Reconstruction of pedigrees in clonal plant populations
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Abstract

We present a Bayesian method for the reconstruction of peglgn clonal populations using co-dominant genomic
markers such as microsatellites and single nucleotidenpaighisms (SNPs). The accuracy of the algorithm is
demonstrated for simulated data. We show that the joinmesibn of parameters of interest such as the rate of
self-fertilization is possible with high accuracy eventwiharker panels of moderate power. Classical methods can
only assign a very limited number of statistically significparentages in this case and would therefore fail. Stzlst
confidence is estimated by Markov Chain Monte Carlo (MCMGhgling. The method is implemented in a fast and
easy to use open source software that scales to large datademany thousand individuals.
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1. Introduction proach holds the promise to allow the direct inference

. .. of gene flow from a population’s pedigree in particu-
Molecular markers such as highly polymorphic mi- 5 jong-living clones with limited rate of sexual re-

crosatellites (Queller et al., 1993) and more recently production. It is a much harder problem than classi-
also diallelic single nucleotide polymorphisms (SNPS) ¢q haternity or parentage inference for two main rea-
(Glaubitz et al., 2003; Anderson and Garza, 2006) are gons: First, it is typically dficult to estimate the age of
now routinely used to genotype individuals in natu- 4 ¢ong| plant (Ally et al., 2008) and the absence of age
ral populations. Pedigree reconstruction by means of ya14 makes aa priori ordering of individuals in gener-
molecular markers has a long history in flowering plant 4ions impossible. Such an ordering is assumed by tra-
populations, see e.g. Ellstrand and Marshall (1985) and itiona| paternity inference software, see e.g. the works

Meagher and Thompson (1987). It has been used g \jarshall et al. (1998); Cercueil et al. (2002); Gerber
mainly to find correlations between phenotypes and re- g 5 (2003), and also dramatically restricts the pedigree
productive success, or to estimate pollen-mediated genegq 4 space. Second, while it is normally easy to esti-
flow (Smouse and Meagher, 1994; Burczyk etal., 1996; 46 the number of individualsamets, N;, in a clonal

Smouse et al., 1999; Meagher et al., 2003; Wright and 50t nopulation over the occupied space, it is typically
Meagher, 2004). To a lesser extent, parentage mferencevery hard to estimate the number offerent genotypes
and related methods are used to estimate recent rates Ofgene& Ng. The genotype numbeN,, usually is a re-
se!f-fertilization (_selfing) in a popul_ation (Ritland and quired input parameter in most software for the estima-
Jain, 1981, David et al., 2007; Wilson and Dawson, jon, of the statistical significance of a parentage. Both
2007; Jarne and David, 2008). _ restrictions can be overcome at least in principle, how-
Pedigree reconstruction in clonal populations has re- oyer  our recently related pedigree reconstruction tool
ceived very little attention so far, although such an ap- gpay. (Riester et al., 2009) is capable of handling par-
tial or absent age information and can estimdjérom
*Corresponding author the data if it is not provided as an input. In this contri-
Email addressesnarkus@bioinf.uni-leipzig.de (Markus bution we describe an extension of ANz approach

Riester),studla@bioinf.uni-leipzig.de (Peter F. Stadler), i ;
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2. Methods

2.1. Pedigrees

The core ofFRANz is a probabilistic model calculat-
ing the likelihood of a giverpedigreeof genotyped in-
dividuals. Let us start with the necessary definitions.

A pedigreeZ = (V,E) is an acyclic digraph with
vertex setv and arc sek, where the vertices represent
the individuals and the arcs the pareffispring rela-
tionships. Thud/ represents the set of all genotyped in-
dividuals in the sample. For an ang,(v), we say thav
is achild of u; andy; is aparentof v. The set oparents
of vin & is denoted byN* (v) C V; this set may contain
two elements{u;, u;}, one element{u;}, or noned. In
the latter casey is called afounder In selfing species,
U = uj is allowed and?’ thus becomes a multigraph.
With N~(u) € V we denote theffspring of u.

For a given individuali, we denote an observed
single-locus genotype bg; and its multi-locus geno-
type byG;.

