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ABSTRACT

Long non-coding RNAs (IncRNAs) resemble protein-coding
mRNAs but do not encode proteins. Most IncRNAs are under lower
sequence constraints than protein-coding genes and lack conserved
secondary structures, making it hard to predict them computationally.

We introduce an approach to predict spliced IncRNAs in vertebrate
genomes combining comparative genomics and machine learning. It
is based on detecting signatures of characteristic splice site evolution
in vertebrate whole genome alignments. We individually predict splice
sites, assemble compatible sites into exon candidates, and obtain
multi-exon transcript predictions. Using a novel method to evaluate
typical splice site substitution patterns that explicitly takes the species
phylogeny into account, we show that individual splice sites can be
accurately predicted. Since our approach relies only on predicted
splice sites, it can uncover both coding and non-coding exons.
Applying our approach to an alignment of 44 vertebrate genomes, we
validate many of our predicted exons. Furthermore, predicted exons
have a significant tendency to form multi-exon transcript parts and we
experimentally validate a novel multi-exon gene.

Our results indicate the existence of novel human transcripts
with conserved splice sites. Computational IncRNA gene predictions
contribute to the completion of the human transcript catalog.

1 INTRODUCTION

A series of high-throughput transcriptomics studies zitijy a
variety of different technologies revealed that the manmmal

genomes are pervasively transcribed into a complex moshaic

transcripts (Carninci et al., 2005; ENCODE Project Consort

2007; Kapranov et al., 2007a,b). Due to the diverse nature of

these transcripts, which to a large extent consist of snmalllang

*corresponding author

non-protein-coding RNAs (ncRNASs), our catalog of geneg] isn
particular non-coding genes, is still incomplete.

Computational prediction of protein-coding genes is based
characteristic features of coding regions that distingtiiem from
non-coding DNA (Burge and Karlin, 1997; Cruveiller et al003).
Coding genes exhibit a clear evolutionary signature, simg&tions
are often synonymous and preserve the reading frame. Tigesdss
can be exploited to find coding genes by comparative genomics
methods (Solovyev et al., 2006; Stark et al., 2007).

In contrast to protein-coding genes, ncRNAs form a heteregas
class of transcripts that lacks common sequence patterns,
complicating their detection in genomic DNA. Some ncRNAsskes
including common families like rRNAs, tRNAs and miRNAs
evolutionarily preserve their characteristic secondatwucsure,
which can be used to computationally predict them (Washtel.,
2005; Nawrocki et al., 2009). However, many other ncRNASkkh
neither conserved secondary structures nor sequencercatise
levels as high as coding exons (Pang et al., 2006; Ponja\at,et
2007), making it hard to find them computationally. Many long
non-coding RNAs (IncRNAs) resemble protein-coding mRNAS i
that they are often capped, spliced, and polyadenylatedy €hn
exhibit cell type-specific expression, are known to be iwedlin
transcriptional regulation, epigenetics, gene silencingrinting,
and are known to play a major role in some human diseases
(Mercer et al., 2009; Ponting et al., 2009; Wilusz et al., 200
Huarte and Rinn, 2010). Examples includST which is involved
in mammalian female X chromosome inactivation and dosage

Fompensation (Senner and Brockdorff, 20083lat1 which affects

the expression of genes controlling synapse formation n@er
t al., 2010), andNRON which regulates nuclear trafficking by
repressing the nuclear factor of activated T cells (William et al.,
2005).

