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Abstract Adaptive (downhill) walks are a computationally convenigray of analyzing
the geometric structure of fithess landscapes. Their inttlgretochastic nature has limited
their mathematical analysis, however. Here we developragveork that interprets adaptive
walks as deterministic trajectories in combinatorial veéelds and in return associate these
combinatorial vector fields with weights that measure te@epness across the landscape.
We show that the combinatorial vector fields and their weiditatve a product structure that
is governed by the neutrality of the landscape. This prodtracture makes practical com-
putations feasible. The framework presented here alsades\an alternative, and mathe-
matically more convenient, way of defining notions of vaslegaddle points, and barriers
in landscapes. As an application, we propose a refined ajppatrn for transition rates
between macrostates that are associated with the vallels &dndscape.
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1 Introduction

Fitness landscapdsave played an important role in mathematical biology eieresSewall

Wright's seminal paper [30] as a means of conceptualizirguéonary adaptation. As a
mathematical structure — a finite but typically very largedsch space” endowed with
a cost or fitness function — landscapes appear naturally imyrdéferent contexts and
fields of science. They can be seen as a generic formulationrobinatorial optimization

problems in computer science and operations researchtfil] describe the Hamiltonians
of disordered systems in physics [2,19], and they are (gliged versions of) potential
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Fig. 1 Basins and membership in basins. A gradient descent watinstdrom a vertexz may end up in a
local minimum (herey) that is neither the deepest nor the closest accessibleDdifierent adaptive walks
may connect to different local minima, herg andy.

energy surfaces in theoretical chemistry [20]. In struathiology, energy landscapes are
used to understand the folding of biopolymers into theie¢hdimensional structures, and
discrete versions are used to study folding processes &\thkof lattice protein models
[21] and RNA secondary structures [5].

The relationship between dynamical processes on landseaqegeometric properties
of the landscape itself is a long-standing research protheiris still far from a satisfactory
solution [25]. In particularbasinsand the barriers between them have attracted attention
from several points of view. The replica approach to disardespin systems for instance,
emphasized the break-up of the state space into many valeperated by saddle points
[19]. Direct approaches to elucidate the basin structutarally leads to the concept of
barrier trees In this picture, local minima are identified with the leawdghe tree, while
the interior nodes represent (equivalence classes of)espdinhts that separate local minima.
This construction was introduced more or less indepengl@ntieveral different application
domains, see e.g. [16,1,12,27,3,4,24].

A simple, but much less informative, measure for the sizelwdsin is the length distri-
bution of the steepest descent (gradient) paths that tatenin a given local minimum [28,
9]. In contrast to gradient paths, adaptive walkaccepts steps whenever they improve fit-
ness, instead of insisting on steepest descent. GillesBjes{iggested to use adaptive walks
as models of evolutionary adaptation. They have been stugkensively in NK models
[28,15, 8], in particular in the context of the maturatiortled immune response [18,17, 23],
in RNA folding landscapes [9], and in a model of early vascldad plants [22]. The length
distribution of adaptive walks appears to be linked to tlze siistribution of the basins; the
details of this connection, however, remain to be elucidlate

In [29], a coarse-grained representation of energy lammkscés introduced in which
the barrier trees represent a partition into “basins obetion” of the local minima. This
is achieved by assigning each point to (the basin of) thd lm@amum that is reached by
gradient descent. Given this partition of the search spatoe‘imacro states” one can then
derive an approximation for the transition rates betweeoroiatatesr andy in the form

lay= z Z erProb[yM (1)
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whereryy are the transition rates between micro-statesRaat[y|y] is the conditional prob-
ability for the system to be in microstayegiven that it is in macrostatg. In practise, the
last term is approximated by the equilibrium distributioithin y [29]. The usefulness of
this approximation, however, depends on the “correctnefsgie assignment of microstates
to macrostates.

