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Abstract

We present a Bayesian method for the reconstruction of pedigrees in clonal populations using co-dominant genomic
markers such as microsatellites and single nucleotide polymorphisms (SNPs). The accuracy of the algorithm is
demonstrated for simulated data. We show that the joint estimation of parameters of interest such as the rate of
self-fertilization is possible with high accuracy even with marker panels of moderate power. Classical methods can
only assign a very limited number of statistically significant parentages in this case and would therefore fail. Statistical
confidence is estimated by Markov Chain Monte Carlo (MCMC) sampling. The method is implemented in a fast and
easy to use open source software that scales to large datasets with many thousand individuals.
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1. Introduction

Molecular markers such as highly polymorphic mi-
crosatellites (Queller et al., 1993) and more recently
also diallelic single nucleotide polymorphisms (SNPs)
(Glaubitz et al., 2003; Anderson and Garza, 2006) are
now routinely used to genotype individuals in natu-
ral populations. Pedigree reconstruction by means of
molecular markers has a long history in flowering plant
populations, see e.g. Ellstrand and Marshall (1985) and
Meagher and Thompson (1987). It has been used
mainly to find correlations between phenotypes and re-
productive success, or to estimate pollen-mediated gene
flow (Smouse and Meagher, 1994; Burczyk et al., 1996;
Smouse et al., 1999; Meagher et al., 2003; Wright and
Meagher, 2004). To a lesser extent, parentage inference
and related methods are used to estimate recent rates of
self-fertilization (selfing) in a population (Ritland and
Jain, 1981; David et al., 2007; Wilson and Dawson,
2007; Jarne and David, 2008).

Pedigree reconstruction in clonal populations has re-
ceived very little attention so far, although such an ap-
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proach holds the promise to allow the direct inference
of gene flow from a population’s pedigree in particu-
lar in long-living clones with limited rate of sexual re-
production. It is a much harder problem than classi-
cal paternity or parentage inference for two main rea-
sons: First, it is typically difficult to estimate the age of
a clonal plant (Ally et al., 2008) and the absence of age
data makes ana priori ordering of individuals in gener-
ations impossible. Such an ordering is assumed by tra-
ditional paternity inference software, see e.g. the works
of Marshall et al. (1998); Cercueil et al. (2002); Gerber
et al. (2003), and also dramatically restricts the pedigree
search space. Second, while it is normally easy to esti-
mate the number of individuals (ramets), Nr , in a clonal
plant population over the occupied space, it is typically
very hard to estimate the number of different genotypes
(genets), Ng. The genotype number,Ng, usually is a re-
quired input parameter in most software for the estima-
tion of the statistical significance of a parentage. Both
restrictions can be overcome at least in principle, how-
ever. Our recently related pedigree reconstruction tool
FRANz (Riester et al., 2009) is capable of handling par-
tial or absent age information and can estimateNg from
the data if it is not provided as an input. In this contri-
bution we describe an extension of theFRANz approach
that specifically handles clonal plant populations.
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2. Methods

2.1. Pedigrees

The core ofFRANz is a probabilistic model calculat-
ing the likelihood of a givenpedigreeof genotyped in-
dividuals. Let us start with the necessary definitions.

A pedigreeP = (V,E) is an acyclic digraph with
vertex setV and arc setE, where the vertices represent
the individuals and the arcs the parent-offspring rela-
tionships. ThusV represents the set of all genotyped in-
dividuals in the sample. For an arc (ui , v), we say thatv
is achild of ui andui is aparentof v. The set ofparents
of v in P is denoted byN+(v) ⊆ V; this set may contain
two elements,{ui ,u j}, one element,{ui}, or none,∅. In
the latter case,v is called afounder. In selfing species,
ui = u j is allowed andP thus becomes a multigraph.
With N−(u) ⊆ V we denote theoffspringof u.

For a given individuali, we denote an observed
single-locus genotype bygi and its multi-locus geno-
type byGi .

2.2. Likelihood Model

Using Bayes’ Theorem, we calculate the posterior
probability that the femaleFi and the maleM j are the
parents ofO,

Pr(GFi ,GM j |GO,GF ,GM ,A,Nm,Nf ) =

T(GO|GFi ,GM j) Pr(GFi ,GM j)

Pr(GO)
(1)

whereGO, GF , andGM are the offspring, candidate ma-
ternal, and paternal genotypes,A the population allele
frequencies,Nm the total number of breeding males (al-
leged fathers) in the population. Correspondingly,Nf

is the total number of candidate mothers. The sym-
bol T(·) denotes the Mendelian segregation probability,
which is the probability that an offspring ofFi andM j

has the genotypeGO. For multi-locus genotypes, we as-
sume here that the loci areunlinked, i.e., that the loci
are inherited independently during meiosis. Explicit
equations for T(·) that tolerate genotyping errors are de-
rived in Appendix A. Pr(GFi ,GM j) is the prior proba-
bility of Fi and M j being parents ofO. Pr(GO) is the
marginal probability of the offspring genotype. By as-
suming equal priors, it can be computed as

