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Abstract. MALAT1 is one of the best-conserved long ncRNAs in mam-
mals and shares several characteristics, among them nuclear retention
and a non-standard processing of its 3’ end, with the longer, but less
well conserved, adjacent MENβ RNA. We show that MALAT1 is con-
served among gnathostomes (with the possible exception of birds), while
MENβ likely originated in the mammalian stem lineage. Evolutionary
conserved features of both transcripts are discussed, including RNA sec-
ondary structure motifs and short RNA processing products.
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1 Introduction

A plethora of diverse non-coding RNAs have been discovered during the last
decade, collectively demonstrating that a large fraction of the genomes of higher
eukaryotes is transcribed into mRNA-like non-protein-coding transcripts (ml-
ncRNAs) [1, 2]. The evolutionary history of these transcripts is still poorly under-
stood. With very few exceptions, only global statistical information is available to
demonstrate that a large number of ncRNAs is under stabilizing selection [3–5].
Nevertheless, most mlncRNAs are poorly conserved at sequence level compared
to other functional transcripts [6, 4]. Detailed evolutionary information is avail-
able on many families of protein-coding genes and structured “house-keeping”
RNAs. For ncRNAs, it is compiled in the Rfam database [7] and in specialized
data repositories for microRNAs (miRBase [8]) and snoRNAs (snoRNA-LBME-db
[9]). In contrast, evolutionary and phylogenetic information on mlncRNAs is
currently neither collected nor organized in a systematic way.

Detailed case-studies are available for only a few prominent transcripts, such
as the imprinting-related mammalian H19 ncRNA [10], the Drosophila roX

RNAs [11], and the eutherian Xist transcript [12, 13]. The latter originated by
pseudogenization of the protein-coding Lnx3 gene in the eutherian ancestor [12]
under inclusion of repetitive elements [13], which also gave rise to conserved
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Fig. 1. Overview of the MEN/MALAT locus in different vertebrate species. The non-
coding MALAT transcript is linked to at least one of FRM8 and SCYL1 in all species
except the stickleback. In Xenopus, MALAT1 is duplicated, with one copy arranged in
reverse direction.

secondary structure features [14]. Xist is one of only three highly expressed
poly-adenylated ncRNAs that show strong nuclear retention [15].

The other two transcripts, NEAT1 and NEAT2/MALAT1, are the topic of
this contribution. They are located in close genomic proximity at the human
11q13.1 locus. NEAT1 also exists in a longer isoform, known as MENβ [16].
Recent studies showed that MALAT1 and MENβ share a number of peculiar
features. Both transcripts are spliced only infrequently [15], a feature that is
atypical for transcripts of their size. Most surprisingly, their 3’ ends are processed
in a non-standard way: RNase P cleaves the primary transcripts before a tRNA-
like element [17, 16], which is then processed into an independent cytoplasmic
ncRNA. The evolution of these small tRNA-like ncRNAs was studied already in
some detail [18].

The ∼ 8.7kb MALAT1 transcript (also known as NEAT2 and AlphaTFEB)
is overexpressed in a variety of different carcinomas [19–21]. Knockdown of
MALAT1 by shRNA implicates the transcript in cell cycle progression [22]. As
noted in [15], MALAT1 is exceptionally well-conserved for a long ncRNA. The
same study noticed the presence of a homolog in the opossum genome and re-
ported an “apparent absence of the transcript in non-mammalian species”. The
subnuclear localization of MALAT1 is concentrated in the SC35 splicing do-
mains, indicating a function in pre-mRNA metabolism [15].