2.2. Likelihood Model

Using Bayes’ Theorem, we calculate the posterior
probability that the femal&; and the maleVi; are the
parents ofO,

Pr(GFI’ GM]|G07 GF! GM? A7 Nm’ Nf) =
T(GolGFi, Gwmj) PrGri, Gwmj)
PrGo)

@)

whereGo, G, andGy, are the @spring, candidate ma-
ternal, and paternal genotypesthe population allele
frequenciesNy, the total number of breeding males (al-
leged fathers) in the population. Correspondingly,

is the total number of candidate mothers. The sym-
bol T(-) denotes the Mendelian segregation probability,
which is the probability that anftspring of F; and M;
has the genotyp&c. For multi-locus genotypes, we as-
sume here that the loci arlinked i.e., that the loci
are inherited independently during meiosis. Explicit
equations for T that tolerate genotyping errors are de-
rived in Appendix A. PG, Gu;) is the prior proba-
bility of F; and M; being parents 0D. PrGo) is the
marginal probability of the fspring genotype. By as-
suming equal priors, it can be computed as

1 [
PrGo) :N_[Z T(GolGri, Gmk)
mL

+ (Nm — nm) T(GolGri, A) )

provided the mothef; is already known (Nielsen et al.,
2001). The first term is the sum of segregation probabil-
ities of alln,, sampled candidate paternal genotypes, the
second term accounts for the unsampled ones. This sec-
ond term is the probability, given the population’s allele
frequencies and assuming Hardy-Weinberg equilibrium,
that a random genotype is the true father, weighted by
the number of unsampled candidates. For the case that
the mother is unknown, we may write

Nm i

PrGo) =—[Z Z T(GolGwk, Gri)
+ (N = i) Z T(GolGri, A)
+ (Ng = ny) Z T(GolGwi, A)

k

+ (Nm — nm)(Nf — ny) Pf(GoIA)] ®3)

with n; denoting the number of sampled female candi-
dates. Here, the first term again collects the segregation
probabilities of all sampled male and female genotypes.
The following two sums are the cases that either the true
father or the true mother are unsampled. The last term
accounts for the case that both parents are unsampled,
which is the probability of observing thefspring geno-
type in a population with allele frequenci@sweighted
by the number of unsampled pairs.

In monoecious plant populations, where all individu-
als can mate with each other and with themselves, we
finally have:

PrGo) = Z T(GolGk, Gi)

Ng(Ng l)[k 1 1=
+ (Ng - ng) Z T(GolGk. A)
k

N (Ng — ng)(Nzg -

ng + 1)

Pr(GdA)] (4)

with ny denoting the number of sampled genets @rd
the multi-locus genotype dé-th genet,Gy # Go. This
assumes equal prior probabilities for selfed and out-
crossed parentages.

2.3. Hficient Likelihood Calculation

If a single-locus genotype of anffepring does not
share one allele with each of the candidate parents, we
call this amismatch In true parent(s)4bspring pairs



or triples, we will observe mismatches only in case then these two filter steps can introduce a bias. We thus
of genotyping error (i.e., the true genotype iffelient store the sum of the probabilities of all in the second
from the genotype stored in our dataset) or in case of step filtered &spring-candidate mother andfspring-
somatic mutations. With a marker panel offitient candidate father pairs and alffspring-candidate par-
power for parentage inference, therefore, most of the ents triples. This sum is then added to the denominator
multi-locus segregation probabilities-Jthat appear in of Eqg. 5 and the two pair sums are weighted according
the marginal probabilities R&p) (Eq. 2, 3, and 4) will Eq. 2 to 4.
be 0 in the absence of typing errors and mutations. Thus The posterior probability of the genotype of individ-
only parentages without mismatching loci need to be ual i, conditioned on its parents in a given pedigree
considered, which reduces the pedigree search space”, may be written a%;{(N*(i)). Under the assumption
and the parentage posterior calculation. The first is im- that founders are unrelated, the log-likelihood%fis
portant for the mixing time of the Markov Chain Monte  now the sum of the log-transformed parentage posterior
Carlo (MCMC) sampling, the latter can be a significant probabilities over all individuals in the pedigree:
speedup especially whely N andG are variables (see
section 2.4). W(2) = > logm(N*()) (6)
When tolerating typing errors, however, all parent- iev
ages have a non-zero probability. An exact computation,
therefore, needs to take into account all pairs and triples.
However, parentages with many mismatches will have a

In clonal populations, we can include the number of
ramets for every genet in the posterior calculation:

very small posterior probability and can be ignored. Our o ProixXng(x) 7
implementation uses simulations to generate mismatch 7 = 2 Pr@Gilypne(y;) 0
distributions for parent(s)ftspringunrelated relation- yieA

ships in order to determine an appropriate mismatch cut-

wheren;(X) is the sum of the number of ramets of the
parents in parentage andn,(x) = 1 if x = {&}. This
prior increases the likelihood of parentages with fre-
guently observed genets.

offs.

For an dfspringv, we denote the set of all plausible
parents according to this cuffdoy J%,. It includes in
particular also the cases that none or only one of the
parents are sampled. Note thdf c VxV UV U {2}.

