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ABSTRACT

We show that every simple, (weakly) connected, possibly directed and infinite, hyper-
graph has a unique prime factor decomposition with respect to the (weak) Cartesian
product, even if it has infinitely many factors. This generalizes previous results for
graphs and undirected hypergraphs to directed and infinite hypergraphs. The proof
adopts the strategy outlined by Imrich and Žerovnik for the case of graphs and intro-
duced the notion of diagonal-free grids as a replacement of the chord-free 4-cycles that
play a crucial role in the case of graphs. This leads to a generalization of relation δ on
the arc set, whose convex hull is shown to coincide with the product relation of the prime
factorization.

Keywords: directed Hypergraph, Hypergraph, weak Cartesian Product, Prime Factor Decompo-

sition, grid property

1. INTRODUCTION

Directed hypergraphs are the common generalization of both directed graphs and (undi-
rected) hypergraphs. A (directed) hypergraph H = (V, E) consists of a vertex set V and
a family of (directed) hyperedges or hyperarcs E . Each hyperedge E ∈ E is an ordered
pair of sets of vertices E = (T (E), H(E)) 6= (∅, ∅). The sets T (E) ⊆ V and H(E) ⊆ V
are called the tail and head of E, respectively. To avoid the risk of confusion we will
sometimes write V (H) and E(H) for the vertex set and the arc set of a hypergraph H .

A hypergraph H = (V, E) is undirected if T (E) = H(E) for all E ∈ E . Most of
the literature on hypergraphs is concerned with undirected hypergraphs [1], surveys
on directed hypergraphs can be found in [7, 8]. Directed hypergraphs have been used
as model for complex networks in biology and chemistry [15]. For instance a chemical
reaction is naturally represented as a hyperedge E where T (E) lists the educts and H(E)
the products of the chemical transformation.

We say a hypergraph is finite if its vertex set and its edge set is finite. A hypergraph
that is not finite is said to be infinite. A hypergraph H = (V, E) is called simple, if
(i) |T (E) ∪ H(E)| > 1 for all E ∈ E and (ii) there are no two distinct arcs E,E′ ∈ E
such that T (E) = T (E′) and H(E) = H(E′). A hypergraph is a directed graph if
|T (E)| = |H(E)| = 1 for all E ∈ E .

We will be concerned with products of hypergraphs, more precisely with the most
fundamental question that arises in this context: Does a hypergraph have a unique
decomposition into prime factors? The answer to this question depends on the definition
of the product. In the case of graphs, the product structures are quite well understood
[11].

Several notions of hypergraph products have been studied in the literature, usually for
restricted versions of undirected hypergraphs, see e.g. [2, 6, 9, 20]. The most commonly
studied hypergraph product is the direct product, which consists of the Cartesian product
of vertex sets, and the Cartesian (set) products of the hyperedges [3, 5, 18, 17]. For direct
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products of N -systems, i.e., directed hypergraphs satisfying |T (E)| = 1 and T (E) ⊆
H(E) for all E ∈ E , a prime factor theorem was proved in [13].

In this contribution we will focus on the Cartesian product of finite and infinite directed
hypergraphs with finitely or infinitely many factors. The Cartesian graph product was
introduced by Gert Sabidussi [19], who showed that connected graphs have a unique
Cartesian prime factor decomposition. This result was generalized by Wilfried Imrich [9]
to simple undirected hypergraphs:

Definition. Let {Hi | i ∈ I} be a family of (finite or infinite), but undirected hyper-
graphs. The Cartesian product H = 2i∈IHi is defined as follows:

V (H) = ×
i∈I

V (Hi)

E(H) = {E ⊆ V (H) | pj(E) ∈ E(Hj) for exactly one j ∈ I, and |pi(E)| = 1 for i 6= j},

where, for j ∈ I, pj : V (H) → V (Hj) is the projection of the Cartesian product of the
vertex sets into V (Hj). The value pj(v) is also called j-th coordinate of vertex v.

The Cartesian product of undirected hypergraphs is also considered for example in
[3, 4, 5] A factorization algorithm for so-called conformal hypergraphs, a rather small
class of finite and connected hypergraphs, with respect to the Cartesian product, is
described in [4].

While the Cartesian product hypergraph of finitely many connected hypergraphs is
connected, whether they are finite or not, this does not hold for the product of infinitely
many hypergraphs: In this case, there are vertices that differ in infinitely many coordi-
nates and hence are not connected by a path of finite length. As in the case of graphs [19],
an infinite connected hypergraph that has infinitely many Cartesian prime factors can-
not be the Cartesian product of its factors, but a connected component of this Cartesian
product [10]. This gives rise to the notion of a weak Cartesian product:

Definition. [10] Let {Hi | i ∈ I} be a family of hypergraphs and let ai ∈ V (Hi)
for i ∈ I. The weak Cartesian product H = 2i∈I(Hi, ai) of the “rooted” hypergraphs
(Hi, ai) is defined by

V (H) = {v ∈ ×
i∈I

V (Hi) | pi(v) 6= ai for at most finitely many i ∈ I}

E(H) = {E ⊆ V (H) | pj(E) ∈ E(Hj) for exactly one j ∈ I, and |pi(E)| = 1 for i 6= j}.

For finite index sets I, the weak Cartesian product does not depend on the choice of the
ai and coincides with the usual Cartesian product. If I is infinite, it is the connected
component of the Cartesian product containing a = (ai)i∈I . Every connected graph and
undirected hypergraph has a unique representation as a weak Cartesian product [16, 10].