Pr(GO) =
1

Nm

[ nm
∑

k

T(GO|GFi ,GMk)

+ (Nm − nm) T(GO|GFi ,A)

]

(2)

provided the motherFi is already known (Nielsen et al.,
2001). The first term is the sum of segregation probabil-
ities of allnm sampled candidate paternal genotypes, the
second term accounts for the unsampled ones. This sec-
ond term is the probability, given the population’s allele
frequencies and assuming Hardy-Weinberg equilibrium,
that a random genotype is the true father, weighted by
the number of unsampled candidates. For the case that
the mother is unknown, we may write

Pr(GO) =
1

Nf Nm

[ nm
∑

k

nf
∑

l

T(GO|GMk,GFl)

+ (Nm − nm)
nf
∑

l

T(GO|GFl ,A)

+ (Nf − nf )
nm
∑

k

T(GO|GMk,A)

+ (Nm − nm)(Nf − nf ) Pr(GO|A)

]

(3)

with nf denoting the number of sampled female candi-
dates. Here, the first term again collects the segregation
probabilities of all sampled male and female genotypes.
The following two sums are the cases that either the true
father or the true mother are unsampled. The last term
accounts for the case that both parents are unsampled,
which is the probability of observing the offspring geno-
type in a population with allele frequenciesA, weighted
by the number of unsampled pairs.

In monoecious plant populations, where all individu-
als can mate with each other and with themselves, we
finally have:

Pr(GO) =
2

Ng(Ng + 1)

[ ng
∑

k=1

ng
∑

l=k

T(GO|Gk,Gl)

+ (Ng − ng)
ng
∑

k

T(GO|Gk,A)

+
(Ng − ng)(Ng − ng + 1)

2
Pr(GO|A)

]

(4)

with ng denoting the number of sampled genets andGk

the multi-locus genotype ofk-th genet;Gk , GO. This
assumes equal prior probabilities for selfed and out-
crossed parentages.

2.3. Efficient Likelihood Calculation

If a single-locus genotype of an offspring does not
share one allele with each of the candidate parents, we
call this amismatch. In true parent(s)-offspring pairs
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or triples, we will observe mismatches only in case
of genotyping error (i.e., the true genotype is different
from the genotype stored in our dataset) or in case of
somatic mutations. With a marker panel of sufficient
power for parentage inference, therefore, most of the
multi-locus segregation probabilities T(·) that appear in
the marginal probabilities Pr(GO) (Eq. 2, 3, and 4) will
be 0 in the absence of typing errors and mutations. Thus
only parentages without mismatching loci need to be
considered, which reduces the pedigree search space
and the parentage posterior calculation. The first is im-
portant for the mixing time of the Markov Chain Monte
Carlo (MCMC) sampling, the latter can be a significant
speedup especially whenA, N andG are variables (see
section 2.4).

When tolerating typing errors, however, all parent-
ages have a non-zero probability. An exact computation,
therefore, needs to take into account all pairs and triples.
However, parentages with many mismatches will have a
very small posterior probability and can be ignored. Our
implementation uses simulations to generate mismatch
distributions for parent(s)-offspring/unrelated relation-
ships in order to determine an appropriate mismatch cut-
offs.

For an offspringv, we denote the set of all plausible
parents according to this cut-off by Hv. It includes in
particular also the cases that none or only one of the
parents are sampled. Note thatHv ⊂ V × V ∪ V ∪ {∅}.
Apart from the number of mismatches, alsoprior infor-
mationsuch as sex, age, and known mothers restrictHv.
The posterior probability of a parentagex of offspringi
can be expressed in the form:

πi(x) =
Pr(Oi |x)
∑

y j∈Hi

Pr(Oi |y j)
. (5)

With Pr(Oi |x) denoting the probability of parentagex as
shown in Eq. 2 to 4. For Eq. 3 we have for example:

Pr(Oi |{Fi ,M j}) = T(GOi|GFi ,GM j)/(Nf Nm)

Pr(Oi |{Fi}) =
(Nm − nm)
(Nf Nm)

T(GOi|GFi ,A)

Pr(Oi |{∅}) =
(Nm − nm)(Nf − nf )

(Nf Nm)
Pr(GOi|A)

Eq. 5 is thus an approximation of Eq. 1 because only
plausible parentages are considered. In a second fil-
ter step, all parentages with negative LOD score (e.g.
Meagher and Thompson, 1986) are ignored. These are
all parentages which would decrease the pedigree like-
lihood if the corresponding arcs would be added to the
pedigree. IfN is estimated jointly with the pedigree,

then these two filter steps can introduce a bias. We thus
store the sum of the probabilities of all in the second
step filtered offspring-candidate mother and offspring-
candidate father pairs and all offspring-candidate par-
ents triples. This sum is then added to the denominator
of Eq. 5 and the two pair sums are weighted according
Eq. 2 to 4.