Apart from the number of mismatches, afsor infor- 2.4. Algorithm
mationsuch as sex, age, and known mothers res#fgt If age data is not or only partially available, then an
The posterior probability of a parentagef offspringi ordering of individuals in generations is not possible.
can be expressed in the form: Thus not all combinations of parentages may represent
PrOIX) a vglid pedig_ree of the s_ample as some of these c_ombi-
A = ———2 (5) nations may introduce directed cycles into the pedigree.
ng i Pr@ily;) In such a “cyclic pedigree”, some individuals would be

their own ancestors. The MCMC and Simulated An-
With Pr(O;|x) denoting the probability of parentages nealing (SA) procedures now sample valid, cycle-free,

shown in Eq. 2 to 4. For Eq. 3 we have for example: pedigrees from the pedigree posterior distribution (Al-
mudevar, 2007). We will later use these sampled pedi-
PrGil{Fi, Mj}) = T(GoilGri, Gmj)/ (Nt Nm) grees to estimate parameters and to estimate the sta-
~ (Nm—=nm) G~ tistical significance of a parentageERANz also sup-
PrGitFi) = (N¢Nm) T(GoilGri, A) ports the joint estimation of the population’s allele fre-
(Nm — nm)(Nf = ny) quencies, the number of unsampled candidate parents
PrGil{e}) = (N:Nm) PrGoilA) or missing data imputation (see below in section 2.5) in

which cases we also need MCMC or SA. In these al-
Eq. 5 is thus an approximation of Eq. 1 because only gorithms, one computes the likelihood of a given pedi-
plausible parentages are considered. In a second fil-gree #?,_;, randomly generates a new pedigré® and
ter step, all parentages with negative LOD scagy.( then accepts the change if eithét has a higher likeli-
Meagher and Thompson, 1986) are ignored. These arehood or with probability exp([LL{Z) — LL( £_1)]/T).
all parentages which would decrease the pedigree like- More precisely, in the followingZi_,j(y) denotes a
lihood if the corresponding arcs would be added to the pedigreeZ’_, where the parentage oftepringO; has
pedigree. IfN is estimated jointly with the pedigree, been changed fronx to y; X,y € J4,x # y. We
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use a thread-safe Mersenne Twister (Matsumoto and Estimation of the size of the unsampled population:
Nishimura, 2000) to obtain random numbers. If the number of unsampled candidates is not known
We seti = 1 and repeat the following steps until con-  within reasonable accuracy, it is possible to estimate this
vergence (SA) or until is greater than a given maxi- number together with the pedigree, either by sampling
mum number of iterations (MCMC). N everyn, steps from a uniform distribution in the in-

) terval[n, Nmay (WhereNmay is specified by the user) or
Pedigree Change Step: by treatingN as a latent variable, estimated again every
We select a randomfispring genotyp@®; and selecta  py steps from the indegree distribution of the pedigree
new parentage fo®; from {q(&_1, Zi-1j(y))} which (see Riester et al. (2009) for details).
is defined as

AP s, Prr i) = { 13% ity # x (g  lemperature schedule: |
0 ify=x In the MCMC sampling, the temperatufieis always
kept at the constant value 1. To speedup mixing of the
sampler,FRANz supports Metropolis-Coupled Markov
Chain Monte Carlo (MCMCMC) (Geyer, 1991). On
computers with multiple CPU cores, we recommend

This proposal function thus selects a new parentage ac-
cording their posterior probabilities. We then accept this
change with the following probability:

A(Pi-1, Piaj(y) = starting a chain on every CPU core. The temperature
0 if 2_1;(y) cyclic of thei-th chain is set to A(1 + 0.5( — 1)). Then, the
. 9 - K
exp([LL( Dia () - LL(Pir)+ 9) states of the chainsand j are swapped and accepted

log AP 1. P, () LL(Z)]/Ti). Pedigrees are only sampled from the first,
With (partially) missing age data, to ensure irreducibil- unheated chain. In the SA optimization, we use the
ity of the MCMC sampler, it is necessary to perform {eémperature schedule as described in Aarts and Korst
swap steps in which the direction of a random gr&y  (1989) which has been shown to bgiigent in pedi-
of the pedigree is reversed (Koch et al., 2008). Note that 9r€€ reconstruction (Almudevar, 2003). For datasets
age data implies the direction of an pedigree arc, so a With less than about 30 individuals, we do not use the
swap step would always return an invalid pedigree in the SA heuristic. Instead, we find the maximum likelihood
case that age data is available. We can therefore write Pedigree with the exact algorithm proposed by Silander

down the probability to perform such a swap change in @nd Myllymaki (2006) as described for the pedigree re-
the following form construction problem in Cowell (2009).