© Oxford University Press 2011.
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We recently presented the first computational approachtecte
IncRNAs with conserved intron positions in insect genontdifi€r
et al., 2009). This approach is purely based on a genomierscoe
regions that evolve like introns, exploiting that the imttmundaries
(splice sites) are well conserved and under purifying sielec
in both coding and non-coding genes (Rodriguez-Trelleslet
2006; Ponjavic et al., 2007; Chodroff et al., 2010). Sinceett
genomes feature very short introns (most<afd€0 nt inDrosophila
melanogaste(Lim and Burge, 2001)) this approach crucially relied
on predicting introns as a single unit. Pairs of splice dqdyrand
acceptor (3) sites thus are predicted in a single step.eYeate
introns, in contrast, are substantially longer and moréatée in
their length, precluding the application of this introrsbd method.

along the phylogeny of the aligned species (detailed beldwg
second feature uses tiaxEnt Scan program (Yeo and Burge,
2004) to score splice site sequences for similarity to ipéplice
sites. Overall, real splice sites have higher scores thise fa
positives (Fig. S4). A third set of features captures tylgeguence
conservation around splice sites. Real splice sites a@lysighly
conserved at the sequence level. In particular the donoaeceptor
dinucleotides (GT and AG, respectively) are, on averagenev
better conserved than the adjacent exons (Fig. S3B). THds ho
for protein-coding as well as non-coding genes. Therefave,
included the total number of species per alignment block taed
number of species with a conserved GT (for donors) and AG
(for acceptors) as features. Furthermore, the averageesegu

Here, we introduce a novel approach to predict novel splicecconservation significantly decreases at the exon-intraamtary

transcripts from intergenic regions of vertebrate genontésing

a combination of comparative genomics and machine learmieg
first predict novel splice donor and acceptor sites in wheleognes
and subsequently assemble them into exon predictions.yAgpl
this approach to an alignment of 44 vertebrate genomes, edigbr
novel coding and non-coding transcripts with conservedhéxtyon

structures in the well characterized human genome andatalilr
predictions with available transcript data and own experits.

2 RESULTS

De novo splice site predictiorthe splice site prediction part of
our approach consists of the following steps: (i) detectodand
acceptor splice site candidates in multiple sequencerakmts, (i)
train a support vector machine (SVM) with novel featuresaapg
patterns of splice site evolution, (iii) use the trained SYvscore
candidate splice sites (Fig. 1A).

To distinguish real from false splice sites by machine legynve
first focused on genomic regions of known coding genes foritrg.
We screened the genome alignment of these genic regionstior d
and acceptor candidates and divided them into real splies #iat
are annotated (208,282 true positives) and false posithatsare
not supported by available transcript datal@.6 million). Albeit
it is clear that these are not experimentally proven falsstpe
splice sites, we reason most real splice sites are anndbgtéioe

wealth of mMRNA and EST data for coding genes. Thus, the rest o

candidates that are not supported by annotation or tragmsitzia are
predominantly false positives. The tiny fraction of thestapositives
that are real splice sites should not interfere with our rivech
learning approach.

Next, we determined characteristic evolutionary featwasly
extracted from genomic sequence data to distinguish tome false
positive splice sites. The first feature captures intrirsgquence
evolution at splice sites. Nucleotide substitutions inicgplsites
are highly biased to certain substitution patterns thdbfolthe
splice site consensus sequence (Fig. S3A). For exampledAGan
are the preferred nucleotides at the donor consensus Qosit
and A/G substitutions are the most frequent substitutiomhist
position in real donors. Previous attempts to capture tifiigimnation
relied on pairwise log-odds substitution scores (Hillealet 2009)

and increases at the intron-exon boundary, see also (Cihetia.,
2010). The slope of a regression line fitted to fPlreast Cons
(Siepel et al., 2005) profile for each splice site capturdas th
information. Overall, we considered eight features (Médg)o
Figure S4 shows the score distributions and discrimingivwer
of the individual features.