The posterior probability of the genotype of individ-
ual i, conditioned on its parents in a given pedigree
P, may be written asπi(N+(i)). Under the assumption
that founders are unrelated, the log-likelihood ofP is
now the sum of the log-transformed parentage posterior
probabilities over all individuals in the pedigree:

LL(P) =
∑

i∈V

logπi(N
+(i)) (6)

In clonal populations, we can include the number of
ramets for every genet in the posterior calculation:

πi(x) =
Pr(Oi |x)nr (x)
∑

y j∈Hi

Pr(Oi |y j)nr (y j)
(7)

wherenr (x) is the sum of the number of ramets of the
parents in parentagex, andnr (x) = 1 if x = {∅}. This
prior increases the likelihood of parentages with fre-
quently observed genets.

2.4. Algorithm

If age data is not or only partially available, then an
ordering of individuals in generations is not possible.
Thus not all combinations of parentages may represent
a valid pedigree of the sample as some of these combi-
nations may introduce directed cycles into the pedigree.
In such a “cyclic pedigree”, some individuals would be
their own ancestors. The MCMC and Simulated An-
nealing (SA) procedures now sample valid, cycle-free,
pedigrees from the pedigree posterior distribution (Al-
mudevar, 2007). We will later use these sampled pedi-
grees to estimate parameters and to estimate the sta-
tistical significance of a parentage.FRANz also sup-
ports the joint estimation of the population’s allele fre-
quencies, the number of unsampled candidate parents
or missing data imputation (see below in section 2.5) in
which cases we also need MCMC or SA. In these al-
gorithms, one computes the likelihood of a given pedi-
greePi−1, randomly generates a new pedigreePi and
then accepts the change if eitherPi has a higher likeli-
hood or with probability exp([LL(Pi) − LL(Pi−1)]/T).
More precisely, in the followingPi−1, j(y) denotes a
pedigreePi−1 where the parentage of offspringO j has
been changed fromx to y; x, y ∈ H j , x , y. We
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use a thread-safe Mersenne Twister (Matsumoto and
Nishimura, 2000) to obtain random numbers.

We seti = 1 and repeat the following steps until con-
vergence (SA) or untili is greater than a given maxi-
mum number of iterations (MCMC).

Pedigree Change Step:
We select a random offspring genotypeO j and select a
new parentage forO j from {q(Pi−1,Pi−1, j(y))} which
is defined as

q(Pi−1,Pi−1, j(y)) =















π j (y)
1−π j (x) if y , x

0 if y = x
(8)

This proposal function thus selects a new parentage ac-
cording their posterior probabilities. We then accept this
change with the following probability:

α(Pi−1,Pi−1, j(y)) =


























0 if Pi−1, j(y) cyclic
exp
([

LL(Pi−1, j(y)) − LL(Pi−1)+

log q(Pi−1, j (y),Pi−1)
q(Pi−1,Pi−1, j (y))

]

/T
)

otherwise

(9)

With (partially) missing age data, to ensure irreducibil-
ity of the MCMC sampler, it is necessary to perform
swap steps in which the direction of a random arc (j, k)
of the pedigree is reversed (Koch et al., 2008). Note that
age data implies the direction of an pedigree arc, so a
swap step would always return an invalid pedigree in the
case that age data is available. We can therefore write
down the probability to perform such a swap change in
the following form

Pr(swap)=

{

|A|
|A|+no

if age data missing
0 otherwise

(10)

Otherwise we change the parentage of a random off-
spring as described above. Withno we denote the num-
ber of sampled individuals in the offspring generation(s)
(no = ng in the absence of age data) and|A| is the num-
ber of arcs in the pedigree. In a swap change, the parent-
ages of two individualsj and k are changed and this
change is accepted with probability

α(Pi−1,Pi−1, j,k(y, z))

=































0 if Pi−1, j,k(y, z) cyclic
0 if y <H j ∨ z <Hk

exp([LL(Pi−1, j,k(y, z)) − LL(Pi−1)]/T)
otherwise

(11)
The second case is necessary because a swap might gen-
erate an invalid parentage, for instance one with too
many mismatches. In selfing parentages, both arcs are
swapped as otherwise a swap would always produce a
cycle.