The NEAT1 transcript, which has a size of ∼ 3.2 kb, is also responsive to
diverse disease states. It is induced in mouse brain during infection by Japanese
encephalitis virus and rabies virus, and hence was termed “Virus Inducible Non-
Coding RNA” (VINC) in [23, 24]. It is located at the Men1 (“multiple endocrine
hypoplasia 1”) locus, and hence was named MENǫ in [16, 25]. The transcript
contains the shorter “trophoblast non-coding RNA” (TncRNA) that suppresses
the expression of major histocompatibility antigens [26–28]. The bovine NEAT1
orthologue shows increasing expression levels during development of cattle mus-
cle [29]. The same locus also produces a much longer isoform (∼ 20kb), called



MALAT1 and MENβ ncRNAs 3

MENβ. Several groups recently reported the involvement of MENǫ and MENβ in
the organization of the paraspeckles [30, 31, 25, 16], reviewed in [32]. Protein in-
teraction regions in the VINC/NEAT1/Menǫ RNA are investigated in [33]. The
main biological function of NEAT1/MENǫ is the regulation of gene expression
by restricting nuclear export [30, 34].

2 Materials & Methods

Genomic sequence data were retrieved from ensembl (v.57). In addition, ESTs
and unassembled genomic DNA from NCBI GenBank, and high throughput
sequencing data from GEO were analyzed. Initial homology searches were per-
formed with blast and extended to global alignments using several alignment
tools, including custalw, dialign, muscle, and mafft. RNA secondary struc-
tures were investigated using the Vienna RNA Package. The UCSC genome
browser was used for visualization. Due to length restrictions on the manuscript,
details and references are given throughout the Results section where necessary.

3 Results

Syntenic Conservation. The genomic location of MENβ/MALAT1 is flanked
by FRMD8 (“FERM domain containing 8”, a.k.a. FKSG44) on the 5’ side and
by the highly conserved kinase-like gene SCYL1 throughout Eutheria. A small
“FUBI-like” gene (AP000769) is located between MENβ and MALAT1. All
these transcripts share reading direction, Fig. 1. The MALAT1 homolog is also
linked to FRMD8 and/or SCYL1 in other vertebrates, and the arrangement [5’-
FRMD8-MALAT1-SCYL1-3’] appears to be the ancestral state. The assembly of
the elephant shark genome, however, does not provide sufficient evidence to test
this hypothesis directly; no MALAT1 homolog was detectable in the lamprey
genome. In teleosts, synteny is broken between FRMD8 and MALAT1, while

Table 1. Approximate locations of MENβ in several mammalian genomes. The coordi-
nates refer to the (mostly unspliced) ESTs located in the approximate region identified
by blastn as homologous to human MENβ. The 5’-end of the menRNA is also listed.
Dots indicate that there are no ESTs near the position of the menRNA.

Species Assembly Chr. ± 5’-MENβ 3’-MENβ 5’-menRNA

Homo sapiens hg19 11 + 65190269 65213007 65213012
Macaca mulatta rheMac2 14 − 9009052 ... 8979130
Mus musculus mm9 19 − 5845579 5824708 5824707
Rattus norvegicus rn4 1 − 208481740 208455951 208456537
Canis familiaris canFam2 18 − 54794495 54775188 54775783
Equus caballus equCab2 12 + 25591044 ... 25613257
Bos taurus bosTau4 29 + 45474754 45495959 45495960
Ornithorhynchus anatinus ornAna1 ctg2592 − 13707 ... —
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Fig. 2. RNA secondary structure in MALAT and MENβ. By far the best conserved
structured signals are mascRNA [17] (upper left) and menRNA [16] (upper middle),
respectively. The upper right panel summarizes the RNAz predictions of structured
RNAs in MALAT1. Besides the mascRNA and the hairpin structure described in [16]
at the 3’ end (encircled), there is only one additional structured region about 600nt
upstream of the mascRNA. Below, the aligned sequence logos of menRNA (above) and
mascRNA (below) clearly show that the two ncRNAs are homologous.

SCYL1 is located on a different scaffold in the lizard genome. In Xenopus we
find two divergent copies of the MALAT1 sequence in tail-to-tail orientation.