To combine these features into a single prediction value,
trained an SVM classifier on the genic training set. The besbd
and acceptor models for the SVM classification yielded a higia
under the receiver operating curve (AUC) with 0.96 for denand
0.94 for acceptors (Fig. 1A), indicating substantial disénative
power. On an independent test-set with 5,000 sites whicle wer
used for training, we correctly detected 89 % of all true derat
a false positive rate of 4% and 84 % of all true acceptors alse fa
positive rate of 9% (SVM classification confidenge> 0.5). To
reduce the false positive rate to less than 2%, we used a more
stringent SVM classification confidence pf > 0.9, which still
correctly identifies 81 % (73 %) of real donor (acceptor)ssifehis
demonstrates that our approach is capable of identifyitigespites
at high specificity.

we

Improved log-odds substitution scorehe pairwise approach used
in (Hiller et al., 2009) considers substitutions betweerefanence
and orthologous sequences for each alignment column (Bj. 2
This can over- or underestimate the real number of subistitsithat
happened in evolution. In particular, if a strictly consshbase has
Fhanged in the reference sequence, the pairwise methoduwil
the log-odd scores for all pairs reference-ortholog, altfoonly a
single change has happened. To avoid these biases we dsyelop
a method that explicitly takes the phylogenetic tree intooaat
(Fig. 2C). We reconstruct the likely ancestral bases at @demal
node in the phylogenetic tree. This allowed us to computeoldd)
scores that only consider real substitutions. Our treedapproach
leads to a noticeable performance increase compared taitvege
method, in particular for low false positive rates. Measgrihe
predictive power of either method alone, the AUC improvesir
0.68 to 0.72 for donor and from 0.85 to 0.93 for acceptor sites
(Fig. 2D). Acceptors, which usually have more substitugiontheir
longer poly-pyrimidine tract, particularly benefit fromighnovel
scoring scheme.

Prediction of exons based on individual splice sit8sarching

which made use of a reference species but yielded biasellsresufor the short splice sites signature in the huge intergepaces

if a substitution had happened in the reference. Therefare,
improved the log-odds scoring scheme by developing a metiaid
explicitly evaluates species- and site-specific substitupatterns

is expected to yield false positives, even at high classifina
confidence values. However, exons as biological meaningfiis




A) Splice site prediction
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2. Compute evolutionary signatures
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B) Exon prediction
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Fig. 1. Overview on the computational procedure to identifynovel spliced transcripts in vertebrate genomes(A) First, we extracted splice site
candidates from genome-wide alignments and set up a tgasen (left panel). We distinguished between (i) real artedtaplice sites in genic regions,
(i) false splice sites in genic regions (GT/AG dinucleesdthat were similar to real splice sites but were not supgdoly transcript data), and (iii) the
remaining set of intergenic splice site candidates. Secardcompiled a set of evolutionary signatures that are cheniatic for vertebrate splice sites and
trained SVM models of donor and acceptor splice sites (reigdinel, receiver operating curves (ROC) are shown for battiefs). Thirdly, we used the
SVMs to classify intergenic candidates as either real @efaiplice sites (right panel). (B) To obtain exon predictjone searched for pairs of splice sites
with a maximal distance of 300 nt (left), trained a second SWilt considered features of EST-confirmed exons (middledn& predicted exons. Finally,
predicted exons were then clustered into partial multirexanscripts. (C) Several splice sites and exons/introttsecsshown example are confirmed by ESTs
and short RNA-seq reads.