As shown in Fig. 1 the use of adaptive or gradient walks may teainintuitive or unde-
sired assignments. Adaptive walks, for instance, may adrpents to several distinct local
minima. Gradient walks, on the other hand, may well conngmiat to a local minimum
that is neither the closest (in terms of the number of stepsjre deepest (in terms of the
value of f) among the minima that can be reached by adaptive walkselonake of degen-
erate landscapes [6], furthermore, gradient descent ismiqtely defined. Hence, a more
rational and mathematically sound assignment of stateadim&/valleys is highly desirable
and may lead to an improved approximation of folding dynamitere, we propose to use
combinatorial vector fields as a suitable framework for tiuely of adaptive walks and their
interrelationships with the basin structure of a landscape

Combinatorial vector fields were introduced by Robin Forrfidj to describe dynami-
cal systems on simplicial complexes. A central conceptimttieory is that of dyapunov
function F. In analogy with a Lyapunov function in a vector space sgitthe values of
decrease along trajectories. The basic idea of this coiibis to interpret adaptive walks
as trajectories generated by combinatorial vectors fockvttie given fithess landscape be-
haves like a Lyapunov function. Adaptive walks are inhdyestiochastic objects. Thus we
associate a weight with each combinatorial vector fieldsTight can then be translated
into a probability for the combinatorial vector field. The iglets can naturally be chosen
such that paths of gradient descent are at least locally hiketg than all other trajectories.
In this setting it becomes natural to model the probabiligt tvertexz is connected to local
minimum x as the probability of a combinatorial vector field contagnatrajectory frone
to x.

This contribution is organized as follows: In the next sative introduce the necessary
notation, provide a convenient representation of combiteltvector fields on undirected
graphs and make precise in what sense the given fitness &alisca Lyapunov function.
We then proceed to show that combinatorial vector fields nddeapes have a natural prod-
uct structure that can be exploited to derive a simple Markodel of adaptive walks. This
in turn implies a canonical way in which microstates are ipliytassigned to alternative
local minima that can be reached from them, and finally leadsrefinement of equ.(1).

2 Definitions and Preliminaries

Let G(V,E) be a connected undirected simple finite graph with verte¥X setd edge sef.
We write GIW], W C V, for the subgraph o6 induced by, i.e.,{x,y} € E(GW)]) if and
only if {x,y} € E andx,y € W. We write N(x) = {y|{x,y} € E} for the neighborhood of
x €V andN[x] = N(x) U {x} for its closed neighborhood.

Let f : V — R be an arbitrary function defined on the vertex seGofVe call (G, f) =
(V,E, f) afitness landscapand refer tof as the “fitness function”. A vertex is a strict
local minimum of f if f(x) < f(y) for ally € N(x). If f(x) < f(y), we callx a weak local
minimum. Note that the notion of local optima explicitly agps on the graph structure,
i.e., on the edge sé&.



2.1 Combinatorial Vector Fields on Graphs

We will not need the complete formalism of combinatorialteedields on simplicial com-
plexes [10], hence we only provide definitions restrictegitaple undirected graphs. For
details we refer to the Appendix.

Definition 1 A combinatorial vector fieldcvf) on G is a mapn : V — EU{&} such that,
for all e € E, n~1(e) is either empty or consists of one of the two vertices indiath e.

A vertexx € V is arest pointof n if n(x) = @.

An n-path (of lengthr) is a sequence = (vo,€p,V1,€1,...,6-1,Vr) such thatg =
n(vi) and{vi,vi+1} = &. Since the edges € y are uniquely determined by the sequence
(vo,...,Vr), we may equivalently interprat as its sequence of vertices. Appath is non-
trivial if it contains at least two vertices. Wy = vy, we say thaty is a closed path. Two
vertices or edges,y € V UE aren-equivalentx ~y vy, if there is a closed)-path y with
X,y € y. Again, it will be sufficient for our purposes to restrict ealves to vertices.

An n-pathy = (xo = X, €1,X1,€2, %2, ...), & = N(Xi-1), & = {X_1,%} is then-trajectory
starting atx. The associated vertex s@tx) = {Xo, X, ...} is theorbit of x. Note that((x)
is always finite.