Here we extend and generalize these results further and show that every connected
directed hypergraph has a unique prime factor decomposition with respect to the (weak)
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Cartesian product. Instead of following the proof strategies of the classical papers, we
adopt the approach of Imrich and Žerovnik [14] that constructs a product relation σ
starting from simpler relations on the edge set E. In the case of graphs, the Square
Property [12] plays a central role as technical device. The Grid Property, which is intro-
duced here, serves as generalization of this construction. Together with a generalization
of the relation δ, we arrive at our main results:

Theorem 1. Let γ be a convex equivalence relation on the arc set E(H) of a connected
simple hypergraph H which satisfies the grid property. Then γ induces a factorization
of H with respect to the weak Cartesian product.

Theorem 2. Every connected simple hypergraph has a unique representation as a
weak Cartesian product.

Theorem 3. The product relation σ corresponding to the unique prime factor decom-
position with respect to the weak Cartesian product of a connected simple hypergraph
H equals the convex hull C(δ) of the relation δ.

Since the Cartesian and the weak Cartesian product coincides for a finite number of
factors, we also obtain the following corollaries.

Corollary. The prime factor decomposition of a connected hypergraph with finitely
many factors with respect to the Cartesian product is unique in the class of simple
hypergraphs.

Corollary. The prime factor decomposition of a connected hypergraph with respect
to the Cartesian product is unique in the class of finite simple hypergraphs.

2. PRELIMINARIES

As far as possible, we follow the notation and terminology of Berge’s classical book on
hypergraphs [1], although our hypergraphs will in general be directed, T (E) 6= H(E) for
some E ∈ E . For simplicity, we will refer to hyperarcs as arcs.

Two arcs E,E′ ∈ E(H) of a hypergraph H are incident if E ∩ E′ 6= ∅, i.e., if there
is a vertex that is contained in both arcs, independent of the directions. Two vertices
x, y ∈ V are adjacent if there is an arc E containing them, i.e., x, y ∈ T (E) ∪ H(E),
again without regard of direction.

Concepts of sub-hypergraphs, paths, etc., are defined in the appendix to make this
contribution self-consistent.

For the set product V = ×i∈I Vi we define the projection pj : V → Vj by
(v1, v2, . . . , vj , . . . ) 7→ vj . For subsets of V and ordered tuples of elements of V , the
projection is defined element-wise. For example, for a hypergraph H = (×i∈I Vi, E) we
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have

pj(E) = pj(T (E), H(E)) = (pj(T (E)), pj(H(E))) = (
⋃

v∈T (E)

pj(v),
⋃

w∈H(E)

pj(w)) . (1)

By abuse of notation, we will write

|pj(E)| := |pj(T (E)) ∪ pj(T (H))|

i.e., |pj(E)| refers to the cardinality of the union of the projections of head and tail of
the arc E.

Definition. Let Hi, i ∈ I be hypergraphs. The Cartesian product 2i∈IHi has the
following vertex and arc sets:

(1) V (2i∈IHi) = ×i∈I V (Hi),

(2) and E = (T (E), H(E)) is an arc in 2i∈IHi if and only if there is a j ∈ I, such that

(i) pj(E) = pj((T (E), H(E))) = (T (pj(E)), H(pj(E))) ∈ E(Hj) and

(ii) |pi(E)| = 1 for all i 6= j.

Figure 1 shows an example of a Cartesian product of two hypergraphs.

H

FIGURE 1. Hypergraph H and Cartesian product H2E1,2, where E1,2 is the hypergraph consisting
of a single arc of three vertices such that |T (E1,2)| = 1 and |H(E1,2)| = 2.

Lemma 1. The Cartesian Product H = 2i∈IHi of hypergraphs Hi is an undirected
hypergraph if and only if all of its factors are undirected.

Proof. The assertion follows directly from equ.(1).

By construction, the Cartesian product is associative, commutative, distributive w.r.t.
the disjoint union and has the trivial one vertex hypergraph K1 without arcs as unit.
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Lemma 2. The Cartesian product H = 2
n
i=1Hi of finitely many hypergraphs Hi is

connected if and only if all of its factors Hi are connected.

Proof. Because of associativity and commutativity it suffices to show the assertion
for two factors, hence let H = H12H2.

First, assume that H1 and H2 are connected. Let v = (x, y) and v′ = (x′, y′) be two
arbitrary vertices in V (H). Consider a path Pxx′ = (E1, . . . , Er) from x to x′ in H1 and
a path Pyy′ = (F1, . . . , Fs) from y to y′ in H2. Then (E1 × {y}, . . . , Er × {y}) is a path
from (x, y) to (x′, y) in H and ({x′}×F1, . . . , {x′}× Fs) is a path from (x′, y) to (x′, y′)
in H . Hence, (E1 × {y}, . . . , Er ×{y}, {x′} ×F1, . . . , {x′} ×Fs) is a path from v to v′ in
H .

W.l.o.g., suppose that H1 is not connected, i.e., it can be written in the form H1 =
H ′

1 +H ′′
1 . Since the Cartesian product is distributive w.r.t. the disjoint union, we have

H = H ′
12H2 +H ′′

1 2H2. Hence H is the disjoint union of two hypergraphs, i.e., H is not
connected.

Let us now turn to the weak Cartesian product. As in the undirected case, the product
of finitely many connected hypergraphs is connected, whether they are finite or not, but
the product of infinitely many factors is not connected.

Definition. Let {Hi | i ∈ I} be a family of hypergraphs and let ai ∈ V (Hi) for i ∈ I.
The weak Cartesian product H = 2i∈I(Hi, ai) of the hypergraphs (Hi, ai) rooted at ai

is given by

V (H) ={v ∈ ×
i∈I

V (Hi) | pi(v) 6= ai for at most finitely many i ∈ I}

E(H) ={E ⊆ V (H) | pj(E) = pj((T (E), H(E))) = (T (pj(E)), H(pj(E))) ∈ E(Hj)

for exactly one j ∈ I, and |pi(E)| = 1 for i 6= j}.

We will, in the following write 2
a
i∈IHi for 2i∈I(Hi, ai), where a ∈ V (H) such that

pi(a) = ai for all i ∈ I.