consist of an acceptor-donor pair in relatively close proki. To
find parts of novel transcripts (exons) and to reduce falsiipes,
we derived from our individual splice site predictions pdial exon  and the distance between particular splice site pairs.
candidates by searching for acceptor-donor pairs on the A To train this exon-SVM we obtained a set of real exons by
strand separated by not more than 300 nt. We chose 300 nt as thequiring that both splice sites are (i) not annotated asqusgene,
cut-off since 85 % of alRef Seq exons are shorter than 300 nt (and (ii) evolutionary conserved in the same species (at leas},fand
still 80 % of all non-coding exons). (i) confirmed by> 2 spliced ESTs as well as 20 % of all spliced
Using all splice sitesy( > 0.5) that we predicted in intergenic ESTs present at the particular locus. This is fulfilled foA 332 %
regions, we obtained 311,616 exon candidates. Of thosg 1¢521 of 1,521) EST-confirmed exons. We randomly selected 284 ef th
(0.5%) exons are confirmed by ESTs. To predict novel exons ir834 exons for training and used the remaining 50 to evaluse t
intergenic regions, we evaluated all candidate exons wsserond  SVM. Then, 1,000 EST-unconfirmed exons were randomly ssfect
SVM that was trained on characteristic sighatures of tndpisc  and 900 of these were used as negative training exampleshand t
confirmed exons. Conservation of a real exon implies thalh bot remaining 100 for evaluation. The exon-SVM achieved an AWC o
acceptor and donor sites are conserved in a species. Toreaptu0.92 (Fig. 1B shows the ROC curve).
the compatibility of the particular acceptor-donor paire wsed We applied the exon-SVM to the remaining exon candidates tha
the absolute number and the fraction of species having both aere not used for training. 8,832 candidates were preditidue

conserved acceptor and donor as two features. Other featme
the previously assigned class-probabilities of the spdite SVM
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A) Alignment B) Pairwise substitutions D) ROC analyses
evaluate substitution patterns "human versus other species"
example: column -5 TCTCTTTCCCCCCCTCTACTC o donor
intron acceptor _exon f f fﬁfﬁ f ff ? ff f (13 substitutions) ® ; AUC:
P CCCTECACTTCCTTCCTAGA Human Contrbution to spay: [B08]= 12x score(TC) + L score(Ta) 857 072 _
TCCCTGCACTTCCTTCCTAGA Marmoset : : 237 —
CCCGTGTGTTTCCTCCCCAGA Lemur .|/
GCCTCGTGTTTCCTTCCCAGA Bushbaby i+ i 257/.0.68
reTetTCcTececnen sy C) Substitutions along the phylogenetic tree g ||
TTTTTTTATTTTCTTGCCAGA Mouse Contribution to Stree: = 2xscore(CT) e _ “pair
CCTCCTTATTTCCTTGCTAGA Rat + 5x score(TC) o
TCCCTGTACTTCCTTCCCAGA Squirrel + 1x score(TA) 00 02 04 06 08 10
TCCCCGCCTCTCCTCCGCAGA Alpaca = (8 substitutions) False positive rate
TCCCCGCCTCTCCTCTGCAGA Dolphin & acceptor
TCCTCGTGCTTCCTCCCCAGA Horse 5 2 4\ 874'0—0 93
TCTTGGCGCTTCCTCCCCAGA cat 5 9w EE
TCCTGGTGCTTCCTCCTCAGA Dog @ So/
CTCCCCGCCTTCCTCCCCAGA Megabat Lol
CCCTTGTGCTTCTTCCCCAGA Hedgehog Zo]17085
CCCTTGCGCTGCCCTCCCAGA Elephant v 2P @Dz 831
TCCTTGTGTCTGTTCCCCAGA Rock Hyrax =4 g 2 T g _‘ SC\!*
GCCTCCCTGCGCTCTCCCAGG Armadillo 2z 9 3 =S -~ Spair
TCCCTGCGCTTCCTACCTAGA Sloth 5§ T&zx 2 %o = L
GTTTTGTGCTTCCCCTCTAGA Opossum S z % 3 25 zm 00 02 04 06 08 1.0
TTCCCTGGGTTCCCTTCTAGA Platypus g S o b 2 a 3 2 ‘)—; T False positive rate
CCCCCTCCCCGTCTCTGCAGA Medaka ger° g & § Z g
g 2”5