Surprisingly, the entire region is missing in all four sequenced bird genomes
(chicken, turkey, zebrafinch, and duck). No plausible homolog of SCYL1, FRMD8
(using tblastn), or MALAT1 (using blastn) are detectable. There are two pos-
sible explanations: (1) Birds lost the entire genomic locus. (2) FRMD8-MALAT1-
SCYL1 is located on a microchromosome, which are known to be underrepre-
sented in the chicken genome assembly [35]. Given that MALAT1 can be iden-
tified in all other sequenced gnathostomes and the high level of sequence con-
servation of the two flanking genes (whose functions appear to be unrelated to
that of MALAT1 and MENβ/ǫ), we suspect that we see a data bias rather than
a true loss of the entire locus.

MENβ is clearly present in all mammals. Within eutheria, the homology is
easy to establish and the loci can be found by simple blastn searches using e.g.
the human sequence as query. In several species the presence of the MENβ and/or
MENǫ transcripts is supported by (predominantly unspliced) ESTs mapping to
the location of the blastn hit, see Tab. 1. Due to gaps, break-points between
scaffolds, and inaccuracies in the genome assemblies, it is a bit more complicated
to trace MENβ in marsupials and in platypus. Unambiguous blastn hits to large
portions of MENβ are easily obtained, however. No EST support is available in
marsupials. The expression of a MENβ transcript in platypus is supported by a
handful of ESTs (EY202075, EY201405, EH004653, EG34158) as well as several
454 reads listed in ensembl (v.57).
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Table 2. Approximate positions of the MALAT1 homologs in non-mammalian verte-
brates determined from EST information. Data are from the UCSC genome browser,
except for lizard, which was taken from ensembl (version 57).

Species Assembly Chr. ± 5’-MALAT1 3’-MALAT1 5’-mascRNA

Anolis carolinensis anoCar1 s.443 + 1097270 1104518 1104209
Xenopus tropicalis + xenTro2 s.398 + 900641 910280 910287
Xenopus tropicalis - xenTro2 s.398 − 936780 924118 925349
Danio rerio Zv8 14 − 47564239 47570301 47564238
Tetraodon nigroviridis tetNig2 1 − 8135090 ... 8130318
Takifugu rubripes fr2 Un + 240961971 ... 240966770
Gasterosteus aculeatus gasAcu1 IV − 5027768 ... 5022122
Oryzias latipes oryLat2 10 + 8151439 8156861 8156576

MascRNA and menRNA. Both MALAT1 and MENβ have a highly struc-
tured 3’ end, consisting of a hairpin structure, the genomically encoded polyA
motive, and the tRNA-like structure that is cleaved off and becomes a stable
cytoplasmic ncRNA. This common structure is described in some detail in [17]
for mascRNA (MALAT1 associated RNA) and in the supplemental material of
[16] for menRNA, see also Fig. 2. The menRNA is by far the best-conserved part
of the MENβ transcript. It is easily identified in the two metatheria (Monodel-

phis and Macropus) [18]. Although a menRNA homolog is missing from both
shotgun traces and the genome assembly of platypus, it is possible to identify
other homologous sequences near the 3’ end of MENβ. In contrast, no potential
ortholog of MENβ/ǫ or menRNA can be found in outside mammalia.

A short region in the lizard genome aligned in the UCSC genome browser to
the menRNA region (anoCar1, scaffold 944:1210-1465[-]) cannot be identified un-
ambiguously as the 3’-end of a MENβ ortholog, because a blastn search yields 42
similar homologs throughout the lizard genome. Their sequences were retrieved
together with about 200nt flanking sequence and aligned (with clustalw) to
the corresponding regions surrounding mascRNAs and menRNAs. All lizard se-
quences clearly appear as monophyletic group in this tree (Fig. 3), indicating
lineage-specific proliferation of mascRNA. The data are consistent with (but do
not provide a conclusive proof for) the origin of MENβ through a duplication of
MALAT1, probably in the mammalian stem lineage. The frog genome contains
two divergent, and hence ancient, copies of MALAT1 in an unexpected tail-to-
tail configurations. The phylogenetic analysis does not provide any evidence that
one of these copies might be the ancestor of MENβ.