Estimation of the size of the unsampled population:
If the number of unsampled candidates is not known
within reasonable accuracy, it is possible to estimate this
number together with the pedigree, either by sampling
N everyno steps from a uniform distribution in the in-
terval [n,Nmax] (whereNmax is specified by the user) or
by treatingN as a latent variable, estimated again every
no steps from the indegree distribution of the pedigree
(see Riester et al. (2009) for details).

Temperature schedule:
In the MCMC sampling, the temperatureT is always
kept at the constant value 1. To speedup mixing of the
sampler,FRANz supports Metropolis-Coupled Markov
Chain Monte Carlo (MCMCMC) (Geyer, 1991). On
computers with multiple CPU cores, we recommend
starting a chain on every CPU core. The temperature
of the i-th chain is set to 1/(1 + 0.5(i − 1)). Then, the
states of the chainsi and j are swapped and accepted
with probability exp([LL(Pi)−LL(P j)]/T j+[LL( P j)−
LL(Pi)]/Ti). Pedigrees are only sampled from the first,
unheated chain. In the SA optimization, we use the
temperature schedule as described in Aarts and Korst
(1989) which has been shown to be efficient in pedi-
gree reconstruction (Almudevar, 2003). For datasets
with less than about 30 individuals, we do not use the
SA heuristic. Instead, we find the maximum likelihood
pedigree with the exact algorithm proposed by Silander
and Myllymäki (2006) as described for the pedigree re-
construction problem in Cowell (2009).

2.5. Missing Values

A common problem in most datasets is that genotyp-
ing failed for a significant amount of loci. The problem
of dealing with missing data has seen remarkably few
attention in parentage analysis.FRANz offers two op-
tions for dealing with missing data. The first is imputa-
tion by a single-site Gibbs sampler. Here, the alleles of
a random genotypegi j with unobserved data of individ-
ual i at locus j are sampled proportional to the product
of all affected segregation probabilities of the pedigree:

Pr(gi j |P ,A) = T(Gi |N
+(i),A)

∏

o∈N−(i)

T(Go|N
+(o),A)

(12)

So the segregation probability ofi and of all offspring
of i need to be updated. The reason for sampling condi-
tional to this product instead of the pedigree likelihood
is that it is more sensitive to changes of a single allele.
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Figure 1: The accuracy of the reconstructed Maximum Likelihood pedigrees is plotted in Fig. 1a as a function of the
number of loci. The values are the median accuracy of ten randomly generated pedigrees of size 10.000 genets with a
sampling rate (SR) of 0.01 (filled symbols) and 35.000 genetswith a sampling rate of 0.001 (unfilled symbols). The
simulated datasets are reconstructed once with the standard parentage posterior probabilities (Eq. 5) and once with
the number of ramets included as priors (Eq. 7). The error bars indicate the first and third quartile. Fig. 1b lists the
proportion of correct and incorrect parentages with a posterior probability> 0.95.

A well-known problem of this approach is that the
irreducibility condition is only guaranteed for diallelic
loci (Thompson, 2000). This can be circumvented
with non-zero segregation probabilities or for example
with MCMCMC (Geyer, 1991) samplers (Sheehan and
Thomas, 1993; Cannings and Sheehan, 2002). The im-
plemented error model ensures the first with non-zero
typing error rates and the latter is also available in our
implementation. We make such a Gibbs sampling step
afterno pedigree changes.

The second option for dealing with missing data is
to include only observed alleles in the likelihood cal-
culations. Noteworthy, this is the standard method em-
ployed by most other parentage or paternity inference
tools. FRANz also supports partially observed geno-
types, see Appendix B for the corresponding segrega-
tion probabilities.

2.6. Rates of Self-fertilization

Given a pedigreeP, we can estimate the selfing rate
rs over the number of observed self-fertilizationsS in

P:

rs =
2S

∑

i∈V
|N+(i)|

(13)

The normalization according the indegrees takes ac-
count for the fact that the probability of observing an
outcrossed parentage is twice as high observing a selfed
one, as in the latter case there is only one instead of two
parents.

2.7. Rates of Clonality

Estimating the rate at which a population reproduces
clonally is notoriously difficult (de Meêus and Balloux,
2004). We assume in the following that we can esti-
mateNr , the total number of ramets in the population,
within reasonable accuracy for example over the occu-
pied space. We further assume a population in which
Nr is constant across generations. In every generation, a
ramet reproduces either clonally with ratec or sexually
with rate (1− c). A random ramet is killed to keepNr

constant if necessary. Then we use pedigree reconstruc-
tion to estimate the total number of genets,Ng. We then
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estimate the rate of clonal reproduction with the follow-
ing equations.