Pr(swap):{ % if age data missing

2.5. Missing Values
0 otherwise (10) 1SSIing valu

A common problem in most datasets is that genotyp-
ing failed for a significant amount of loci. The problem
of dealing with missing data has seen remarkably few

Otherwise we change the parentage of a randdim o
spring as described above. Withwe denote the num-

ber of sampled individuals in thétspring generation(s) attention in parentage analysiRANz offers two op-

g::r(:)fr;‘rlcr; tig(:haebszgicieog a}?}ii\ali:) iﬁgﬁ tgetﬁgma'lrem_tions for dealing with missing data. The first is imputa-
e pedigree. P g€, pa tion by a single-site Gibbs sampler. Here, the alleles of
ages of two individualg andk are changed and this

. . . arandom genotypg; with unobserved data of individ-
change is accepted with probability uali at locusj are sampled proportional to the product

(i1, Zi-1jk(Y, 2) of all affected segregation probabilities of the pedigree:
0 if Z_1jx(y, 2) cyclic
_] 0 ify¢aivze Pr(@ij|2, A) = T(GIIN* (i), A) H T(GoIN*(0), A)
exp((LL(Zi-1jk(y. 2) — LL(Zi-1)]/T) 0eN-(i)
otherwise
(11) (12)

The second case is necessary because a swap might gen-

erate an invalid parentage, for instance one with too So the segregation probability ofand of all dfspring

many mismatches. In selfing parentages, both arcs areof i need to be updated. The reason for sampling condi-

swapped as otherwise a swap would always produce ational to this product instead of the pedigree likelihood

cycle. is that it is more sensitive to changes of a single allele.
4
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Figure 1: The accuracy of the reconstructed Maximum Lilagith pedigrees is plotted in Fig. 1a as a function of the
number of loci. The values are the median accuracy of terorahdgenerated pedigrees of size 10.000 genets with a
sampling rate (SR) of 0.01 (filled symbols) and 35.000 gewétsa sampling rate of 0.001 (unfilled symbols). The
simulated datasets are reconstructed once with the sthpdaentage posterior probabilities (Eq. 5) and once with
the number of ramets included as priors (Eq. 7). The erras ipalicate the first and third quartile. Fig. 1b lists the
proportion of correct and incorrect parentages with a pmstprobability > 0.95.

A well-known problem of this approach is that the &:
irreducibility condition is only guaranteed for diallelic re= 25 (13)
loci (Thompson, 2000). This can be circumvented 2 IN*(i)I
with non-zero segregation probabilities or for example v
with MCMCMC (Geyer, 1991) samplers (Sheehan and The normalization according the indegrees takes ac-
Thomas, 1993; Cannings and Sheehan, 2002). The im-count for the fact that the probability of observing an
plemented error model ensures the first with non-zero outcrossed parentage is twice as high observing a selfed
typing error rates and the latter is also available in our one, as in the latter case there is only one instead of two
implementation. We make such a Gibbs sampling step parents.
aftern, pedigree changes.

The second option for dealing with missing data is 2.7. Rates of Clonality
to include only observed alleles in the likelihood cal- ) ) ) ]
culations. Noteworthy, this is the standard method em-  EStimating the rate at which a population reproduces
ployed by most other parentage or paternity inference clonally is notorlously diicult (de Meeus and Balloux, .
tools. FRANz also supports partially observed geno- 2004). We assume in the following that we can esti-

types, see Appendix B for the corresponding segrega- mateN;, the total number of ramets in the population,
tion probabilities. within reasonable accuracy for example over the occu-

pied space. We further assume a population in which
N; is constant across generations. In every generation, a
2.6. Rates of Self-fertilization ramet reproduces either clonally with rater sexually
with rate (1- c). A random ramet is killed to keel,
Given a pedigree”, we can estimate the selfing rate constant if necessary. Then we use pedigree reconstruc-
rs over the number of observed self-fertilizatioBsn tion to estimate the total number of genétg, We then
5



estimate the rate of clonal reproduction with the follow-
ing equations.