MascRNA and menRNA are clearly homologous [18], Fig. 2, and the similar-
ities of MENβ and MALAT1 extend upstream of the cleavage site to include a
hairpin structure and the genomically encoded poly-A tract [16]. At least parts
of the MENβ thus may have arisen from a duplication of MALAT1 in the mam-
malian ancestor. The lack of recognizable homologies further towards the 5’ end
could be explained by the poor overall conservation of MENβ.
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Fig. 3. Left: The vertebrate MALAT1 sequences are alignable and a neighbor-joining
tree reproduces the established vertebrate phylogeny quite well, except for the posi-
tioning of the two marsupials (Monodelphis and Macropus) outside of the platypus
sequence. Right: Neighbor-joining tree of the mascRNA and menRNA loci with about
200nt flanking sequence on both sides. Lizard sequences are shown in green, tetrapod
mascRNAs in red, and tetrapod menRNAs blue.

Gene Phylogeny. The MALAT1 transcript is easily recognizable in all mam-
mals [15]. Significant blastn hits can also be found in the available genome
data of all five sequences teleosts, the elephant shark, the frog, and the lizard.
In particular, the mascRNA can be identified unambiguously [18]. In addition
to sequence homology, EST data can be used to determine the approximate ex-
tent of the MALAT1 transcript in several non-mammalian gnathostomes, see
Tab. 2. Approximate full-length sequences were retrieved from the genomic data
compiled in the UCSC genome browser and aligned using clustalw [36]. Vi-
sual inspection of the alignment shows that it indeed consists of homologous
sequences. The neighbor-joining tree constructed from this alignment is shown
in Fig. 3. It conforms to the established phylogeny of vertebrates with the excep-
tion of the relative position of marsupials and platypus, which can be interpret
as a long branch attraction artifact.

Promoters. Not much is known about the transcriptional regulation of MALAT1
and MENβ/ǫ. There is evidence for alternative transcription start sites for the
human MALAT1 transcript(s): In addition to the longer transcript reported e.g.
in [15], a shorter isoform (∼ 7kb) is produced from a CREB-sensitive promoter
that can be stimulated by oxytocin [37]. This start sites matches that of mouse
hepcarcin [20]. Fig. 4 shows that the core promoter region is well conserved within
mammals. The alignment of all vertebrate MALAT1 sequences, however, does
not provide evidence for a conservation of this feature in other gnathostomes.