Fig. 2. Log-odds substitution scoresGiven the sequence alignment of a 3’ splice site (A), we camfize pairwise (B) and the tree-based (C) approach to
score splice site substitution patterns, here focusingubstitutions at alignment column -5. The pairwise methodildi@um 13 substitutions (B), however
only the eight substitutions that likely happened alongpghglogenetic tree are considered by the tree-based me@pdre leaves of the tree are the
nucleotides from extant species in the alignment, innees@ue reconstructed ancestral nucleotides. Substisutitth positive log-odd scores happen more
frequently in the evolution of real than false splice si{€).ROC curves demonstrate that the tree-based methpg.{ significantly outperforms the pairwise
method 6,,4r) for both donor and acceptor sites.

real exons at confidence > 0.5. At confidencep > 0.9 we frames, and 92 % (8,124 of 8,832) are classified as non-cdming
obtained 898 predicted exons. RNAcode (Washietl et al., 2010). Considering all exons without

' . . rotein homology and no predicte&NAcode coding potential
Confirmation by RNA-seq data and recd®ef Seq annotations. P \ology predi gp
. . s non-coding, the great majority (89% or 7,894) of our exon
Wang et al. (2008) used deep sequencing to characterize the .. .. T .
. . . redictions is likely non-coding.
transcriptomes of 15 human tissues and cell lines. We use

. Next, we usedRNAz (Washietl et al., 2005) to search for
the RNA-seq reads mapped to the genome to validate our.
. . - signatures of conserved and stable RNA secondary strsctwe
exons predictions and found evidence for transcription &b 5

. f R hits i ly 24 -codi % of 7,894),
(469/8, 832), see Tab. S9. Next, we used only a fraction of the ound RNAz hits in only 245 non-coding exons (3% of 7,894)

) . - . . indicating that our exon candidates are mostly unstrudtaredo
RNA-seq data for confirmation to test if deeper sequencinghtni .
confirm more exon predictions. We observed that the number oEOt contain conserved secondary structures and consdgqugnnot
) . . . . e detected by secondary structure based ncRNA gene-finders

confirmed exons increases linearly with the fraction of R&&&t
reads without saturation (Fig. 3, S8), which suggests tthditianal Predicted exons form potential multi-exon transcripgiéost coding
data is likely to verify more predictions. genes and IncRNAs consist of several exons and introns.elf th

To evaluate tissue specific expression, we found that onlgf14 predicted exons are real and belong to multi-exon genesxpece
the 469 exons confirmed by RNA-seq are supported by reads frorthat they have a tendency to cluster. Human introns have & mea
at least 10 of the 15 tissues/cell-lines. 281 exons are aipated  length of 6 kb which we used as a cut-off. We found that 8%
by reads from a single tissue. This clearly indicates tispexific ~ (734/8, 832) of the exon-SVM predictiong(> 0.5) are separated
transcription of these genes. by less than 6kb from the nearest adjacent prediction on the

The human gene catalogue is continuously updated and refinedame strand, leading to 336 exon clusters which represetst @fa
Therefore, we expect that some of our predictions unknowtheat  potential multi-exon transcripts. The largest clustertaors seven
time we made them are now validated by new annotations. thdee adjacent exons. Again, the majority of these clusfedd /336) has
50 of our predicted and previously unknown exons have meé@wh no evidence of coding for proteins. To assess if the numh8B6f
been included in th&®ef Seq transcript annotation. For example, clusters is higher than expected by chance, we used a siamlat
a complete predicted cluster consisting of five exons is naw p that builds exon clusters from an equal number of exons viexei
of the official consensus gene structure of Mi€EB (nebulin) gene  low SVM confidence scorep(< 0.5). Running the simulation
(Fig. S7). 10,000 times, we never obtained 336 or more clusters, yigldi
an empiricalP-value < 0.0001. Remarkably, this remains true
when empiricalP-values are computed separately for clusters with
cardinalities between two and seven exons. The predictedsex
thus have a strong tendency to form potential multi-exomsttapts,