Again, the weak Cartesian product does not depend on the (ai)i∈I if I is finite. Moreover,
it coincides with the Cartesian product if I is finite.

The partial hypergraph of H induced by all vertices of H which differ from w ∈ V (H)
exactly in the j-th coordinate is isomorphic to Hj . More formally

〈{v ∈ V (H) | pk(v) = wk for k 6= j}〉 ≃ Hj .

We will call this partial hypergraph the Hj-layer through w and denote it by Hw
j . The

isomorphism Hw
j → Hj is then the projection pj . For u ∈ V (Hw

j ) we have Hu
j = Hw

j

and, moreover, V (Hu
j ) ∩ V (Hw

j ) = ∅ if and only if u /∈ V (Hw
j ).

Lemma 2 implies the following
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Corollary. A weak Cartesian product H = 2
a
i∈IHi is connected if and only if all of

its factors Hi are connected. In this case, H = 2
a
i∈IHi is the connected component of

the Cartesian product 2i∈IHi that contains the vertex a.

Lemma 3. The Cartesian product H = 2i∈IHi of hypergraphs Hi is simple if and
only if all of its factors Hi are simple.

Proof. Let Exj denote an arc containing x ∈ V and whose projection on the j-th
factor is an arc in the j-th factor.

First let all Hi, i ∈ I be simple and suppose H is not simple. We have to examine
two cases: First, suppose H contains at least one loop on vertex x with coordinates
xi, i ∈ I. Hence there is a loop in some factor Hj , contradicting that Hj is simple.
Thus, it must hold |E| ≥ 2 for all E ∈ E(H). Second, let Exj and E′

yk be two different
arcs, such that T (Exj) = T (E′

yk) and H(Exj) = H(E′
yk). Hence, x ∈ E′

yk and j = k.
Thus, pj(T (Exj)) = pk(T (E′

yk)), as well as pj(H(Exj)) = pj(H(E′
yj)). Therefore Hj is

not simple, a contradiction.
Now assume that (at least) one of the factors is not simple; w.l.o.g. say H1. There are

two possibilities: First, assume there is an arc E ∈ E(H1) with |E| = 1, say E = {x1}.
Hence, |E1x| = |{x}| = 1 for any x ∈ V (H) with p1(x) = x1 and H would not be simple.
Second, assume there are two different arcs Ei, Ej ∈ E(H1), such that T (Ei) = T (Ej)
and H(Ei) = H(Ej). Then, the definition of the Cartesian product implies that there
are two arcs E = Ei × {x} and E′ = Ej × {x} in H with x ∈×l∈I\{1} V (Hl) such that
T (E) = T (E′) and H(E) = H(E′). Hence, H is not simple.

Note that the weak Cartesian product 2i∈I(Hi, ai) is a partial hypergraph of the
Cartesian product 2i∈IHi, that is induced by V (2i∈I(Hi, ai)). Hence we have

Corollary. The weak Cartesian productH = 2i∈I(Hi, ai) of hypergraphsHi is simple
if and only if all of its factors Hi are simple.

From here on we assume that all hypergraphs are simple.

3. UNIQUE PRIME FACTOR DECOMPOSITION

A hypergraph H is prime with respect to the (weak) Cartesian product if it cannot
be represented as the (weak) Cartesian product of two nontrivial hypergraphs. A prime
factor decomposition (PFD) of H is a representation as a Cartesian product H = 2i∈IHi,
or as a a weak Cartesian product H = 2

a
i∈IHi, resp., such that all factors Hi, i ∈ I, are

prime and Hi 6≃ K1.
In order to show that every hypergraph has a unique representation as a weak Carte-

sian product, we follow the strategy of Imrich and Žerovnik [14] and characterize the so-
called product relations defined on the arc set E of H . The advantage of this approach is
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that it does not require finiteness and hence also pertains to the weak Cartesian product
of infinitely many factors.

Definition. A product relation is an equivalence relation on the arc set E(H) of a
(weak) Cartesian product H = 2

a
i∈IHi of (not necessarily prime) hypergraphs Hi such

that, for E,F ∈ E(H), E and F are in relation γ, EγF , if and only if there exists a
j ∈ I, such that

|pj(E)| > 1 and |pj(F )| > 1,

and |pi(E)| = |pi(F )| = 1 holds for all i 6= j.

If all factors Hi are prime, we denote this relation by σ. Note that E and F are in
relation σ if and only if their vertices differ in the same coordinate w.r.t. to the PFD. Let
Σi, i ∈ I be the equivalence classes of σ. By construction, every connected component
of a partial hypergraph generated by the arcs of an equivalence class Σi is isomorphic
to Hi. Furthermore, every union of σ-equivalence classes

⋃
j∈J Σj , J ⊆ I generates a

partial hypergraph of H , whose connected components are isomorphic to HJ := 2
a
j∈JHj .

THE GRID PROPERTY

Definition. Let G be a collection of arcs of H of the form Ea = (T (Ea), H(Ea)),
a ∈ A and Fb = (T (Fb), H(Fb)), b ∈ B. We say that G is an |A| × |B|-grid if, for all
a, a′ ∈ A and b, b′ ∈ B with a 6= a′ and b 6= b′ the following two conditions are satisfied:

(i) Ea and Fb have exactly one vertex in common, i.e., (T (Ea) ∪H(Ea)) ∩ (T (Fb) ∪
H(Fb)) = {zab}, and

(ia) zab ∈ T (Fb) (resp. H(Fb)) if and only if zab′ ∈ T (Fb′) (resp. H(Fb′ )) for all
b′ ∈ B, and

(ib) zab ∈ T (Ea) (resp. H(Ea)) if and only if za′b ∈ T (Ea′) (resp. H(Ea′)) for all
a′ ∈ A, and

(ii) Ea and Ea′ have no common vertex for a 6= a′, i.e., (T (Ea) ∪H(Ea)) ∩ (T (E′
a) ∪

H(E′
a)) = ∅. Analogously, Fb and Fb′ are disjoint for b 6= b′.