Conserved Secondary Structure Elements. Many ncRNAs exhibit evolu-
tionarily conserved secondary structures. Surveys of the human genome [38, 39],
for instance, identified tens of thousands of conserved structural motifs. The
alignment of the MALAT1 sequences was screened with RNAz [38]. As expected,
the mascRNA locus and the adjacent conserved hairpin structure just upstream
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              **  ** ***                *      * *     **         ***** *                      * **     *   *  **    *
Human AAAGGCGGCGGAAGGTGATCGAATTCCGGT--GATGCGAG-TTGTTCTCCGTCTATAAATACGCCTCGCCCGAGCTGTGCGGTAGGCATTGAGGCAGCCAGCGCAG
Rhesus AAAGGCGGCGGAAGGTGATCGAATTCCGGT--GATGCGAG-CTGTCCTCCGTCAATAAATAGGCCTCGCCTGTGCTTTGCGGCAGGCATTGAGGCAGCCAGCACAG
Mouse CAAGGTGGTGGAGGGTTACTAGGTTCCGGT--GGAGTGAC-GTGTCCCTTTGCAATAAATACCGGCGCTCCGGGCTCTGCGTCAGGCATTCAGGCAGCGAGAGCAG
Rat CGAGGCGGTGGAGGGTTACTAGGTTCCGGT--GGAGTGAC-GTGTCCCTTCGCAATAAAAA-GGGAGCTCCGAGCCTTGCGTCAGGCATTCAGGCAGCGAGCACAG
Cow AAAGGCGGCGGAGGAGTATTGAATACCGGA--GGTGTGAG-CTGTACTTGTTCTATAAATACTCCGCT-GCGGACTGTGCGACAGGCATTGAGGCAGCGAGCGCAG
Dog AAAGGCGGCGGAGGGTTATTGAAAT-C-GC--GGTGTGAG-CTGTCTTCCGTCTATAAATATGCCTCTCCCGGGTTCTGCTGCAGGCTTTCAGGCAGCGAGCGCAG
Elephant AAAGGCGGCGGAGGGCTGTTGAGTTCCGGCAGGGTGTGAG-GCGT-CTCCGTCTATAAATACGCCTCTCCTCGGCCCTGCGGCAGGCATTCGGGCAGCGAGCGCAG
Armadillo AAAGGCGGCGGAGTGTTGC-GGGTTCCGGC-GGGTGTGAG-TCGTCCTTGGCCTATAAATACACCTCTGCGGGACCCTGCAGCAGGCATTCAGACAGCGAGCTTAG
Sloth AAAGGCGGCGGAGGGTTACTGGATTCCGGT-GGGTGTGAG-CTGTCCTTGGCCTATAAATACACCTCTGCGGGGCCCAGCGGCAAGCATTCAGGCGGCGAGCGCAG
Opossum AAAGGAGGCGGAGGGTTACGTGTTTCTAGC--GGTGAG-G-CTGTCCGTGGTGTATAAATAGTCCTCCTCCCAACGCCCTCTCAGGCAGAC-GGCAGGCAGCGAGG
Platypus AAAGAGGGCGGAGGGCTATTACATTCCAGT----TGTGAGTCTGTCCCTGGTCTATAAAGACTCCACCCGCGAGCCTGCTTGTAGGCAGATTGGTAGGCAGAGCTG

TATA-box

Fig. 4. Conserved promoter of the shorter form of MALAT1 reported in [37], which
fits the 5’ end of the mouse “hepcarcin” RNA.

of the RNase P processing site [16] was identified as structured region. Despite
the size of the MALAT1 transcripts, however, RNAz detected only one additional
structured location about 600nt upstream of the processing site, see Fig. 2. For
MENβ, only the menRNA and a small structured region near the 5’-end of the
transcript were detected.
Small Processing Products. A plethora of different types of small RNA
products have been detected in eukaryotic genomes, ranging from microRNAs,
piRNAs, and endogenous siRNAs [40, 41] to multiple families of small RNAs
associated with mRNAs [42, 43]. Several studies using modern high through-
put sequencing technologies reported that well-known ncRNA loci are also pro-
cessed to give rise to small RNAs. MicroRNA precursor hairpins, for instance,
are frequently processed to produce additional “off-set RNAs” (moRNAs) that
appear to function like mature miRs [44, 45], tRNAs are cleaved to yield multiple
shorter products [46–49], snoRNAs frequently give rise to specific miRNA-like
short RNAs [50], and a functional short RNA product derives from a vault RNA
[51, 52]. The production of small RNA products is a ubiquitous phenomenon
that is strongly associated with secondary structure [53].

Here, several published short-read sequencing data sets as well as an extensive
library of short RNAs from human brains kindly provided by Philipp Khaitovich
[45, 51] is re-evaluated. After mapping the entire dataset to the genome with
segemehl [54], the subset localized in the MALAT1/MENβ region was extracted.
Both MALAT1 (Fig. 5) and MENβ (Fig. 6) give rise to relatively high levels of

65023000 65023500 65024000 65024500 65025000 65025500 65026000 65026500 65027000 65027500 65028000 65028500 65029000 65029500 65030000 65030500