Definition 2 The w-limit wy (x) of a vertexx is either the (unique) rest poigtat which the
trajectory starting at comes to an end, or the set of vertices that appear infinifedy an
the trajectoryy starting aix.

Definition 3 The chain recurrent set#, of a combinatorial vector fieldy on G is the set
of vertices that are either rest points mpfor that are contained in some non-trivial closed
n-path.

Clearly, wy (x) # 0 andwy, (X) € %), for all x e V. A vertex is a rest point if and only if
wn (X) = {x}. Hence
%y = (¥ &)

Definition 4 Let n be a combinatorial vector field o8. A function f : VUE — R is a
Lyapunov functiotior n if

1. f(v)>f(e)> f(V)if n(v) =eande={v,V'} andv ¢ Z,.
2. f(v)y="f(n(v)="f(v)if v#Vv andv~, V.

Before we proceed it will be convenient to introduce an akl&ve representation of
combinatorial vector fields 06 as a relation on the vertex 3&(G).

Definition 5 Let P CV xV be a relation that satisfies

1. (x,y) € Pimplies{x,y} € E (consistency witlG)
2. (x,y) € Pand(x,z) € Pimpliesy = z (uniqueness)
3. (x,y) € Pimplies(y,x) ¢ P (antisymmetry)

Lemma 1 There is a one-to-one correspondence between combinktegtor fields on G
and relations (arc sets) satisfying the three propertiedéfinition 5 such thatx,y) € P if

and only ifn (x) = {x,y}.



Proof (<) SupposeP satisfies (1)-(3)n(x) = e= {x,y} is a uniquely defined edgec E
according to properties (1) and (2). Property (3) impliezt i n—*(e), and hence) —(e)
is at most a single vertex for amye E.

(=) Suppose) is a combinatorial vector field o8. Sincen :V — E is a map, properties
(1) and (2) follow immediately. Fromm (x) = {x,y} we obtain(x,y) € P. Now suppose
(y,x) € P, i.e.,n(y) = {y,x}. This would implyn—({x,y}) = {x}, a contradiction to the
definition of n. HenceP must be antisymmetric.

In the following it will sometimes be convenient to identdiycombinatorial vector field
n with its equivalent orientatioR, C V x V.

3 Combinatorial Vector Fields and Landscapes

Given a landscapéG, f) on G and let us define the following subsets and subgraphs: for
allxeV letN(x) = {y e V|{x,y} € E}, N[x = N(x) U{x}, andN~ (x) = {y € N(x)| f(y) <
f(x)}. Furthermore, leN~ (W) = U,cw N~ (2). We callx adrainage pointf N~ (x) # 0.
Denote byG'(x) the connected component 6f{z € V|f(z) = f(x)}] that contains.
A landscape idocally non-degenerater invertible on edgesf G'(x) consists of a single
vertex for allx e V.
For any subgraphl of G we defineH by the following sets of vertices and edges:

V(H)= U NI¥
xeV(H) (3)
E(H) =E(H)U{{xy} €ElxeV(H),ye N> (x)}

Let 1 = {Gf(x)|x € V} be the set of maximal connected components oh which the
landscape is constant.

N —_—
Definition 6 We will call the subgraph$l = {G'(x)|x € V} the shelves of the landscape.

Note thal7 is uniquely determined by the landsca(® f). It will be convenient, further-
more, to distinguish between the “flat surface” of the shagiven byAla = {y ¢ AAc 1}
and its “exit points’/A~ = {y € N~ (x)|x € AforAc I1}. A shelf is locally minimal ifA~ = 0.

Lemma 2 The sets VA), A< [1, form a partition of V. The sets(B), A€ ﬁ, form a
partition of E.

Proof If xis a vertex, it is trivially contained in som&G' (x)). Letx,y be two vertices with
f(x) = f(y) andV(Gf(x)) NV (G'(y)) # 0. Then there exists ac V(G'(x)) NV (G (y))
such thatf (x) = f(y) = f(z). Thus, every maximally connected component that contains
x andz also has to&)ntaiy, %herefcre/(ef(x)) =V(G'(y)). Let e be an edge that

is contained inE(G'(x)) NE(G'(y)). Then there are two possibilities: (1)Both endpoints
of eare inV(G'(x)) NV (G'(y)). Then, since/ (G’ (x)) = V(G'(y)), ec E(G'(x)) holds.
(2)e={N"(x)}, wherex € V(G'(x))NV(G(y)). SinceV (G (x)) =V (G'(y)), it follows

thatE (G'(x)) form a partition ofE.