An arc D ∈ E(H) satisfying zab ∈ D and za′b′ ∈ D for all for a, a′ ∈ A and b, b′ ∈ B with
a 6= a′ and b 6= b′, is a diagonal of the |A| × |B|-grid G.

The construction of the grid implies that Ea and Fb satisfy |Ea| = |B| and |Fb| = |A| for
all a ∈ A, and b ∈ B.

Diagonal-free grids appear whenever two arcs of two hypergraphs are multiplied with
respect to the Cartesian product. In this sense they generalize the chordless squares
appearing as Cartesian products of arcs of undirected simple graphs. This suggests to
generalize the relation δ [19, 14] in the following way:

Definition. Let H be a connected hypergraph. For E,F ∈ E(H) we say E and F are
in relation δ, EδF , if one of the following conditions is satisfied:
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(i) E and F have no vertex in common and form the opposite arcs of a 4-cycle.

(ii) E and F are incident to at least one common vertex and there is no grid without
diagonals that contains both E and F .

(iii) E = F .

Note that whenever E and F share two or more vertices there is no (|E| × |F |)-grid that
contains E and F , and hence EδF .

Obviously, the δ is reflexive and symmetric. Its transitive closure δ∗, i.e., the smallest
transitive relation containing δ, is therefore an equivalence relation.

Condition (ii) implies that any two incident arcs E and F with E /δ F span an (|E| ×
|F |)-grid without diagonals, whose arcs we denote by E, {Ea}a∈A and F , {Fb}b∈B, where
EδEa and FδFb for all a ∈ A and b ∈ B, respectively.

Lemma 4. Two incident arcs that are not in relation δ span a unique (|E|× |F |)-grid.

Proof. Suppose there exists another (|E| × |F |)-grid consisting of arcs E, {E′
a}a∈A

and F , {F ′
b}b∈B. Then there must be a k ∈ A and an l ∈ B such that E′

k /∈ {Ea}a∈A and
F ′

l /∈ {Fb}b∈B, respectively. Hence there exists both an arc Er ∈ {Ea}a∈A and and arc
Fs ∈ {Fb}b∈B such that E′

k and Er have common vertices and F ′
l and Fs have common

vertices. Thus there is a 4-cycle E′
kErFsF

′
l , where E′

k and Fs as well as Er and F ′
l are

opposite arcs. Hence E′
kδFs and ErδF

′
l , and therefore (E,F ) ∈ δ∗. It follows that if E

and F belong to distinct δ∗-equivalence classes, they span a unique (|E| × |F |)-grid.

This observation suggests the following definition:

Definition. Let γ be an equivalence relation on the arc set E(H) of a hypergraph H .
We say γ has the grid property if any two adjacent arcs E and F of H with E /γ F span
exactly one diagonal-free |E| × |F |-grid.

Our discussion above implies that δ∗ has the grid property.
Let γ be an arbitrary equivalence relation on the arc set of a hypergraph H that

contains δ∗. For any two arcs E and F with E /γ F we also have E /δ ∗F and therefore,
they span exactly one (diagonal-free) |E|× |F |-grid. As a consequence, every equivalence
relation γ that contains δ∗ satisfies the grid property.

Lemma 5. Let H be a connected hypergraph and let γ be an equivalence relation on
E(H) satisfying the grid property. Denote the equivalence classes of γ by Γi, i ∈ I. Then
every vertex of v ∈ V (H) is incident to an arc E ∈ Γi for every i ∈ I.

Proof. Suppose that there is an equivalence class Γi of γ and a set of vertices that is
not contained in any Γi-arc. By connectedness ofH , there is a pair of vertices u, v ∈ V (H)
and an arc E ∈ E(H) with {u, v} ⊆ T (E)∪H(E) such that u belongs to a Γi-arc, say F ,
and there is no Γi-arc containing v. It follows that E /∈ Γi, i.e., it must be contained in
some other equivalence class Γk, k 6= i. By construction, E and F are two incident arcs
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belonging to different equivalence classes of γ and hence span a grid. Thus there must
be a Γi-arc containing v, contradicting the assumption.

Lemma 6. Let H = 2
a
i∈IHi be a weak Cartesian product of prime hypergraphs Hi

and let E,F ∈ E(H). If E and F are in relation δ, they are in relation σ.

Proof. Suppose first, that for the arcs E and F holds E ∩ F = ∅ and there are arcs
E′, F ′ ∈ E(H) such that {E,E′, F, F ′} is a 4-cycle. Moreover, we denote with c(E) the
coordinates where the vertices of the arc E differ. W.l.o.g. assume x1 is common to E
and E′, x2 is common to E and F ′, y1 is common to F and E′, and y2 is common to
F and F ′. The coordinates varying within these arcs are denote by c(E) = i, c(F ) = j,
c(E′) = i′, c(F ′) = j′; see Fig. 2.

x1

xr

ysy1

c(F ′) = j′

c(F ) = j

c(E) = i

c(E ′) = i′

FIGURE 2. 4-cycle EE′FF ′

Then we have:

pk(x1) = pk(x2) for all k 6= i (2)

pk(y1) = pk(y2) for all k 6= j (3)

pk(x1) = pk(y1) for all k 6= i′ (4)

pk(x2) = pk(y2) for all k 6= j′. (5)

It follows from (2) and (5) that

pk(x1) = pk(y2) for all k 6= i, j′ (6)

and from (3) and (4)

pk(x1) = pk(y2) for all k 6= j, i′. (7)

Therefore we have either i = j and i′ = j′ or i = i′ and j′ = j. Assume i 6= j. Then
the latter case must hold and we have pk(x2) = pk(x1) = pk(y2) for all k 6= i, and since
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x2 6= y1 holds, pi(x2) 6= pi(y1) = pi(y2) and pj(x2) 6= pj(y2). Hence, x2 and y2 differ in
more than one coordinate, thus they cannot lie in the same arc F ′, which contradicts the
assumption, therefore, i = j must hold, i.e. c(E) = c(F ), and therefore EσF .