By h(s) we denote the expectation value of the num-
ber of genets with exactlys ramets, for integers ∈
{0, . . . ,Nr }. We haveh(0) = 0 by definition. Let us
establish conditions for the stationary values ofh. In a
birth event,h(s) changes by

∆b(s) = −c
s

Nr
h(s) + c

s− 1
Nr

h(s− 1) (14)

for all s ∈ {2, . . . ,Nr }, whereash(1) is changed by

∆b(1) = (1− c) −
c
Nr

h(1) . (15)

A death event causes a change

∆d(s) = −
s

Nr
h(s) +

s+ 1
Nr

h(s+ 1) . (16)

for all s ∈ {1, . . . ,N}. At constant population sizeNr ,
birth and death events occur equally often. Therefore

∆b(s) + ∆d(s) = 0 (17)

must be fulfilled in equilibrium for alls{1, . . . ,Nr }. We
obtain the set of equations

h(0) = 0

h(1) = Nr (1− c)

h(2) =
1
2

[(1+ c)h(1)− Nr (1− c)]

h(s+ 1) =
1

s+ 1
[s(1+ c)h(s) − c(s− 1)h(s− 1)]

(18)

the last equation being valid for alls ∈ {2, . . . ,Nr }.
Taken together, this is a second order linear difference
equation for a givenc andNr . We solve it numerically
and obtain the expected number of genotypes as

Ng =

Nr
∑

s=1

h(s) . (19)

For the inverse problem with givenNg, we obtainc by
means of nested intervals.

3. Simulated Test Data

3.1. Growing Population

To test our algorithm and implementation, we first
simulate data under the model of a growing population,
where individuals do not die once they reproduced sex-
ually. The data is simulated with allele frequencies with

8 alleles per locus. We use random (“broken stick”)
frequencies with a maximum frequency of 0.5. In ev-
ery year, a ramet reproduces either sexually or clonally.
For sexual reproduction we assume a fixed rate of self-
fertilization or outcrossing with a random ramet. With
a probability of 0.01, we replace one allele of a single-
locus genotype with a random one to simulate genotyp-
ing errors.

We choose relatively high rates of selfing (0.1) and
clonality (0.9). This results in an extremely difficult test
dataset as individuals are closely related because old
plants grow fast and thus mate very often. Exclusion
probabilities (Jamieson and Taylor, 1997; Wang, 2007),
which assume unrelatedness among candidate parents,
thus overestimate the power of a marker suite. The ex-
clusion probabilities of the simulated datasets are shown
in Supplementary Fig. S1.

For the sampling rates, we choose a relatively high
one of 0.01 of (1.000 of about 100.000 ramets) and a
more realistic one of 0.001 (350 of about 350.000). We
generate 10 datasets for each of the two sampling rates.

3.2. Constant Population Size
To show that the present approach is able to estimate

the sampling rate of the genets, we next simulate data
under the model of population with a constant number
of rametsNr . We start with a founder generation of
100 unrelated genets with 9 loci and use the same al-
lele frequencies as before. Then in every generation,
all ramets reproduce again either sexually or clonally.
If sexually, then again with a selfing rate of 0.1. Out-
crossing happens with a random living ramet or with an
migrated ramet. Here we use a migration rate of 0.01. If
after such a reproduction event there are more thanNr

ramets, one random living ramet is killed. We stop the
simulation after the birth of the 20000-th genet. Then
we samplenr = 500 living ramets. We generate again
10 datasets for every parameter combination. Here we
vary the rate of clonality (0.5, 0.8, 0.9 and 0.95) andNr

(4.000 and 10.000).Ng is then estimated over the inde-
gree distributions of the MCMC sampled pedigrees (Ri-
ester et al., 2009). The rate of clonality is then estimated
with the model described in Sec. 2.7.Nr is assumed to
be knowna priori.

4. Results

4.1. Growing Population
The accuracy of the pedigree reconstructions, defined

as the proportion of correct parentages in the SA Maxi-
mum Likelihood pedigree, are shown in Fig. 1a. The in-
corporation of the number of sampled ramets per genet
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(using Eq. 7 instead of Eq. 5) improves the reconstruc-
tion significantly. A reason for that improvement is that
the number of ramets is an approximation of the age
of genets; without age data it is sometimes not possi-
ble to identify parent and offspring in a parent-offspring
pair, which is also the reason why the accuracy does
not reach 100%. The plot also shows that the sampling
rate has surprisingly little influence on the accuracy, the
amount of available genomic information is the crucial
factor here.

Fig. 1b shows the fraction of correct and incorrect
parentages with a pedigree posterior probability of>
0.95. These are parentages that are observed in at least
95% of all sampled pedigrees. Although these prob-
abilities are not exactly comparable to the thresholds
of classical, simulation based paternity inference tools
such as CERVUS (Marshall et al., 1998) due to the
very different approaches, the plot nevertheless shows
that even with powerful marker panels, i.e., when there
is a high amount of genomic information in the data,
we can only assign relatively small numbers of parent-
ages, which is especially a problem in low sampling rate
datasets. It is therefore crucial to use an approach that
uses the complete data for the estimation of parame-
ters of interest, not only highly significant parentages.
The high rate of incorrect assignments, especially in the
0.001 dataset, is explained by the large violation of the
assumption that candidate parents are unrelated.