Predicted exons are mostly non-protein-coding and unsired.
Only 8% (674 of 8,832) of exons have homology to protein-ngdi
genes, 40 % (3,508 of 8,832) have stop-codons in all thregimga
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Fig. 3. Deeper sequencing will likely confirm further exon pedictions.
We split the data of Wang et al. (2008) to subsets containbfg,250%,
and 75% of all reads and computed the corresponding numimeméifmed
exons. We repeated this procedure five times to avoid biasassigle
random split. Error bars show the minimum and maximum of the fi
iterations. Since the number of confirmed exons increasassdllinearly
with the number of reads, it is likely that future sequencprgjects will
provide further experimental evidence for our approach.

which makes them good candidates for novel protein-coderesg
and IncRNAs. The 336 clusters contain 505 exon-exon junstaf
which RNA-seq reads (Wang et al., 2008) directly verified 9%}.

Experimental validation of a predicted multi-exon trariptr There
are two top-scoring intergenic exon clusters, each cangisif

signal used by coding gene-finders. As conserved splice ait
a hallmark of both non-coding and protein-coding trangsrighis
enables us to predict both classes of transcripts from cratipa
genomics data.

Although transcript discovery recently have become a domai
of high throughput sequencing methods) initio computational
predictions of conserved transcripts nevertheless caongie
experimental approaches. Independent of low expressiefsland
specificity for rare cell types, our method points at evaludrily
conserved, and hence likely functional, transcripts thiktremain
hidden in mammalian genomes. Our data show that the cwrentl
available sequencing data by far do not saturate all egistin
transcripts. On the one hand, we found that a significantifmac
of the predicted exons is confirmed by already availablestrapt
data. Despite the fact that detecting novel exons in thedyrevell-
characterized human genome is challenging, our resultgestighe
existence of further evolutionary conserved multi-examscripts,
one of which we directly validated experimentally. High sng
exon and transcript predictions can be included in ongoamge-
scale RT-PCR based efforts to further validate gene piiedit
(Harrow et al., 2009; RGASP, 2010). Our approach complesnent
other gene prediction approaches and contributes to comgpline
catalog of human transcripts.

4 MATERIALS AND METHODS

Alignments, genomes, annotatioM¥e downloaded the genome-wide

seven adjacent exons (Fig. 4A,B). The first cluster is alread 44-way vertebrate multiple alignment with the human hgl8emely

confirmed by ESTs and, according BLASTX, likely protein-

as the reference and the following annotation tracks from HHCSC

coding. The second cluster has RNA-seq support for one exonsenome Browser (Kent et al., 2002)CSC Genes, Ref Seq Cenes,

exon junction.
cDNA sequencing to experimentally verify the remainingdiceed
transcript structure. This confirmed eight of the nine pres splice
sites and three of five predicted exons (Fig. 4C). Furtheemour
experiments revealed complex alternative splicing atlttags with
five different isoforms in prostate cancer cells, which eémeven
additional novel exons.

3 DISCUSSION

The value of conserved introns for the prediction of conseérand
hence likely functional, ncRNAs has previously been dertratex
in insect genomes (Hiller et al., 2009). Here, we tackledtioblem

of applying this conceptual idea to vertebrate genomes,ravhe

Therefore, we used RT-PCR and subsequerituman nmRNAs, Human ESTs, site-specifiPhast Cons scores, and the

phylogenetic tree of the 44-way alignment. Pseudogenesg waenotated
according to théral e and theUCSC tracks.

Splice site predictionWe trained SVMs to solve the binary classification
problem ofde novosplice site prediction. Therefore, we compiled three
disjoint sets of (i) positive and (ii) negative samples tairtrand test
individual donor and acceptor SVM models and (iii) a set ofdidate sites
forming our search space for putative novel splice sitesthi® end, we
filtered the 44-way alignment for GT (5’, donor) and AG (3',captor)
dinucleotides (both reading directions) which are coresgrin at least five
species and possess enough informative aligned flankinggaegq according
to the sequence logos presented in Fig. S3. We rejected tedl wiith

