some depth in the theory of Algebraic
Dynamic Programming [16]. We find

Zu - Zv . Zw + Z Z exp(_ﬁwmy) . R’Um . Rwy
zeT[v] yeT[w]
(14)
with Z, = 1if u € L and

Riw = Rppo + Zi, (15)

for k € J. Note that these recursions are completely
analogous to the score optimization in eqns.(3) and



TN >0

T[K] = inf

-

A
Py /\1

tot

(2): the max operator is replaced by a sum, and
addition of scores is replaced by multiplication of
partition functions and Boltzmann factors.

In order to compute the probability P,, of a par-
ticular path 7., in the ensemble we have to add up
the contributions py of all path-systems that contain

Ty

Z(mey) = Y exp(=fw(T))

Taﬂzy

(16)

and compute the ratio P, = Z(myy)/Z. The re-
cursions for the restricted partition function Z(m.,)
can be computed in analogy to eq.(14), but with
two additional constraints. First, since 7, € T by
definition, the leaves ¢ € T[v] and j € T'[w] are con-
strained in eq.(14), because only paths 7;; that are
edge-disjoint with 7., can be considered. The re-
cursion for the partition function of the last com-
mon ancestor node of x and y, denoted k, is also
constrained, because 7, must go through k. Calcu-
lation of the partition functions for the children of &k
is therefore not needed to compute Zj. Thus,

exp(—Bway) - Rz * Rupy if u=Fk

Zu - Zv . Zu)"’
> exp(—pfwij) - Ryi - Ry otherwise
iET[v],jeT[éu]
Ty NTij=

(17)
In resource requirements, this backward recursion
is comparable to the forward recursion in eq.(3):
Z(myy) and thus also Py, can be calculated in O(n?)
time, because the number of leaf-pairs that have to
be considered is still in O(n?). There is an additional
factor O(n) arising from the need to determine if the
path 7., is edge-disjoint with another path, which
however does not increase overall time complexity.
Furthermore, O(n?) space is needed.

Figure 3: A binary tree for which only one possible path-system
exists that fulfills all constraints.
the output are highlighted with an arrow, and the (only) valid
path-system is displayed in color (left). Note that the score of
the subtree T'[k] = oo, because no path-system in T'[k] exists that
includes all three leaves x € T'[k]. The score of T'[k], however, is
greater than 0.

Leaves that must appear in

The computation of partition functions is a much
more complex problem in the case of trees with mul-
tifurcations since it would require us in particular
to compute partition functions for the interleaved
matching problems. These are not solved by means
of dynamic programming; instead, they use a greedy
algorithm acting on augmenting paths in the auxil-
iary graphs. These algorithms therefore do not ap-
pear to give rise to efficient partition function ver-
sions.

The TARGETING software

We implemented the polynomial algorithms for the
MPP in the program TARGETING. The TARGETING
program is written in C and uses Ed Rothberg’s
implementation [17] of the Gabow algorithm [10]
to solve the Maximum Weight Matching Problem
on general graphs. The software also provides an
user-friendly interface and can solve the special
weight variants as well. The source code can be
obtained under the GNU Public License at http:
/ /www.bioinf.uni-leipzig.de/Software/Targeting/.

Concluding Remarks

In this contribution, we introduced a polynomial al-
gorithm for the Mazimal Pairing Problem (MPP)
as well as some variants. The efficient generalization
of the dynamic programming approach to trees with
multifurcations is non-trivial, since a straightforward
approach yields run-times that are exponential in the
maximal degree of the input tree. A polynomial-time
algorithm can be constructed by interleaving the dy-
namic programming steps with the solution of aux-
iliary maximum weighted matching problems. This
generalized algorithm for the MPP is implemented
in the software package TARGETING, providing a user-
friendly and efficient way to solve the MPP as well



as some of its variants.

Future work in this area is likely to focus on
developing algorithms for the variants of the MPP
on multifurcating trees. In particular, the interleav-
ing of dynamic programming for the MPP and the
greedy approach for the auxiliary matching problems
does not readily generalize to a partition function al-
gorithm for arbitrary trees. The concept of unique
matchings as discussed in [18] may be of relevance
in this context.

The MPP solver presented here has applications
in a broad variety of research areas. The method
of phylogenetically independent comparisons relies
on relatively few assumptions [1-3] and is frequently
used in evolutionary biology, in particular in anthro-
pology, comparative phylogenetics and, more gen-
erally, in studies that test evolutionary hypotheses
[19-22]. As highlighted earlier, another application
area lies in the design of studies in which tedious
and expensive data collection is the limiting factor,
so that a careful selection (phylogenetic targeting)
becomes an economic necessity [5]. As noted in [13],
alternative applications can be found in molecular
phylogenetics, for example in the context of estimat-
ing relative frequencies of different nucleotide substi-
tutions or the determination of the fraction of invari-
ant sites in a particular gene.