Now let E and F be incident arcs of a hypergraph H and assume that there is no
|E| × |F |-grid without diagonals containing them.

First, consider the case that E and F share more than a single vertex. Then there
is an index i ∈ I such that |pi(E)| > 1 and in particular, |pi(E

′)| > 1 holds for all
E′ ⊆ T (E) ∪H(E) with |E′| > 1.

Since E and F have more than one vertex in common it follows that |pi((T (E) ∪
H(E)) ∩ (T (F ) ∪H(F ))| > 1 and hence |pi(E)| > 1 and |pi(F )| > 1, and thus EσF .

Now suppose that E and F share a single vertex v and assume that E and F are
not in relation σ. Let Ê = T (E) ∪H(E) = {v} ∪

⋃
a∈A{xa} and F̂ = T (F ) ∪H(F ) =

{v} ∪
⋃

b∈B{yb}. Furthermore set j = c(F ) and observe that j 6= i. For all xa ∈ E,
a ∈ A, and all b ∈ B there exist vertices zab ∈ V (H) such that

pi(zab) = pi(xa) (8)

pk(zab) = pk(yb) for all k 6= i. (9)

Using (9) and the fact, that {v, yb} ⊆ F for all b ∈ B and {v, xa} ⊆ E, we can conclude
that the set F̂a = {xa} ∪

⋃
b∈B{zab} satisfies

pj(F̂a) = {pj(xa)} ∪
⋃

b∈B

{pj(zab)} = {pj(v)} ∪
⋃

b∈B

{pj(yb)} = pj(F̂ ) (10)

as well as

pk(zab) = pk(yb) = pk(v) = pk(xa) for all k 6= i, j and for all b ∈ B (11)

Now we use (8) and (11) and obtain

pk(zab) = pk(xa) for all k 6= i and for all b ∈ B. (12)

Analgously, the set Êb = {yb} ∪
⋃

a∈A{zab} satisfies

pi(Êb) = {pi(yb)} ∪
⋃

a∈A

{pi(zab)} = {pi(v)} ∪
⋃

a∈A

{pi(xa)} = pi(Ê). (13)

Again, we use (8) and the fact that {v, yb} ⊆ F for all b ∈ B.
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v x1 xa xrT (E) H(E)

y1

yb

ys

T (F )

H(F )

z1b zab zrb
T (Eb) H(Eb)

za1

zas

T (Fa)

H(Fa)

FIGURE 3. Arcs E and F (thick arcs) with (E, F ) /∈ σ and the |E| × |F |-grid they span

It will be useful to relabel v as z00, Ê as Ê0, F̂ as F̂0, the xl as zl0 for all l ∈ A, and
the yl as z0l for all l ∈ B. Then we have

Êb ∩ F̂a = {zab} (14)

for all a ∈ A0 := A ∪ {0} and b ∈ B0 := B ∪ {0}.
Since z0b ∈ T (F ) (resp. H(F )) if and only if pj(z0b) ∈ pj(T (F )) (resp. pj(H(F ))) for

all b ∈ B0, we can conclude by the definition of the (weak) Cartesian product and from
equations (10) and (12) that for all F̂a, a ∈ A, there exists an arc Fa = (T (Fa), H(Fa))
with |Fa| = |F | such that F̂a = T (Fa) ∪H(Fa). More precisely, we have

T (Fa) = {zab | b ∈ B0 and z0b ∈ T (F )}, resp.

H(Fa) = {zab | b ∈ B0 and z0b ∈ H(F )} (15)

for all a ∈ A.
An analogous argument can be made for Êb: Since za0 ∈ T (E) (resp. H(E)) if and

only if pi(za0) ∈ pi(T (E)) (resp. pi(H(E))) for all a ∈ A0, it follows from equations (9)
and (13) that for all Êb, b ∈ B, there exists an arc Eb = (T (Eb), H(Eb)) with |Eb| = |E|
such that Êb = T (Eb) ∪H(Eb). More precisely, we have

T (Eb) = {zab | a ∈ A0 and za0 ∈ T (E)}, resp.

H(Eb) = {zab | a ∈ A0 and za0 ∈ H(E)} (16)

for all b ∈ B.
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Equation (14) immediately implies that the intersection of more then two arcs is
empty.

Consequently, whenever two adjacent arcs E and F are not in relation σ, they span
an |E| × |F |-grid with |E| × |F | vertices.

It remains to show that these grids have no diagonals. Therefore, we need to show
that there is no D ∈ E(H) such that {zab, za′b′} ⊆ D for all a, a′ ∈ {0}∪A, b, b′ ∈ {0}∪B
with a 6= a′ and b 6= b′. For zab, za′b′ we have:

pi(zab)
(8)
= pi(za0) 6= pi(za′0)

(8)
= pi(za′b′) (17)

pj(zab)
(9)
= pj(z0b) 6= pj(z0b′)

(9)
= pj(za′b′) (18)

The inequalities follow from the fact, that {za0, za′0} ⊆ E0 and {z0b, z0b′} ⊆ F0.
That means that zab and za′b′ differ in more than one coordinate, hence, they cannot

be contained in the same arc, which completes the proof.

Lemma 6 implies that δ ⊆ σ and since σ is an equivalence relation, δ∗ ⊆ σ holds as
well. Thus, the product relation σ has the grid property.