Fig. 2 Example of a small highly degenerate landscape. Vertic&s afe arranged according to the fitness
valuesf (x). Connected component€s (x) are indicated by dotted boxes. For one of them, the corretipgn
—_—

shelf-graphG' () is highlighted in gray. A combinatorial vector fiet(consistent withf) can be visualized
as arrows correponding to the $tof oriented edges.

We can therefore write every combinatorial vector figldn G as a “vector'(na,, . .., Na,)
wherena, is the restriction of] to a shelfA, € 7. In terms of the arcs we have

Pr=J P and  Py,NP,, #0=A=B 4)
AcTl

Definition 7 Given a simple undirected gragh(V, E), a landscapéG, f) and a combina-
torial vector fieldn on G we now consider the following properties

(A1) (x,y) € P, implies f(x) > f(y).
(A2) (xy) € Py andx ¢ %, implies f(x) > f(y)
(A3) (x,y) € Py andx ~p yimplies f(x) = f(y).

(B1) N~ (x) # 0 implies that there i$x,y) € P, withy € N~ (x).

(B2) N*(V(Gf(x))) # 0 implies that there is an-pathy = (x = zj,...,% = X) in G'(x)
from x to anx’ with N~ (x') # 0.

(B3) N> (V(Gf(x))) # 0 implies that there is an-pathy = (x=z,...,z = X) in G'(x)
from x to anx’ with N~ (x') # 0 such thaN~(z;) =0 for 2< j <k—1.

(C1) Z consists only of isolated points.

Conditions (A1) through (A3) specify in what sense the camatorial vector fieldn
“points downwards” in the landscagé, f). We note that (A1) implies (A3). On the other
hand, (A2) and (A3) together imply (Al). Suppose (A1) hol@lken, ify ~; x, we have
y € V(G'(x)), i.e., the connected components of the chain recurrer®sedre confined to
the subgraph&' (x) on whichf is flat.

We observe that can be extended to a Ljapunov functionrpprovided (A2) and (A3)
are satisfied. More precisely, we have:

Lemma 3 Suppose (A2) and (A3) are satisfied. Then there is a Ljapumatiébn F:V UE
for n satisfying Fx) = f(x).



Proof We defineF on the edges as follows: ifx,y} € n(V) thenF({x,y}) = (f(x) +
f(y))/2. This impliesf (x) > f(e) > f(y) if (x,y) € P, andx ¢ Z, andf(x) = f({x,y}) =
f(y) if x~p y. On the other hand, ifx,y} is not oriented im, i.e., {x,y} € E\ n(V), we
setF ({x,y}) = max(f(x), f(y)) +1, so thatf ({x,y}) > f(x), f(y).

If (A1) but not necessarily (A2) and (A3) are satisfied, we ti@ink of F as constructed in
the proof above asweak Ljapunov functian

Conditions (B1), (B2), and (B3) require thgt points downwards in a certain sense
whereever this is possible. Clearly (B3) implies (B2). Citind (B1) implies that the only
rest points of) are the weak local minima df. Conditions (B2) and (B3) imply that flat
subgraphgG’ (x) do not contain rest points unless all neighborsGs{x) have a higher
fitness, i.e.G' (x) form an extended strict local minimum f Otherwise, anyg € G’ (x) is
connected by an-path to vertey with f(y) < f(2),i.e.,V(G'(x)) % = 0. The distinction
between (B2) and (B3) is that (B3) requires in addition tipdpoints downwards” on every
drainage point.

Much of our subsequent discussion hinges on the obsenti@ rombinatorial vector
fields satisfying (A1) as well as any combinati@mof the properties defined above, can be
composed of combinatorial vector fields on the shelve$of ) satisfying (A1) and¥.