We then use the MCMC sampled pedigrees to esti-
mate the parameters of interest. As an example, we
plot in Fig. 2 the estimated rates of self-fertilization
(Eq. 13) for both sampling rates (0.01 and 0.001, us-
ing Eq. 7) as a function of the number of loci. As to
expect, the accuracy of the test dataset with high sam-
pling rate (Fig. 2a) is higher than the one with lower
sampling rate (Fig. 2b) because the number of observed
parentages is much higher. The estimates are fairly in-
dependent of the number of loci and already accurate
with very low amount of genomic information. Other
parameters such as male fertilities (Morgan and Con-
ner, 2001) could be calculated analogously. In Fig. 2c
we show the good mixing properties of our sampler with
trace plots of the pedigree log-likelihood and the selfing
rate. Sampling of 20.000 pedigrees (9 loci, 0.01 dataset)
takes less than a second on a modern1 computer and we
observe a Metropolis-Hastings acceptance rate of 0.33
(data not shown).

We also compare our selfing rate estimates with the
Maximum Likelihood estimates of the RMES software

1IntelR© XeonR© CPU, 2.33GHz, 8 cores, 16GB RAM

S.R.a Loci RMES FRANz

0.01 9 0.154 ±0.044 0.100 ±0.012
0.01 35 0.176 ±0.026 0.096 ±0.023

0.001 9 0.148 ±0.055 0.099 ±0.027
0.001 35 0.175 ±0.025 0.103 ±0.034

Table 1: Comparison of the estimated rates of self-
fertilization. This table lists the means and standard
deviations of the selfing rate estimates from the RMES
software (David et al., 2007) and the present approach
for simulated datasets (Sec. 3.1) with a true selfing rate
of 0.1. aS.R. sampling rate (ramets)

(David et al., 2007) in Table 1. RMES estimates selfing
rates over observed multi-locus heterozygosity deficien-
cies and does not require parent-offspring relationships.
These allele frequency approaches are therefore in prin-
ciple capable of estimatinglong-termselfing rates but
are inherently less robust with respect to violations of
the assumptions.FRANz, on the other hand, provides
quite accurate estimates of therecentselfing rates for
the 10 datasets. This pedigree reconstruction approach
works in the model of a growing population even with
very low sampling rates extremely well because old
founder plants are sampled with probability close to one
and these plants have many offspring. This is the reason
why we observe enough parentages for reliable param-
eter estimation.

4.2. Constant Population Size

In Table 2 we present the results of the pedigree re-
construction of the datasets with constant population
size (Sec. 3.2). Our approach significantly underesti-
mates the trueNg. This is partly explained by the fact
that the probability of sampling old and big plants, i.e.,
ones with many ramets is higher than sampling small
genets. And as old plants have in general more off-
spring than young ones, we observe more parentages
as we would expect by assuming equal sampling prob-
abilities of parents for all individuals, which we do.
More observed parentages result in a higher sampling
rate and therefore a smallerNg. Our model (Sec. 2.7)
also slightly underestimates the trueNg. Nevertheless,
with relatively high sampling rates of 0.125, we can ob-
serve fairly accurate estimates. As the number of genets
increases with decreasing rate of clonal reproduction,
we observe less parentages if these rates are low. This
explains the high variances in the datasets with a clonal
rate of 0.5. At clonal rates smaller than 0.9, we see that
a sampling rate of 0.05 is not high enough for a reliable
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Figure 2: The estimated rates of self-fertilization of the simulated datasets (Sec. 3.1). A line visualizes the selfing rate
of one of the 10 datasets for different amounts of genomic information. Fig. 2a are the rates from the 0.01 sampling
rate datasets, Fig. 2b from the 0.001 one. In Fig. 2c we show a trace plot of the MCMCMC sampling of one simulated
dataset (9 loci, sampling rate 0.01, 8 parallel chains). The dashed curve visualizes the meanof the selfing rate.

parameter estimation: the selfing rates are in these cases
also significantly underestimated.

5. Discussion

We have presented a novel likelihood model for the
reconstruction of pedigrees in monoecious clonal plant
populations and demonstrated the accuracy and good
MCMC(MC) mixing properties of our open source im-
plementation on simulated data. Our efficient likelihood
calculations allows parentage analysis on huge datasets
with thousands of individuals. We have shown that the
joint estimation of parameters of interest such as the
rate of self-fertilization is possible with high accuracy

even with marker panels of moderate power. Classical
methods can only assign a very limited number of sta-
tistically significant parentages in this case and would
therefore fail, especially if sampling rates are low which
is still a problem in most parentage studies. We have
also shown that our likelihood model is surprisingly ro-
bust for violations of assumptions such as unrelatedness
of candidate parents and constant effective population
size. With relatively high sampling rates, we were fur-
ther able to give fairly accurate estimates of the rates of
clonal reproduction in simulated populations with con-
stant size.