By h(s) we denote the expectation value of the num-
ber of genets with exactlg ramets, for integeis €
{0,...,N;}. We haveh(0) = 0 by definition. Let us
establish conditions for the stationary valuesofn a
birth eventh(s) changes by

AB(s) = —cNir h(s) + C%Lh(s— 1) (14)

forall se {2,...,N}, wheread(1) is changed by

AP(1) = (1) - Nih(l) . (15)
r
A death event causes a change
A =~ She+ St hse1).  (16)
N, N,

for all s € {1,...,N}. At constant population sizH,

birth and death events occur equally often. Therefore
AP(s) + A%s) =0 (17)

must be fulfilled in equilibrium for alk{1, ..., N,}. We
obtain the set of equations

h(0) = 0
h(1) = N(L = ©)
()= 5 [(L+ (1) ~ N, (1~ )

h(s+1) = %1 [s(1+c)h(s) — c(s— 1)h(s-1)]

(18)

the last equation being valid for al € {2,...,N}.
Taken together, this is a second order linedfedénce
equation for a givere andN,. We solve it numerically
and obtain the expected number of genotypes as

N
Ng= > h(s). (19)
s=1

For the inverse problem with givel,, we obtainc by
means of nested intervals.
3. Simulated Test Data

3.1. Growing Population
To test our algorithm and implementation, we first

simulate data under the model of a growing population,

8 alleles per locus. We use random (“broken stick”)
frequencies with a maximum frequency ab0 In ev-

ery year, a ramet reproduces either sexually or clonally.
For sexual reproduction we assume a fixed rate of self-
fertilization or outcrossing with a random ramet. With
a probability of 001, we replace one allele of a single-
locus genotype with a random one to simulate genotyp-
ing errors.

We choose relatively high rates of selfingi(pand
clonality (09). This results in an extremelyfiicult test
dataset as individuals are closely related because old
plants grow fast and thus mate very often. Exclusion
probabilities (Jamieson and Taylor, 1997; Wang, 2007),
which assume unrelatedness among candidate parents,
thus overestimate the power of a marker suite. The ex-
clusion probabilities of the simulated datasets are shown
in Supplementary Fig. S1.

For the sampling rates, we choose a relatively high
one of 001 of (1.000 of about 100.000 ramets) and a
more realistic one of 001 (350 of about 350.000). We
generate 10 datasets for each of the two sampling rates.

3.2. Constant Population Size

To show that the present approach is able to estimate
the sampling rate of the genets, we next simulate data
under the model of population with a constant number
of rametsN,. We start with a founder generation of
100 unrelated genets with 9 loci and use the same al-
lele frequencies as before. Then in every generation,
all ramets reproduce again either sexually or clonally.
If sexually, then again with a selfing rate of 0.1. Out-
crossing happens with a random living ramet or with an
migrated ramet. Here we use a migration rate of 0.01. If
after such a reproduction event there are more tiian
ramets, one random living ramet is killed. We stop the
simulation after the birth of the 20000-th genet. Then
we samplen;, = 500 living ramets. We generate again
10 datasets for every parameter combination. Here we
vary the rate of clonality (0.5, 0.8, 0.9 and 0.95) awd
(4.000 and 10.000)Ny is then estimated over the inde-
gree distributions of the MCMC sampled pedigrees (Ri-
ester et al., 2009). The rate of clonality is then estimated
with the model described in Sec. 2.N; is assumed to
be knowna priori.

4. Results

4.1. Growing Population
The accuracy of the pedigree reconstructions, defined
as the proportion of correct parentages in the SA Maxi-

where individuals do not die once they reproduced sex- mum Likelihood pedigree, are shown in Fig. 1a. Thein-

ually. The data is simulated with allele frequencies with
6
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(using Eq. 7 instead of Eqg. 5) improves the reconstruc- S.R?2 Loci RMES FRANz
e emenl o, 001 § 0150 2004 0100 s0012
- o . . 0.01 35 0.176 +0.026 0.096 =+0.023
of genets; without age data it is sometimes not possi-
ble to identify parent andftspring in a parent-@ispring 0.001 9 0.148 +0055 0.099 +0.027
pair, which is also the reason why the accuracy does 0-001 35 0.175 +0.025 0.103 =0.034
not reach 100%. The plot also shows that the sampling
rate has surprisingly little influence on the accuracy, the Table 1: Comparison of the estimated rates of self-
amount of ava_”able genomic information is the Crucial fert”ization. Th|5 table IiStS the means al’ld Standard
factor here. deviations of the selfing rate estimates from the RMES

Fig. 1b shows the fraction of correct and incorrect Software (David et al., 2007) and the present approach
parentages with a pedigree posterior probability>of for simulated datas_ets (Sec. 3.1) with a true selfing rate
0.95. These are parentages that are observed in at leaspf 0-1.*S.R. sampling rate (ramets)

95% of all sampled pedigrees. Although these prob-
abilities are not exactly comparable to the thresholds
of classical, simulation based paternity inference tools
such as CERVUS (Marshall et al., 1998) due to the
very different approaches, the plot nevertheless shows
that even with powerful marker panels, i.e., when there
is a high amount of genomic information in the data,
we can only assign relatively small numbers of parent-
ages, which is especially a problem in low sampling rate
datasets. It is therefore crucial to use an approach that
uses the complete data for the estimation of parame-
ters of interest, not only highly significant parentages.
The high rate of incorrect assignments, especially in the
0.001 dataset, is explained by the large violation of the
assumption that candidate parents are unrelated.