Lemma 4 Suppose (Al) and any collectidhof additional properties (A2) through (C1)
—_—
are satisfied. Then the restricticmm of n to the sheliG'(x) is a combinatorial vector

e

field that satisfies the same properties for the restricted$aape(G' (), f\V<GTX>>)'

Proof We first observe that (Al) is satisfied globally if and onlytifd true on every shelf
—_—
because for eache V, V(G (x)) contains all neighborg of x for which f (y) < f(x) holds.
—_—

Since theE (G (x)) form a partition ofE, every possible arc af is contained in exactly one
shelf. The discussion above already showed that the catheotmponents of the chain re-
current setZ,, are contained in the flat pai®&' (x) of the shelves, hence the assertion is true
for (A2) and (A3). Conditions (B1) tMgh (B3), and (C1),dily are already formulated

restricted to shelves sind¢” (x) C V(G'(x)).

Let CVFx(A) denote the set of cvfs on the graptihat satisfy the condition® which
in particular include 1a.

Theorem 1
CVFx(G) = |‘| CVFx(A) (5)
Aerl
Proof Using lemma 4 and equ.(4) we see that the union of combimdteetctor fields sat-
isfying (A1) on the individual shelves is indeed a vectordishtisfying (A1) on the entire
graphG. The proof of lemma 4 shows in particular that each of the griigs (A2) through
(C1) holds globally if and only if it holds on each shelf prded (Al) is satisfied.

The importance of this result is the observation that it ifigant to understand the
admissible combinatorial vector fields on the shelves. htiqdar, it implies that combina-
torial vector fields on locally Megenerate landscape®atirely characterized by their
behavior on the trivial shelveld~ (x). If there are large shelves, on the other hand, quite
complex vector field structures can be consistent with (ACgse degenerate fitness func-
tions, therefore, impose fewer constraints on the comoiiatvector fields.



/\\/ m.\/
Fig. 3 Combinatorial vector fields on a single shelf. This examplisfes (A1) and (B2) but not (A2) [there
are arcs connecting points with the same fitness that arewetylce], not (B1) [the trajectory does not point

to one of the downward neighbors of the leftmost drainagathand not (B3) [the trajectory passes through
a drainage point without going downwards].

From here on, we will assume thatsatisfies (A1) and any fixed collecticé of addi-
tional properties. Condition (A1) in particular impliesattthere is a close relationship be-
tween the local minima of the landcap®, f) and the chain-recurrent sét,. The details,
however, depend on the additional conditions. In any céseis astrict local minimum,
thenx € Z).

Lemma5 Suppose (A1-A3), (B1) and (C1) are satisfied. T#&is the set of all weak local
minima of(G, f).

Proof (=) Let us assume thate % and (A1-A3), (B1) and (C1) are satisfied. (B1) implies
that whenever there isyac N~ (x), then there is an artx,y) and thereforex ¢ #. This
means that for alk € %, N~ (x) = 0 must hold. Thus, for a}y € N(x), f(y) > f(x) holds,
i.e.xis a weak local minimum of.

(<) Now, let us assume thatis a weak local minimum. (A2) and (C1) imply that for
ally € N(x), f(y) > f(x) must hold. Thusp (x) = @ and thereforex € Z.

If we require (A1-A3),and (B2) or (B3), we see that all tragees end in a sheld with
an empty selN~ (U), i.e., all non-trivial recurrent cycles are confined to thkxally strictly
minimal shelves.

4 Weights and Partition Functions

Now consider a weight functiow : E — R defined on the edges &f. A natural choice for
the weight of a combinatorial vector field @is then

o= [ @{xy) (6)

(xy)en

Since we are considering landscapes, we derive the weighbtifum w from the landscape
(G, f). Interpretingf as a potential energy function, the most natural choice ate®ann
weights of the form

w({x,y}) = exp(B[f(x) - f(y)[) ()

These weights increase with the steepness of the landstamp the edge. The “inverse
temperature3 tunes our emphasis on steepness:f-er0, all transitiongx,y) € P, receive
the same weight 1. On the other hand, the steepest edgesaleritireach seil~ (x) for
B — oo,



It will be useful to introduce theartition functionof all combinatorial vector fields on
(G, f)

Z="3 w(n) (8)
n

and its restriction to combinatorial vector fields that @mmta particular transitiofu,w) €
Pn .