As mating success drops off with distance between
mates, several authors suggested likelihood models that
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S.R.a Ng Rate of Clonality Selfing Rate

FRANz True Model FRANz True FRANz

0.125 2574.95 ±614.77 2834.00 ±20.18 2772.59 0.541 ±0.19 0.5 0.079 ±0.04
0.05 5832.13 ±3508.20 6955.67 ±43.36 6931.47 0.611 ±0.32 0.5 0.037 ±0.03

0.125 1460.90 ±228.39 1711.20 ±18.88 1609.44 0.826 ±0.05 0.8 0.082 ±0.02
0.05 2447.02 ±522.00 4000.80 ±31.02 4023.59 0.905 ±0.03 0.8 0.068 ±0.02

0.125 876.26 ±80.41 1121.90 ±18.89 1023.37 0.920 ±0.01 0.9 0.095 ±0.02
0.05 1814.28 ±243.40 2792.70 ±37.12 2558.43 0.939 ±0.01 0.9 0.066 ±0.03

0.125 555.72 ±45.25 720.10 ±21.70 630.68 0.958 ±0.01 0.95 0.094 ±0.03
0.05 1218.60 ±121.70 1847.80 ±31.42 1576.70 0.965 ±0.01 0.95 0.081 ±0.03

Table 2: Estimated rates ofNg, clonality and self-fertilizations. This table lists means and standard deviations of the in
FRANz estimatedNg for ten simulated datasets (Sec. 3.2) for each of the 8 parameter combinations. It further lists the
true Ng and the ones estimated of our model (Sec. 2.7). Then the estimated rates of clonality are presented. Finally,
the mean and standard deviations of estimated rates of self-fertilization are shown (with a true selfing rate of 0.1).
aS.R. sampling rate (ramets)

include the sampling location of the genotypes (e.g.
Adams et al., 1992; Burczyk et al., 1996; Smouse et al.,
1999; Hadfield et al., 2006). In principle, it is possi-
ble to add the corresponding prior probability distribu-
tions in our model. To calculate the distance between
two clonesA and B, δAB, one can use the locations of
all sampled ramets as an approximation for the real dis-
tance between the (maybe unsampled) mating ramets.
An obvious strategy for the calculation ofδAB would be
the average distance between all sampled ramets ofA
and B. Another possibility would be to use the mini-
mum distance.

It should be noted that other methods for the estima-
tion of recent selfing rates exist which do not necessarily
require that parental genotypes are sampled. For exam-
ple if it is possible to obtain progeny arrays, the known
family structure in the data can be used to reconstruct
maternal genotypes. Selfing rates are then estimated by
comparison of maternal with offspring genotypes (e.g.
Jarne and David, 2008, for a review). If neither such a
family structure nor parental genotypes are known, then
reconstruction of the genotypes of the previous gener-
ations might be possible by MCMC sampling (Wilson
and Dawson, 2007). However, this assumes that the
model used in MCMC sampling fits the population un-
der investigation.

We assumed in this article that all ramets have the
same genotype. However, especially in long-living
plant populations with high rates of clonality, somatic
mutations may lead to clones with different genotypes.
In this case it could be necessary to extend the model
to allow multiple genotypes per genet and include

them in the segregation probability calculation (see Ap-
pendix A). Our implementationFRANz supports par-
tially genotyped loci where only one of the two alleles
are known and this feature could be used in these cases
to mark an observed mutation as unknown without loos-
ing much information.

Availability of the implementation

An open source implementation ofFRANz is avail-
able underhttp://www.bioinf.uni-leipzig.de/
Software/FRANz. For a simple interaction and com-
parison with other tools, we provide a user-friendly Web
2.0 input file generator on theFRANz website. Fur-
thermore, it is now possible to convertFRANz input
files into several other formats (currently supported are
CERVUS (Marshall et al., 1998; Kalinowski et al., 2007),
PARENTE (Cercueil et al., 2002),GENEPOP (Roussett,
2008), andRMES (David et al., 2007)).
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A. CERVUS Likelihood formulas