We then use the MCMC sampled pedigrees to esti-
mate the parameters of interest. As an example, we
plot in Fig. 2 the estimated rates of self-fertilization
(Eq. 13) for both sampling rates.(d and 0001, us-
ing Eq. 7) as a function of the number of loci. As to In Table 2 we present the results of the pedigree re-
expect, the accuracy of the test dataset with high sam-construction of the datasets with constant population
pling rate (Fig. 2a) is higher than the one with lower size (Sec. 3.2). Our approach significantly underesti-
sampling rate (Fig. 2b) because the number of observedmates the trudNg. This is partly explained by the fact
parentages is much higher. The estimates are fairly in- that the probability of sampling old and big plants, i.e.,
dependent of the number of loci and already accurate Ones with many ramets is higher than sampling small
with very low amount of genomic information. Other genets. And as old plants have in general mate o
parameters such as male fertilities (Morgan and Con- Spring than young ones, we observe more parentages
ner, 2001) could be calculated analogously. In Fig. 2c as we would expect by assuming equal sampling prob-
we show the good mixing properties of our sampler with abilities of parents for all individuals, which we do.
trace plots of the pedigree log-likelihood and the selfing More observed parentages result in a higher sampling
rate. Sampling of 20.000 pedigrees (9 locQDdataset) ~ rate and therefore a smalldy. Our model (Sec. 2.7)
takes less than a second on a modeomputer and we  also slightly underestimates the tridg. Nevertheless,
observe a Metropolis-Hastings acceptance rate of 0.33With relatively high sampling rates of 0.125, we can ob-
(data not shown). serve fairly accurate estimates. As the number of genets

We also compare our selfing rate estimates with the increases with decreasing rate of clonal reproduction,

Maximum Likelihood estimates of the RMES software We observe less parentages if these rates are low. This
explains the high variances in the datasets with a clonal

rate of 0.5. At clonal rates smaller than 0.9, we see that
Lintel® Xeor® CPU, 2.33GHz, 8 cores, 16GB RAM a sampling rate of 0.05 is not high enough for a reliable

(David et al., 2007) in Table 1. RMES estimates selfing
rates over observed multi-locus heterozygosity deficien-
cies and does not require parefiispring relationships.
These allele frequency approaches are therefore in prin-
ciple capable of estimatinipng-termselfing rates but
are inherently less robust with respect to violations of
the assumptionsFRANz, on the other hand, provides
quite accurate estimates of thecentselfing rates for
the 10 datasets. This pedigree reconstruction approach
works in the model of a growing population even with
very low sampling rates extremely well because old
founder plants are sampled with probability close to one
and these plants have manfjspring. This is the reason
why we observe enough parentages for reliable param-
eter estimation.

4.2. Constant Population Size
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Figure 2: The estimated rates of self-fertilization of tiraidated datasets (Sec. 3.1). A line visualizes the selfiw r
of one of the 10 datasets forftéirent amounts of genomic information. Fig. 2a are the raites the 001 sampling
rate datasets, Fig. 2b from th@01 one. In Fig. 2c we show a trace plot of the MCMCMC samplihgne simulated
dataset (9 loci, sampling rateQd, 8 parallel chains). The dashed curve visualizes the oiide selfing rate.

parameter estimation: the selfing rates are in these casegven with marker panels of moderate power. Classical
also significantly underestimated. methods can only assign a very limited number of sta-
tistically significant parentages in this case and would
therefore fail, especially if sampling rates are low which
is still a problem in most parentage studies. We have
also shown that our likelihood model is surprisingly ro-
bust for violations of assumptions such as unrelatedness
of candidate parents and constaffeetive population
size. With relatively high sampling rates, we were fur-

5. Discussion

We have presented a novel likelihood model for the
reconstruction of pedigrees in monoecious clonal plant
populations and demonstrated the accuracy and good

MCMC(MC) mixing properties of our open source im- . ; :
plementation on simulated data. Odii@ent likelihood tf|1err] albrle tro glvetifarlnrl% a(i:r;:qurlatte C(iestlmaltetsi c;f tf:liitrhatesnof
calculations allows parentage analysis on huge datasets” onal reproductio simulated populations co

with thousands of individuals. We have shown that the stant size.