Z(u,w) = z w(n)- (9)
n:(uw)en

With Boltzmann weights, equ.(7% simply counts the number of distinct combinatorial
vector fields in the limif3 = 0. On the other handy(n)/Z — 0 unless) consists of edges
of steepest descent only in the linfit— co.

The weightsw(n) can be written as a product of the weights of restrictiong ¢é the
shelves ofG,

w(n)= [] @) (10)
Acll

Theorem 1 therefore implies immediately that the partifionctions are also products of
partition functions restricted to the individual shelves:

Z=%wn)=>5 [] wna) =[] > wna=T]2a (11)
“ L L

M acti AcrT A AcT

Similarly, we can evaluate restricted partition functisogh as

Z(”-W) - |_| ﬂzw(nA) x Zgu,w) = Zgu,w) X rL AN (12)
A

ATl AcTl
{uw}i¢E(A) {uw}£E(A)

wherezgu_w) is evaluated just like equ.(9) restricted to the shelf tioatains the edgéu, w}.

For locally non-degenerate landscapes, these expressi@sgnplified greatly because
each shelf contains only one “top point”, sayand edges of the forfx, y} withy € N~ (x).
Thus

Z= I_l Zy and Z(u.w) = I_l Zyx % Zgu.w) (13)
XeV xeV\{u} '

with

Zx= % wxy and Zj, =ow(w). (14)
yeN=>(x)

In the case of locally degenerate landscapes, on the othel tiee computation of the
partition functions for the individual shelves can be quédious and complex. The details
depend, furthermore, on the exact combinations of prageitin definition 7 that one cares
to enforce.
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5 Path Probabilities

In [29] an approximation for the folding kinetics of biopahers is proposed that depends
on a partition ol into basins. These basins are defined by assigning to eashmadmum

x the subset of verticeB(x) C V that are transported toby means of a gradient walk. For
a fixed combinatorial vector field, the natural analog is to define

B(x) ={yeVixe gy} (15)

where is the n-trajectory starting iry. In practise, of course this makes sense only for
local minima of the landscapé, f).

In the spirit of statistical mechanics, we endow the setlaf@hbinatorial vector fields
on (G, f) satisfying (A1) and a combination of properti&swith the discrete probability
measure

p(n) =w(n)/z (16)

In particular, then, the probability of picking a combingéb vector field that contains the
arc(u,w) € P, is given by

1

Puw) = Z(u.w) /Z = 7

A neCVFy (A)
(uwen

(’-’(’7) = ZEu7w)/ZA7 (17)

whereA e 7 is the (unique) shelf that contains the edgew} € E(A). In other wordsp
is determined only by the combinatorial vector field on thelfsim which the restriction is
defined.

Let us now consider trajectories connecting two verticasdy. More precisely, we are
interested in the probability to draw a combinatorial vedield that containgn arbitrary
trajectory fromx to y. We write X ~ y for the set of all such trajectories {(G, f). Let
xehAe . Then

=

7Y em=33 5 3og,)em) @9

zeA; TR\ Ay e
y

2~

P{x~>y}:=

X~YEN
The patrtition functioriz, on the other hand, can be decomposed in the following way:
Z=3wn)= 3 wg,) Y ©Na) =2z, Za (19)
m N7 Ax Nax
Substituting this decomposition into equ.(18) yields
Pixy) = ) % 5 S @) (20)
=5y 3 Miva) % Z, ﬂ; NA

Z—)
zeA7 Trivae TIT\AX

2y Xz

In order to compute this transition probability explicjthye first consider paths within a
shelf. Let us introduce the notation

1
Ty = — Z 21
X~mZ ZAx o~ w(nAx) (21)

Xz
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for the probability of a path within the shef, from x € A2t to ze V (A)>. In other words,
we consider paths that start in the “flat” part of the shelfybgastay on the flat for a while,
and then end with a single downward step.