CONVEXITY

Lemma 7. Let H = 2
a
i∈IHi be a weak Cartesian product of connected hypergraphs

Hi. Then each HJ = 2
a
j∈JHj-layer is convex for any index set J ⊆ I.

Proof. It suffices to show that, whenever there is a path P between two arbitrary
vertices u and v of the same HJ -layer Hu

J containing no arcs of this layer, then there
exists a path Q which entirely lies in Hu

J and satisfies |Q| < |P |.
Suppose P = (u = u0, E1, u1, E2, . . . , uk−1, Ek, uk = v). Since u and v belong to the

same Hj-layer, pl(u) = pl(v) holds for all l ∈ I \ J . There must be an arc Ei of P such
that Ei is contained in some HJ layer, by assumption different from Hu

J . Otherwise we
would have pl(u) = pl(v) for all l ∈ J , hence pl(u) = pl(v) for all l ∈ I, i.e. u = v.

Let {Ej1 , . . . , Ejr
} be a subset of arcs of P , with j1, j2, . . . , jr ∈ {1, . . . , k}, j1 < j2 <

. . . < jr, that are in some HJ -layer different from Hu
J , and no arc is the copy of another.

To be more precise, for each ji there is a ki ∈ J with

pki
(Eji

) ∈ E(Hki
) and pka

(Eja
) 6= pkb

(Ejb
) for a 6= b (19)

and jr is maximal. Note that a 6= b does not imply ka 6= kb.
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Hu
J

H
j1
J

H
ji
J

u

E1 u1

j1 − 1 j1

Ej1

v1

F1

ji − 1
ji

Eji

vi−1

vi
Fi

jr − 1
jr

Ejr

vr−1

vFr

FIGURE 4. Idea of the proof: Path P and Path Q (thick) which we got by shifting the arcs Eji
in

the Hu
J -layer

By assumption, E1 is not contained in any HJ -layer, thus r < k. Without loss of
generality, we can assume that the Eji

are not incident. In the following we will denote
the vertices uji

by ji. If we set j0 := u0, we have

pl(ji−1) = pl(ji − 1) for all l ∈ J and all i ∈ {1, . . . , r} (20)

and since ji − 1, ji ∈ Eji
,

pl(ji) = pl(ji − 1) (21)

holds for all l 6= ki, ki ∈ J . Furthermore, for each ji, i ∈ {1, . . . , r}, there exists a
vi ∈ V (H), such that

pl(vi) = pl(u) for all l ∈ I \ J (22)

pl(vi) = pl(ji) for all l ∈ J (23)

In particular, Equation (22) implies vi ∈ V (Hu
J ) for all i ∈ {1, . . . , r}. It follows

pl(vi−1)
(23)
= pl(ji−1)

(20),(21)
= pl(ji)

(23)
= pl(vi) for all l ∈ J \ {ki} (24)

and by Equation (22) we have

pl(vi−1) = pl(vi) for all l ∈ I \ J (25)

hence by Equations (24) and (25)

pl(vi−1) = pl(vi) for all l 6= ki (26)
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In other words, any two vertices vi−1, vi lie in the same Hki
layer for some ki ∈ J .

Next we show that there are arcs Fi ∈ E(Hu
J ) containing both vi−1 and vi. From

Equations (20) and (23) it follows

pki
(vi−1)

(23)
= pki

(ji−1)
(20)
= pki

(ji − 1) (27)

pki
(vi)

(23)
= pki

(ji) (28)

Thus we have by Equations (27), (28) and (19)

pki
(vi−1), pki

(vi) ∈ pki
(Eji

) (29)

Hence by Equations (22), (26) and (29), for each i ∈ {1, . . . , r} there exists an arc Fi in
Hu

J , such that vi−1, vi ∈ Fi.
Now consider the vertex vr. Since there is no more arc Ej , j > jr, of P that is

contained in any HJ -layer, jr and v belong to the same ĤJ := 2i∈I\JHi-layer Therefore
we have

pl(vr)
(23)
= pl(jr) = pl(v) for all l ∈ J (30)

and from the definition of vr and the fact that u and v are in the same HJ -layer, it
follows

pl(vr)
(22)
= pl(v) for all l ∈ I \ J. (31)

Therefore, we can conclude vr = v, and we have found a path Q = (u =
v0, F1, v1, . . . , vr−1, Fr, vr = v) from u to v, whose arcs all lie entirely within Hu

J . Fur-
thermore, we have |Q| = r < k = |P |, which completes the proof.

Definition. An equivalence relation γ on the arc set E(H) of a connected hypergraph
H with equivalence classes Γi, i ∈ I, is called convex if for any J ⊆ I every connected
component of the partial hypergraph generated by

⋃
i∈J Γi is convex.

By Lemma 7, the product relation σ is a convex relation. Moreover, any product
relation must be convex and has to satisfy the grid property.

Lemma 8. Let γ be an equivalence relation on the arc set E(H) of a connected hy-
pergraph H which satisfies the grid property. Let Γ be an equivalence class of γ. If all
connected components of the partial hypergraph of H generated by Γ are convex, they
are isomorphic.

Proof. Let HΓ be the partial hypergraph generated by Γ with connected components
Ci, i ∈ I and let Γ̂ denote the union of all equivalence classes of γ, distinct from Γ, i.e.,
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Γ̂ =
⋃

Γ′ 6=Γ Γ′. It suffices to show that any two components C1 and C2 that are connected

by a Γ̂-arc are isomorphic. We define a mapping ϕ : V (C1) → V (C2) such that x 7→ ϕx,

whenever x and ϕx are connected by a Γ̂-arc. From the grid property and Lemma 5, it
follows that for all x ∈ V (C1) there exists a ϕx ∈ V (C2). The grid property ensures that
adjacent vertices in C1 have different images in C2 and arcs in C1 map onto arcs in C2,
such that ϕ(E) = ϕ((T (E), H(E))) = (T (ϕ(E)), H(ϕ(E))) ∈ E(C2) for all E ∈ E(C1).
Convexity implies that non adjacent vertices in C1 have different images in C2 as well,
i.e., the mapping ϕ is injective. On the other hand we can extend ϕ−1 to a mapping
ψ : V (C2) → V (C1). Analogously, it follows that for all y ∈ V (C2) there is a ψy in
V (C1), hence ϕ−1 = ψ, i.e., ϕ is bijective, and every arc in C2 maps onto an arc in C1,
thus ϕ is an isomorphism between C1 and C2.