joint estimation of parameters of interest such as the As mating success dropstfavith distance between

rate of self-fertilization is possible with high accuracy mates, several authors suggested likelihood models that
8



S.R2 Ng Rate of Clonality Selfing Rate
FRANz True Model FRANz True FRANz
0.125 2574.95 +61477 2834.00 +2018 277259 0.541 +0.19 0.5 0.079 +0.04
0.05 5832.13 +350820 6955.67 +4336 6931.47 0.611 +0.32 0.5 0.037 +0.03
0.125 1460.90 +22839 1711.20 +1888 1609.44 0.826 +0.05 0.8 0.082 =+0.02
0.05 2447.02 +52200 4000.80 +31.02 4023.59 0.905 +0.03 0.8 0.068 =+0.02
0.125 876.26 +8041 1121.90 +1889 1023.37 0.920 +0.01 0.9 0.095 =+0.02
0.05 1814.28 +24340 2792.70 +37.12 2558.43 0.939 +0.01 0.9 0.066 =+0.03
0.125 555.72  +4525 720.10 +2170 630.68 0.958 +0.01 0.95 0.094 +0.03
0.05 1218.60 +12170 1847.80 +3142 1576.70 0.965 +0.01 0.95 0.081 +0.03

Table 2: Estimated rates b, clonality and self-fertilizations. This table lists mesand standard deviations of the in
FRANz estimated\, for ten simulated datasets (Sec. 3.2) for each of the 8 paeamembinations. It further lists the
true Ng and the ones estimated of our model (Sec. 2.7). Then theastinmates of clonality are presented. Finally,
the mean and standard deviations of estimated rates ofesglization are shown (with a true selfing rate of 0.1).
aS.R. sampling rate (ramets)

include the sampling location of the genotypesg( them in the segregation probability calculation (see Ap-
Adams et al., 1992; Burczyk et al., 1996; Smouse et al., pendix A). Our implementatio®RANz supports par-
1999; Hadfield et al., 2006). In principle, it is possi- tially genotyped loci where only one of the two alleles
ble to add the corresponding prior probability distribu- are known and this feature could be used in these cases
tions in our model. To calculate the distance between to mark an observed mutation as unknown without loos-
two clonesA and B, 6ag, one can use the locations of ing much information.

all sampled ramets as an approximation for the real dis-
tance between the (maybe unsampled) mating ramets., . .. . .
An obvious strategy for the calculation &g would be Availability of the implementation
the average distance between all sampled ramefs of
and B. Another possibility would be to use the mini-
mum distance.

An open source implementation 8RANz is avail-
able underhttp://www.bioinf.uni-leipzig.de/
Software/FRANz. For a simple interaction and com-

It should be noted that other methods for the estima- parison with other tools, we provide a user-friendly Web
tion of recent selfing rates exist which do not necessarily 2.0 input file generator on thERANz website. Fur-
require that parental genotypes are sampled. For exam-thermore, it is now possible to convefRANz input
ple if it is possible to obtain progeny arrays, the known files into several other formats (currently supported are
family structure in the data can be used to reconstruct CERVUS (Marshall et al., 1998; Kalinowski et al., 2007),
maternal genotypes. Selfing rates are then estimated byPARENTE (Cercueil et al., 2002)GENEPOP (Roussett,
comparison of maternal withfispring genotypese(g. 2008), anckMES (David et al., 2007)).

Jarne and David, 2008, for a review). If neither such a

family structure nor parental genotypes are known, then

reconstruction of the genotypes of the previous gener- Acknowledgements

ations might be possible by MCMC sampling (Wilson

and Dawsoq, 2007). Howeyer, 'this assumes'that the We are grateful to Thomas R. Meagher for his lit-
model used in MCMC sampling fits the population un-

. -2 erature recommendations and the referees for insight-
der investigation.

ful comments. The authors further want to thank Gun-
We assumed in this article that all ramets have the nar Boldhaus and Florian Greil for comments on the
same genotype. However, especially in long-living manuscript. This paper also benefited from discussions
plant populations with high rates of clonality, somatic with the people of the Leipzig Network Seminar and
mutations may lead to clones withfidirent genotypes.  from inspiration from Hal Incandenza. This work was
In this case it could be necessary to extend the model supported by the 6th Framework Programme of the Eu-
to allow multiple genotypes per genet and include ropean Union, project 043251 “EDEN".
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A. CERVUS Likelihood formulas B.2. Pairs