a MaxEnt Scan (Yeo and Burge, 2004) score below 0 to avoid GT/AG
dinucleotides that are unlikely to be potential splice ssifsee Fig. S4).
Alignment blocks had to contain the nucleotides of the nedie3, 6] for
donors and—19, 2] for acceptors (position 1 of each interval corresponds

ab initio splice site and intron prediction is challenging due t0 i he first/last G of an intron). We did not consider non-cdcal splice

the drastically increased absolute length and length liitia of
vertebrate introns. Therefore, we developed a two stepepoe
that first uses a novel method to predict individual splidessi

sites without a GT/AG. The positive set contained splicessénnotated in
the UCSC, Ref Seq, and theHuman mRNA gene tracks. Negative training
examples are the remaining genic sites (unannotated sites wntrons,

which are in a second step combined to predicted exons. Aexons, or untranslated regions (UTRs)).

key improvement is a log-odds score for splice site suliiiita
that explicitly takes the phylogenetic tree into accountpiding
biases of previous approaches. This tree-based methothstiaky
improves the power of splice site detection.

In contrast to gene-finders designed to predict only codin
genes, our approach is solely based on detecting typicaiespl
site evolution by combining comparative genomics and nrachi
learning. Specifically, our method does not rely on the atterastic
evolutionary signatures of coding regions, which are a daiitig

Given all positives £200,000) and all negatives~(2 million), we
generated five representative sample sets, each cont&5j8g0 randomly
selected splice sites, in order to compute substitutiorescand to efficiently
train/test donor-/acceptor SVMs. For each set, we traing®sS with
all except 5,000 randomly chosen positives and 5,000 ratyidahrosen

gnegatives (rbf-kernel, default and g). Each training-set thus comprised

100,000 sites (50,000 positives and 50,000 negatives) ledemaining
10,000 were used to test the resulting models. We kept the bt
performing 5’ and 3’ splice site models and classified theabtrset of
intergenic candidates«(54 million) to identify novel splice sites.
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Fig. 4. Examples of multi-exon transcripts.(A) A cluster consisting of seven exons with reliable ESTmup (B) RT-PCR followed by sequencing cloned
isoforms verified another predicted transcript (only fivsefen exons are shown). We sequenced seven transcripts wtti of ten splice sites at this locus.
Eight of these ten splice sites are predicted (blue arrongfwo are not predicted (red arrows). Within the range oRfiéPCR, eight of nine predicted splice

sites and both splice sites for three of five predicted exoaverified. (C) Gel
depicted in (B) as well as the genomic DNA (control). The obsé transcripts

We evaluated SVM performances by receiver operating cteisiics
(ROC), expressed in a single number, the area under the RO€ @tig. 1).
Observed AUC values were nearly identical among all setsiothstrating
that random sampling did not bias our data. Sequence caigerwvas
measured by analyzing tHéhast Cons profile of splice site regions. In
particular, we performed a linear regression basedloast Cons scores
of the region [-20,+20] and used the slope of the resultiggession line
and the averagehast Cons score of this region as SVM features. We used
gap-free subsequences to compute sequence-based sawrsigrificant
differences were found using aligned splice site regioris).summary,
splice site classification was based upon the followinguiest (1) Human
MaxEnt Scan splice site score. (2-4) Log-odds substitution scorgse,
Spairs Smedian- (5) Number of species in the alignment. (6) Number of
species with conserved GT/AG dinucleotides and a posiflveEnt Scan
score. (7) Slope of a regression line fitted to Breast Cons conservation
profile of the splice site. (8) Averadgéhast Cons score.

Log-odds substitution score¥Ve computed three variants of species- and
site-specific substitution scoresifee, Spair, aNds,cqian) based on the
substitution frequencies in real and false splice siteseVatuated the donor
region [-3,6] and the acceptor region [-19,2].

electrophoresis shows several bandsatidg the spliced isoforms (cDNA)
are shorter than the corresponding genioerval due to splicing.