Sometimes, the transitive closure of δ is already convex. If this is the case, then each
path between two vertices of the same connected component of an equivalence class of
δ∗ must contain at least one arc of this equivalence class as a consequence of Lemma 7.

Lemma 9. Let γ be an equivalence relation on the arc set E(H) of a connected hyper-

graph H satisfying the grid property with only two equivalence classes Γ and Γ̂. Let HΓ

and HbΓ be the partial hypergraphs generated by Γ and Γ̂, with connected components

Ci, i ∈ I, and Ĉj , j ∈ J , respectively. Then

V (Ci) ∩ V (Ĉj) 6= ∅ for all i ∈ I, j ∈ J.

In particular,

|V (Ci) ∩ V (Ĉj)| = 1

holds if Ci and Ĉj are convex.

Proof. Suppose there are components Ci, Ĉj with V (Ci)∩V (Ĉj) = ∅, such that they
have minimal distance. Let P = (v0, E1, v1, E2, . . . , Ek, vk) be a shortest path from Ci to

Ĉj , such that v0 ∈ V (Ci) and vk ∈ V (Ĉj). Obviously, the first arc E1 must lie in Γ̂ and
the vertex v1 is not in Ci, otherwise E1 would be in Γ which contradicts the minimality
of P . Lemma 5 implies that v1 must be contained in a Γ-component, say Ck. Since the
distance from Ck to Ĉj is smaller than |P |, we have V (Ck) ∩ V (Ĉj) 6= ∅. Let w be a

vertex in V (Ck)∩V (Ĉj) and let P ′ be a path from v1 to w in Ck. By repeated application

of the grid property we obtain a vertex u in V (Ci) connected to w by a Γ̂-arc. But then

u must be in V (Ĉj) and thus |V (Ci) ∩ V (Ĉj)| ≥ 1.

Now assume |V (Ci) ∩ V (Ĉj)| ≥ 2. Let u,w ∈ V (Ci) ∩ V (Ĉj). By connectivity we

have a path Q from u to w in Ci and a path Q′ from u to w in Ĉj as well. Therefore
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either |Q| > |Q′| or |Q′| > |Q| or |Q| = |Q′| holds. Hence either Ci or Ĉj or both are not
convex, and thus the second assertion holds.

PROOF OF THE THEOREMS

We are now able to prove Theorem 1:

Proof of Theorem 1. First assume that γ has only two equivalence classes Γ and
Γ̂ with connected components Ci, i ∈ J and Ĉj , j ∈ Ĵ respectively, of the generated
partial hypergraphs. By Lemma 9 we can assign uniquely determined coordinates (i, j)

to each vertex of H , whenever {v} = V (Ci) ∩ V (Ĉj), i ∈ J , j ∈ Ĵ . On the other
hand for all such coordinates there exists a uniquely determined vertex in V (H), since

|V (Ci) ∩ V (Ĉj)| = 1.
In the following we will identify each vertex of H with its coordinates. Obviously we

have V (Ci) = {(i, j) | j ∈ Ĵ} for all i ∈ J and V (Ĉj) = {(i, j) | i ∈ J} for all j ∈ Ĵ .
Recall that Lemma 8 implies that the Ci are isomorphic for all i ∈ J . In particular
C1 ≃ Ci holds for all i ∈ J . The isomorphism is given by the mapping

(1, j) 7→ (i, j) for all j ∈ Ĵ .

If C1 and Ci are connected by an arc, it is an isomorphism as in the proof of Lemma 8.
If they are connected by a path, it is an isomorphism by induction on the length of the
path. Analogously we have Ĉ1 ≃ Ĉj for all j ∈ Ĵ given by the isomorphism

(i, 1) 7→ (i, j) for all i ∈ J.

A set of vertices E = {(i1, j1), . . . , (iq, jq), . . .}, i1, . . . , iq, . . . ∈ J , j1, . . . , jq, . . . ∈

Ĵ , is an arc in H with T (E) = {(it1 , jt1), . . . , (itr
, jtr

), . . .} and H(E) =
{(ih1

, jh1
), . . . , (ihs

, jhs
), . . .} if and only if either

(i) it is in the same Ci, hence i1 = . . . = iq = . . . = i and E1 = {(1, j1), . . . , (1, jq), . . .}
is an arc in C1, such that T (E1) = {(1, jt1), . . . , (1, jtr

), . . .} and H(E1) =
{(1, jh1

), . . . , (1, jhs
), . . .}, or

(ii) it is in the same Ĉj , hence j1 = . . . = jq = . . . = j and E2 = {(i1, 1), . . . , (iq, 1)}

is an arc in Ĉ1, such that T (E2) = {(it1 , 1), . . . , (itr
, 1), . . .} and H(E2) =

{(ih1
, 1), . . . , (ihs

, 1), . . .}.

That is, H is isomorphic to C12Ĉ1.
Now define hypergraphs H1 and H2 by setting V (H1) = {i : (i, 1) ∈ V (C1)} and

V (H2) = {j : (1, j) ∈ V (Ĉ1)}. H1 and H2 are isomorphic to C1 and Ĉ1 by the isomorphic
mappings i 7→ (i, 1) and j 7→ (1, j) respectively, thus H = H12H2.