Appendix
Pseudocode

Below, we include some pseudocode for the compu-
tation of the optimal path-system for an arbitrary
tree T
Require: w,, > 0 V pairs z,y € L and precom-
puted array n(u,z)Vu € J and z € L
LSy =Ryy=Qua=0V2 el
Ryr = R,z + Sy, if |chd(u)| = 2 and Ry, =
R,z + Qu, o if [chd(u)| > 2Vu € J and x € L.
2: for all u € J in post-order tree traversal do

3:  if |chd(u)| = 2 then

4: {v,w} « chd(u)

5: Su1 = Sy + Sw

6 for all paths m,, with x € T[v] and y €
T[w] do

7: determine the path 7, that maximizes

3: Su2 = Wzy + Rv,x + Rw,y

9: end for

10: if Sy2 > Sy1 then

11: F, = (z,y)

12: else

13: F,=10

14: end if

15: Sy = max(Sul, Sug)

16:  else

17: for all pairs v',v” € chd(u) do

18: determine the path 7, that maximizes
Qur v and set Fyryn = (2, y) and wy o =
Qu' v

19: end for

20: for all pairs v, v* € chd(u) do

21: Wy o+ = Sy

22: end for

23: use computed edge weights for the following

MWM problems

24: Sy = MWM(T'(chd(u)))

25 for i =1 to |chd(u)| do

26: k «i-th child from u

27: compute § = MWM(T'(chd(u) \ k))

28: for all leaves x € T'[k]| do

20: Qua =96

30: end for

31: end for

32: tabulate solution of all MWM problems

33:  end if

34: end for

The following algorithm summarizes backtrac-
ing. It starts at the root of the tree, but consider
any vertex u:
1. if |chd(u)| = 0 then
2:  return
3: end if

if |chd(u)| = 2 then

b

5. {v,w} « chd(u)

6: if F,, =0 then

7: call backtracing for T[v] (using the solution

of the MWM for S,, if [chd(v)| > 2)

8: repeat for T'[w]

9: else

10: add F,, = (x,y) = my to solution set

11: k = v {path from v to =}

12: while k # x do

13: if |chd(k)| = 2 then

14: call backtracing for T[k,]

15: else

16: call backtracing for T[k] \ T'[k,] (using
the solution of the MWM for Q)

17: end if

18: k =k,

19: end while



20: repeat for k = w {path from w to y}

21:  end if

22: else

23:  {v1,v2,...,0,} — chd(u)

24:  take the appropriate tabulated MWM M

25:  for all edges (v;,v;) of M do

26: add F,, »;, = (x,y) = 7y to solution set

27: k = v; {path from v; to =}

28: while k # x do

29: see case differentiation for the binary case

30: k =k,

31: end while

32: repeat for k = v; {path from v; to y}

33:  end for

34:  for all edges (v;,v}) of M do

35: call backtracing for T'[v;] (using the solution
of the MWM for S,, if |chd(v;)| > 2)

36: end for

37: end if

A useful inequality

Consider an algorithm that operates on a rooted tree
with n leaves requiring O((d,,)*) time for each inte-
rior vertex with d,, children. A nalve estimate im-
mediately yields the upper bound O(n®*!). Using
the following lemma, however, we can obtain a bet-
ter upper bound. Although Lemma 0.1 is probably
known, we could not find a reference and hence in-
clude a proof for completeness.

Lemma 0.1 Let T be a phylogenetic tree with n
leaves, u an interior vertex, d, the degree of u, and
a>1. Then

(18)

Proof Let h denote the total number of interior ver-
tices. Each leaf or interior vertex except the root is
child of exactly one interior vertex. Thus ) d, =
n+ (h —1). For fixed h, we can employ the method
of Lagrange multipliers to maximize the objective
function F(du,,duy; ..., du,) = Y, (dy)* subject to
the constraint » d, =n+(h—1) =c < 2n—1.
The Lagrange function is then

A(duys sy X) =D (da) A (du)* ).

(19)
Setting the partial derivatives of A = 0 yields the
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following system of equations:

2 = (du)* T+ A Vug,i € {1, R}
ok _ o (20)
, which is solved by d,, = dy, = ... =d,, = d for

all i € {1,h}. The above sum is maximal when T is
a full d-ary tree for some d. The constraint can thus
be expressed as h-d =n+h—1 and F' = hd* which
is maximized by making d as large as possible (i.e.,
n) and hence minimizing the number A of interior

1

vertices (i.e., 1). Hence, F(n) = n®.
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