9
5
16

4
17

13 54 61 13
47

8
31

6
6

65

2 kb

Human short reads
Mouse short reads

conservation

Fig. 5. Conservation of short read expression between human (top) and mouse (below).
For comparison, sequence conservation is shown at the bottom of the browser image.
Only the most highly expressed blocks of reads are indicated. The genome browser
panel covers exactly the annotated human MALAT1 transcript.
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64935000 64940000 64945000 64950000 64955000 64960000 64965000 64970000 64975000 64980000 64985000 64990000 64995000 65000000 65005000 65010000 65015000 65020000 65025000 65030000 65035000 65040000 65045000 65050000 65055000 65060000

CR607557
NCRNA00084

MALAT1
AF113016
DKFZp686B0790

gklp

50 kb

short reads

conservation

FRMD8 SCYL1MENbeta MALAT1

menRNA mascRNA

Fig. 6. A diverse set of short-reads is also produced over the complete length of the
MENβ transcript. The tRNA-like menRNA is located at small highly conserved locus
the very end of the solid EST bar.

short RNA products with a length < 30nt. A comparison of the human and
mouse reads shows that several of the most highly expressed locations in the
human libraries are also detectable in the much smaller mouse data set GEO:
GPL7195 [55]. Surprisingly, this syntenic conservation neither correlates with
evolutionary conservation of either sequence or secondary structure. In contrast
to MALAT1 and MENβ, most protein-coding transcripts do not give rise to
similar patterns of short RNA product. It is unclear whether the processing
into small RNAs is a generic feature of nuclear-retained transcripts. The Xist

transcript, which behaves similarly to MALAT1 and MENβ/MENǫ in several
respects [15], does not produce any short reads in any of the investigated libraries.
Either Xist is simply not expressed under any of the conditions/tissues used here,
or its processing is indeed distinct from that MALAT1 and MENβ/MENǫ.

4 Concluding Remarks

The detailed investigation of the MALAT1/MENǫ locus reveals several surpris-
ing facts about MALAT1 (conservation at least throughout gnathostomes, the
presence of an internal promoter that is conserved across mammals) and MENβ

(a probable origin in the mammalian stem lineage) and highlights several com-
monalities between them: the previously described processing of the 3’-ends by
RNase P including the production of small tRNA-like cytoplasmic ncRNA [17,
16], the absence of conserved secondary structures almost everywhere else in the
transcript, and the production of many well-defined short RNA products.

On the other hand, this case-study highlighted serious practical difficulties in
the comparative analysis of long mlncRNAs. The generally low level of sequence
conservation calls for alignment tools that are optimized for this problem. Cur-
rent alignment editors cannot effectively handle sequences several kb in length
and landmarks, such a promoter elements, structured RNA motifs, ESTs, or
splice sites cannot be annotated directly in the alignment. Only a few “finished
genomes” provide sequences that do not contain gaps or assembly errors over a
length of several 10000nt, calling for more efficient ways to explicitly treat miss-
ing data in multiple sequence alignents. Thus, detailed case studies are not only
of interest in their own right, but are also a necessary prerequisite for the design
and development of computational tools that can efficiently assist the analysis
of long ncRNAs.
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From the biological point of view, the most interesting question concerns the
evolutionary origin of mlncRNAs. So far, Xist is the only example for which a sat-
isfactory answer — loss of coding capacity of the Lnx3 transcript and inclusion of
adjacent repetitive sequence elements — is known. In the case of MALAT1 and
MENβ no candidate for a possible evolutionary precursor could be identified. It
seems that mascRNA and menRNA originally derive from tRNAs, similar to,
e.g., BC1 and BC200 [56]. MALAT1 and MENβ, like Xist, thus are probably
composites deriving from several ancestral genomic elements. Interestingly, the
large 3’ part of MENβ that is not part of the NEAT1/MENǫ transcript consists
to a large extent of old SINE (mostly Alu) and a few LINE elements. In contrast,
MALAT1 and NEAT1/MENǫ are (nearly) devoid of annotated repeat-derived
sequences.

Acknowledgements. Thanks to Phillip Khaitovich for access to short-read
sequencing data, to David Langenberger and Steve Hoffmann for access to their
short-read maps, and to Manja Marz for comments on the manuscript.
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