Before we proceed, we remark thgt., can be computed trivially if the landscape is
locally non-degenerate. Indeed, in this case> z can be realized exclusively by the arc
(x,2) € Py, and hence

Tynz = w(xv Z) /Z{x} Z{x} = (A)(X, Y) : (22)
YeN=(x)

In general, the situation is more complicated since we mag hanontrivial path igAflat
to some drainage point, say before taking the arpw, z) to the exit pointz. In the following
let Dy = {u € V(A1) N> (u) # 0} denote the drainage pointsAf2. We have

1
TXWZ = - w(’?)w(’?/) (23)
Zp, ue%x W,én nZ
x~=u  onN> (u)
2eN> (u)
Introducing
1 1
Twozi==0— w(n') = —awwz (24)
onN~ (w)
zeN> (w)
we can rewrite equ.(23) in the form
Tez= 3 20 )T (25)
Mz Z W—Z
WDy hx on Aflat
We finally define the abbreviation
Z
=50 Y ) (26)
) onAflat
and obtain thdy..., with x € Al andy € A; as
Tey= 3 TewTasy 27)
weDy

The probabilityl5(x ~y) of a path that starts in and terminates ity such thatthe final
step is a downward step can be computed recursively becaygmth of this type consists
of disjoint subpaths of the type described by equ.(21). Tis¢ $ubpath runs from the start
point x to some exit point € N> (V(G'(x))), and continues from there o

P(X~y) = > TewuP(U~ ) (28)
ueN>(V(Gf(x)))

For fixedy, eq.(28) can be evaluated iteratively fonaWith increasing fitness valuefigx) >
f(y) and the following initializations: Iff (x) < f (y) thenP(x ~ y) = 0 because of condition
(A1). If f(x)= f(y) thenP(x~y) =Tl if G(x) = G'(y), andP(x ~~ y) = 0 otherwise.
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An arbitrary path fronx to y, finally, is either of the type described by equ.(28), or it
entersG' (y) at a vertexz € V(G (y)) and continues within this set until it reachesThus,
the probability to reacly from x is

P(x~y) = P(x~ 2T, (29)
zeV(Gl(y))

For completeness, finally, we sBfx ~ x) = 1.

6 Reachability as a Topology

Definition 8 A vertexy is unreachable from on (G, f) if there is no combinatorial vector
field n (satisfying (A1) and a desired collection of propertisthat contains a trajectory
fromxtoy.

In other words,y is unreachable fronx if and only if P(x ~» y) = 0. Note that this no-
tion of “unreachable” is a slightly more precise way of sayfthere is no adaptive walk
from x to y”. In non-degenerate landscapes, these statements akalegti Here we may
also allow for certain walks that traverse “flat areas” of ldmedscape depending on which
combinations of (A1-3), (B1-3) and (C1) we wish to enforce.

A vertex setW is mutually reachabléf for all x,y € W we haveP(x ~»y) > 0 and
P(y ~ x) > 0. Note that if the landscape is invertible on edges theneafi ef mutually
reachable points are trivial, consisting of a single vertex

For eachx € V we define the set

Cx) ={yeV|P(x~y) >0} (30)

of vertices reachable from. By constructionx € C(x). Furthermorey € C(x) implies
C(y) € C(x) because reachability is a transitive relation. It will beneenient to define
C(W) = Uyew C(x). One easily checks that the set-valued set-fund@ion3(V) — PB(V)
has the following five properties for &V, W W" € (V).

(K1) C(0) =0

(K2) W' C W" = C(W') C C(W")
(K3) W C C(W)

(K4) C(W' UW") = C(W') UC(W")
(K5) C(C(W)) =C(W)

These are Kuratowski's axioms for a closure functioVpéee e.g. [7]. Thug; is a closure
function that defines a (finite) topology: onV. Clearly, a seW is closed in(V, 1¢) if it
consists exactly of all vertices reachable frivh We call ¢ the reachability topologyof
the landscape. We note in passing that it may also be of siteyestudy in more detail the
generalized, not idempotent, closure function defined bghability on a single shelf.