In the following, we present the likelihood formulas for pa- P _
. ; ) 1 ifa, =a,Va,=?

ternity or parentage inference of the typing error model de- 5(a0,a) = | Pr@y) if 2. =2

scribed in Kalinowski et al. (2007). We corrected some ty- P 0 other\r;visé

pos in the original version presented in the appendix of Kali-

nowski et al. (2007) and also simplified the formulas where Casel: For parent-@spring pairs, we have with both

possible. L(H,) is the likelihood of the hypothesidl; that parental alleles missing no additional information and
the alleged parent is the true parent; the alternative hypothe- thus have the genotype probability: &f.;[?.?) =
sis H; is that the alleged parent is unrelated. We follow here Pr@@.a;).

the notation of the original paper instead of ours: the single case2: One dfspring allele missing

locus genotypes of mother, alleged father afidpring are

denoted withg,, g, andg, (corresponding t@s, gn, andg, in T(a.7aj.a) = 0.5Pri@) + O.25[6(a.—, a;) + o(a, ak)]
our notation). Pig) is the probability of observing the geno- (21)
type g in a population in Hardy-Weinberg equilibrium. For

Case 3: One parental allele missin
diploid heterozygotes, the probability of a genotype with the P g

allelesa; anda, and with the allele frequencigs andq is T(a.ala;.?) = 0.5[6(3],3.]’) Pria) + pr(a.a)]

Pr(a;, ap) = 2pq;, for homozygotes, we have Ri(a;) = p>.

The estimated typing error rate is the probability that one or T(a.ajla.?) = 0.5](a, a) Pr(a;) + 6(a;, a) Pr(a)|
both alleles of an genotype are not correctly observed and is +05Pr@.a;)

denoted ag. Finally, T() denotes the Mendelian segregation (22)

probabilities (see for example Meagher (1991)) ag@Ts the

variant of the error model (Kalinowski et al., 2007). For de- B.3. Triples

tails see Marshall et al. (1998); Kalinowski et al. (2007). The o

likelihoods for paternity when the mother is unknown are: Case1: Both maternal or paternal alleles missing:

L(Hy1) = Pr(@a)Te(JolGa. €) T(a.ajlaca, 2.?) = T(a.ajlaca) (23)

L(H1) = Pr(ga){(1 - €)*T(Golga) + €(1 — €)2 Pr@) + € Pr(go)}
= Pr@){(1 - €)°T(olga) + €(2 - €) Pr(go)}

L(H2) = Pr(@a){Pr@.)}

The likelihoods for paternity and maternity jointly are

Case2: One dfspring allele missing:

18
T(a.7ay1-8)2, aj3.844) = 2 Z o(a.aw)  (24)
k=1

L(H1) = Pr@m) Pr@)Te(Jolgm. Ja, €) Case 3: One maternal aridr paternal allele missing:
— _ )3 _ )2
L(H1) = Pr@m) Pr@){(1 — €)°T(QolGm gza) +e(l-e) 1 if Bo1.802 = Ap1.ap:
[T(Qolgm) + T(GolTa) + Pr(@o)] + €(3 — 2¢) Pr(go)} Pr(@o1.202) if @ =?A ap =?
L(Hz2) = Pr(@m) Pr(@.){Pr@o)} (21802, Bp1-8p2) =1 Pr(@o1) if 8oz = @p1 A Apz =?
P if 8, = =2
The likelihood of the alternative hypothedts for paternity Or(aOZ) Il Gt apz)t/i\w:?\ivise
when the mother is known is:
L(H2) = Pr(@m) Pr@a){(1 - €)*T(Qolgm) + (1 - €)? L,
209 _ 1
[T(YolOm) + 2 Pr@o)] + €°(3 — 2¢) Pr(go)} T(801.802/8m1. 82, A1.82) = 7 Z Z 8(01-802, Ami-At })
L(H,) is the same as for the parentage inference case. =1 j=1 25)

B. Missing Values

The following equations are the segregation probabilities
with (partially) missing data for genotypes, pairs and triples.

B.1. Genotype probabilities
If one allele of a single locus genotype is missing, then all
alleles are considered and we have PH?%), where the ques-
tion mark codes a missing allele. The genotype probabilities
are thus:
Pr(2?)=1, Pr@g.?)= Pr@&) (20)
11



C. Supplementary Figures
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Figure S1: The exclusion probabilities (Jamieson and
Taylor, 1997) of 10 randomly generated datasets (3). In
our data, the average probability that a random individ-
ual has a genotype that is compatible with diisjring
genotype is< 1 x 10°° for more than 25 loci.

12