Assume now that γ has arbitrarily many equivalence classes Γi, i ∈ I. Let γi be
the equivalence relation with the two equivalence classes Γi and Γ̂i =

⋃
k∈I,k 6=i Γk for



18 JOURNAL OF GRAPH THEORY

arbitrary i ∈ I. As already shown, we get a factorization of H into two factors Hi2Ĥi

where Hi and Ĥi belong to Γi and Γ̂i, respectively. We will call the projection, more
precisely the image of the projection, of a vertex v in Hi2Ĥi into the factor Hi the i-th
coordinate of v, denoted by vi.

Clearly, we can assign coordinates to each vertex. If two vertices u, v have the same
i-th coordinate, then, by convexity, there is no Γi-arc on any shortest path between
them. Thus, if u and v have the same coordinates, there is no nontrivial shortest path
between them, hence u = v. It follows that the assignment of coordinates to vertices of
a connected hypergraph H is bijective.

A subset E = {v1, . . . , vq, . . .} of V (H) is an arc of H with T (E) = {vt1 , . . . , vtr
, . . .}

and H(E) = {vh1
, . . . , vhs

, . . .} if and only if the vl differ in the same coordinate, say
the i-th, for all l ∈ {1, . . . , q, . . .} and Ei = {vi

1, . . . , v
i
q, . . .} is an arc in Hi with T (Ei) =

{vi
t1
, . . . , vi

tr
, . . .} and H(Ei) = {vi

h1
, . . . , vi

hs
, . . .}.

Since H is connected, its vertices differ in at most finitely many coordinates, thus we
have H ≃ 2

a
i∈IHi for any a ∈ V (H).

The equivalence relation whose only equivalence class is the entire arc set of a hy-
pergraph H is trivially convex and satisfies the grid property and is therefore a product
relation. This relation always exists. By Theorem 1 we can conclude that any convex
relation on the arc set of a connected hypergraph that satisfies the grid property is a
product relation and induces a factorization of this hypergraph. The smallest convex
relation satisfying the grid-property, if such a relation exists at all, therefore must induce
a PFD with respect to the Cartesian product.

The next lemma is well known for undirected graphs. Its proof is one of the key
application of the square-property [14]. This proof step can directly be generalized to
the grid-property in the case of hypergraphs. Moreover, since the definition of a path
(i.e., a weak path) coincides with the definition of a path in the undirected case, we can
immediately state the next lemma for hypergraphs.

Lemma 10. Let γj , j ∈ J be an arbitrary set of convex relations on the arc set E(H)
of a hypergraph H containing δ. Then γ =

⋂
j∈J γj is convex.

It is clear that for arbitrary equivalence relations on the arc set of a hypergraph,
which satisfy the grid-property, their intersection also has the grid-property. Therefore
Lemma 10 implies that there is exactly one finest convex equivalence relation on the arc
set E(H) of a hypergraph H satisfying the grid property, namely the intersection of all
convex relations on E(H) containing δ, that is its convex hull, C(δ).

Conversely, any product relation must be convex and contains δ. Thus we have proved
the Theorems 2 and 3. We conclude, furthermore

Corollary. The PFD of a connected hypergraph with respect to the Cartesian product
is unique in the class of finite simple hypergraphs.
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APPENDIX: BASIC DEFINITIONS

A partial hypergraph H ′ ⊆ H of a hypergraph H = (V, E) is a hypergraph H ′ = (V ′, E ′)
with V ′ ⊆ V and E ′ ⊆ E . A partial hypergraph H ′ = (V ′, E ′) ⊆ H = (V, E) is generated
by the arc set E ′ if V ′ = ∪E∈E′E. It is induced by the vertex set V ′, H ′ = 〈V ′〉, if
E ′ = (E ∈ E | E ⊆ V ′).

A strong path or simple path P of length k in H = (V, E) is a sequence P =
[v0, E1, v1, E2, . . . , Ek, vk] of distinct vertices and arcs of H , such that v0 ∈ T (E1),
vk ∈ H(Ek) and vj ∈ H(Ej) ∩ T (Ej+1). A weak path Pw of length k in a hy-
pergraph H = (V, E) is a sequence Pw = (v0, E1, v1, E2, . . . , Ek, vk) of distinct ver-
tices and arcs of H , such that v0 ∈ T (E1) ∪ H(E1), vk ∈ T (Ek) ∪ H(Ek) and
vj ∈ [T (Ej) ∪ H(Ej)] ∩ [T (Ej+1) ∪ H(Ej+1)]. For the sake of convenience, we will
refer to weak paths simply as paths. A hypergraph H is said to be weakly connected or
simply connected for short, if each two vertices of H can be connected by a path. A path
between two partial hypergraphs H ′ and H ′′ of a hypergraph H is a path in H between
two vertices v ∈ V (H ′) and w ∈ V (H ′′).

The distance between two vertices of a hypergraph is the length of the shortest path
connecting them. The distance dH(H ′, H ′′) between two partial hypergraphs H ′, H ′′

is the minimal length of a path between H ′ and H ′′. A partial hypergraph H ′ ⊆ H is
convex if all shortest paths of H between vertices of H ′ are contained in H ′.

A 4-cycle in H is a partial hypergraph generated by arcs E1, E2, E3, and E4, such
that Ei ∩ Ei+1 6= ∅, where the subscripts are taken modulo 4.

A homomorphism fromH1 = (V1, E1) intoH2 = (V2, E2) is a mapping ϕ : V1 → V2 such
that ϕ(E) is an arc in H2 whenever E is an arc in H1 with the property that ϕ(T (E)) =
T (ϕ(E)) and ϕ(H(E)) = H(ϕ(E)). A mapping ϕ : V1 → V2 is a weak homomorphism
if arcs are mapped either on arcs or on vertices. A bijective homomorphism ϕ whose
inverse function is also a homomorphism is called an isomorphism.