In the following, we present the likelihood formulas for pa-
ternity or parentage inference of the typing error model de-
scribed in Kalinowski et al. (2007). We corrected some ty-
pos in the original version presented in the appendix of Kali-
nowski et al. (2007) and also simplified the formulas where
possible. L(H1) is the likelihood of the hypothesisH1 that
the alleged parent is the true parent; the alternative hypothe-
sis H2 is that the alleged parent is unrelated. We follow here
the notation of the original paper instead of ours: the single
locus genotypes of mother, alleged father and offspring are
denoted withgm, ga andgo (corresponding togf ,gm andgo in
our notation). Pr(g) is the probability of observing the geno-
type g in a population in Hardy-Weinberg equilibrium. For
diploid heterozygotes, the probability of a genotype with the
allelesa1 and a2 and with the allele frequenciesp and q is
Pr(a1,a2) = 2pq; for homozygotes, we have Pr(a1, a1) = p2.
The estimated typing error rate is the probability that one or
both alleles of an genotype are not correctly observed and is
denoted asǫ. Finally, T(·) denotes the Mendelian segregation
probabilities (see for example Meagher (1991)) and Te(·) is the
variant of the error model (Kalinowski et al., 2007). For de-
tails see Marshall et al. (1998); Kalinowski et al. (2007). The
likelihoods for paternity when the mother is unknown are:

L(H1) = Pr(ga)Te(go|ga, ǫ)

L(H1) = Pr(ga){(1− ǫ)
2T(go|ga) + ǫ(1− ǫ)2 Pr(go) + ǫ

2 Pr(go)}

= Pr(ga){(1− ǫ)
2T(go|ga) + ǫ(2− ǫ) Pr(g0)}

L(H2) = Pr(ga){Pr(go)}

The likelihoods for paternity and maternity jointly are

L(H1) = Pr(gm) Pr(ga)Te(go|gm,ga, ǫ)

L(H1) = Pr(gm) Pr(ga){(1− ǫ)
3T(go|gm,ga) + ǫ(1− ǫ)

2

[

T(go|gm) + T(go|ga) + Pr(go)
]

+ ǫ2(3− 2ǫ) Pr(go)}

L(H2) = Pr(gm) Pr(ga){Pr(go)}

The likelihood of the alternative hypothesisH2 for paternity
when the mother is known is:

L(H2) = Pr(gm) Pr(ga){(1− ǫ)
3T(go|gm) + ǫ(1− ǫ)2

[T(go|gm) + 2 Pr(g0)] + ǫ
2(3− 2ǫ) Pr(go)}

L(H1) is the same as for the parentage inference case.

B. Missing Values

The following equations are the segregation probabilities
with (partially) missing data for genotypes, pairs and triples.

B.1. Genotype probabilities
If one allele of a single locus genotype is missing, then all

alleles are considered and we have Pr(?)= 1, where the ques-
tion mark codes a missing allele. The genotype probabilities
are thus:

Pr(?.?)= 1, Pr(ai .?)= Pr(ai) (20)

B.2. Pairs

δ(ao,ap) =



















1 if ao = ap ∨ ao =?
Pr(ao) if ap =?
0 otherwise

Case 1: For parent-offspring pairs, we have with both
parental alleles missing no additional information and
thus have the genotype probability: T(ai .aj |?.?) =
Pr(ai .aj).

Case 2: One offspring allele missing

T(ai .?|aj .ak) = 0.5 Pr(ai) + 0.25
[

δ(ai ,aj) + δ(ai , ak)
]

(21)

Case 3: One parental allele missing

T(ai .ai |aj .?)= 0.5
[

δ(ai ,aj) Pr(ai) + Pr(ai .ai)
]

T(ai .aj |ak.?)= 0.5
[

δ(ai ,ak) Pr(aj) + δ(aj ,ak) Pr(ai)
]

+ 0.5 Pr(ai .aj)
(22)

B.3. Triples

Case 1: Both maternal or paternal alleles missing:

T(ai .aj |ak.al ,?.?)= T(ai .aj |ak.al) (23)

Case 2: One offspring allele missing:

T(ai .?|aj1.aj2,aj3.aj4) =
1
4

4
∑

k=1

δ(ai ,ajk) (24)

Case 3: One maternal and/or paternal allele missing:

δ(ao1.ao2,ap1.ap2) =







































1 if ao1.ao2 = ap1.ap2

Pr(ao1.ao2) if ap1 =?∧ ap2 =?
Pr(ao1) if ao2 = ap1 ∧ ap2 =?
Pr(ao2) if ao1 = ap1 ∧ ap2 =?
0 otherwise

T(ao1.ao2|am1.am2,af 1.af 2) =
1
4

2
∑

i=1

2
∑

j=1

δ(ao1.ao2,ami.af j)

(25)
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C. Supplementary Figures
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Figure S1: The exclusion probabilities (Jamieson and
Taylor, 1997) of 10 randomly generated datasets (3). In
our data, the average probability that a random individ-
ual has a genotype that is compatible with an offspring
genotype is< 1× 10−5 for more than 25 loci.
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