The log-odds substitution scosg, ;- previously was successfully applied
to detect novel transcripts in insect genomes (Hiller e28I09). We counted
substitution frequencies of each splice site position gh&n against each
other species, learned the log-odds ratio of positive amgithvee samples,
and scored intergenic candidates with the sum of obsergeddds.

Inspired by the CNF-metric for codon substitution frequesc
(supplemental material of (Stark et al., 2007)), we traitred SVM with an
additional log-odds Score,,cqdiqrn - Similarly to s,q;:, we summed up log-
odds for each splice site position but, instead of totalirggosition-specific
scores, took the median of all intermediate totals. Sinc&$\ining- and
test-set have to be independent (disjoint), log-odds &ubish scores were
always learned on training-sets, never on test-sets.

Exon prediction.We trained a second SVM to identify a subset of
meaningful candidates that resemble characteristicsan$eript-confirmed
loci. Out of all 334 positives (acceptor/donor pairs withistahce<300 nt,
not annotated as pseudogenes, with splice sites conservedsi species,
and which are confirmed by 2 spliced ESTs as well az 20 % of all
spliced ESTs at the particular locus), we randomly sele&@damples
to test and kept the remaining 284 to train the model. Out-800,000
negatives (the remaining preliminary acceptor/donorcegite pairs which

To compute score;r.e, We reconstructed ancestral sequences for eachare not in the positive set), we randomly selected a sub4e966 samples to

splice site region usingr equel (Siepel et al., 2005). It computes marginal
probability distributions for bases at ancestral nodes pingogenetic tree.
For each edge: of the reconstructed binary tree and for each sitef
each two related sequences, we columnwisely counted theeney f*

of substitutions of nucleotide:; to nucleotidey; (x # y andz,y €
2,2 ={A,C,G,T}). We tabulated the log-odds ratio of the total number
of pairwise substitutions observed between all positivet riggative training
samples. These log-odds are designed to model splice siigien (Fig. 2).
Given a set of sequences, the sum of all log-odds of all obsglesubstitution
events along each edge of the reconstructed phylogenetc formally

written as
_ féos(m - y)/ Znez féos(m - n)
Sree = 2e: zizlogQ ( : ($ - y)/ ZnEE f}wg($ — n) (l)

neg
expresses whether the region of interest conforms to réaesgites 6¢rce

> 0) or not (stree < 0). The more substitutions are consistent with splice
site evolution, the higher the total score.

reduce computational complexity and split it to a negatas-tet (training-
set) of size 100 (900). We repeated this procedure ten tikegs,the best
performing model with respect to sensitivity and specificénd classified
the whole exon candidate pool to detect exons that exhipiiesires specific
to EST-confirmed loci. The EST-model was trained with sixtdess: (1)

Acceptor SVM classification probability. (2) Donor SVM cifscation

probability. (3) Exon length. (4) Number of common specikat thave
conservation for both splice sites. (5) Fraction of (4) ahe humber of
species with conserved AG in the acceptor alignment. (6tiera of (4)

and the number of species with conserved GT in the donorrabgr.

Candidate gene structure§Ve used a simulation test to determine if exons
have the tendency to occur clustered (defined here &sexons separated
by at most 6 kb on the same strand). Exon clusters only rgligtalicate
novel genes if the number of observed clusters differs Sagmitly from the
background. To generate a background distribution, wectgleas many
rejected exonsy(,, ... svar < 0.5) as we observed positively classified
clustered exonsp(,,, . _ sv-a; > 0.5) and counted the number of (random)




clusters. Repetition of this sampling procedure (10,000e$) yields
empirical P-values which indicate the statistical significance of priedl

exon clusters. In case of overlapping exon predictions, repeesentative
according to the highest SVM class-probability was setbdte generate
non-overlapping gene structures.

Coding vs. non-coding candidateExons without protein homology (using
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