In the following, we will need a characterization of conregttets.

Lemma6 A set W isconnectedn the topological spacéV, 1c) if and only if there is a
(finite) sequence x Xg, X, ...,% =Yy such that xe C(xi_1) or Xi_1 € C(x), i.e., if and only
if P(Xi—1 ~> %) > 0o0rP(x ~ Xi_1) > 0.



13

Proof Recall that, in any topological space, theGéfx}) is connected and the union of two
intersecting connected sets is also connected. The conditiove amounts to the existence
of a (finite) chain of connected sets connecting any two gaimiéV. HenceW is connected
whenever the condition is satisfied. Conversely, suppose tis no such chain between
andy. Then there is a maximal sgtC W of points that are connectedxpwhiley ¢ U. For
everyze W\U,C(z)NU =0 andz¢ C(U). ThusC(W\U)NU =0 andC(U)N(W\U) =0,
i.e,W violates the Hausdorff-Lennes condition for connectegnes

In the following we will also need a slightly modified notiof maximality w.r.t. set
inclusion. Usually, a seA is maximal for a property2 if A has propery2 but AU {x} does
not have property2 for all x ¢ A. Here we need to modify this toA'U R does not have
property2 for all x ¢ A” whereR is the set of mutually reachable points.

7 Valleys, Basins, and Barriers

The topologytc provides a useful device to describe the structure of thiskearpe. A natural
notion is that of a “valley”:

Definition 9 A valleyis amaximalconnected subs®{ C V(G) such that all verticeg ¢ W
are unreachable from evexye W andW is connected.

If W is a valley, therx € W impliesC(x) C W since by definition no vertices outside \&f
are reachable from withiw/. ThereforeW = (Jyoy C(X) = C(W). The valleys are therefore
the maximal closed connected sets w.r.t. the topology difige.

Consider a locally minimal she@' (x) and set :=V(G'(x)). Local minimality means
N~ (L) = 0. ThusL together with the set of all poinisfor which everyadaptive walk ends in
L forms a valleyM . Under conditions (A2), (A3), (B1), and (CL) will contain sub-valleys
W;, each consisting of a single local minimune L and all those vertices for which all
adaptive walks lead ta The importance of the valleys of typl lies in the fact that every
trajectory of any combinatorial vector field statisfyingl)Aand any of (B1-B3) ends in a
uniquely defined\ .

More generally, minimal closed sets correspond to theaastthat are restpoints in all
admissible combinatorial vector fieldS(x) = {x}, or to unions (again over all admissible
combinatorial vector fields) of, equivalence classes. By transitivity of reachabilityséhe
sets are of the fornfy € V|P(x~»y > 0) andP(y ~» x> 0)} # {x}. Every adaptive walk in
the landscape necessarily ends in one of these minimalcckets. We can therefore label
everyx € V by the collection=(x) of minimal closed sets that are reachable frarfig. 4.

A valley can be identified by the s¥tof minimal closed sets that it contains.

Lemma 7 A subset WC V(G) is the valley labeled by if and only if (i) W is connected,
(i) x e W implies=(x) C Y, and (iii) =(x) C Y implies xe W.

Proof Suppos&V satisfies (i), (ii), and (iii). We first observe that (i) imes$ thalV is closed
because every vertgweachable fronx € W satisfies= (y) C =(x), and hencg € W. To see
thatW is maximal, we argue as follows: Consider a vezexV \W. By (iii), =(2) Z Y. If z
is contained in a minimal closed et Y, i.e.,=(z) = {C}, thenW U {z} is not connected
because by constructiars not reachable from withi/ and no vertex iW can be reached
from within C. On the other hand, #is not contained in a minimal closed $&tthen there

is a minimal closed s&@’ € =(2) \ Y, and in particular a vertex € C' that is reachable from
z. SinceZ ¢ WU {z} while Z € C(WU {z}), we we conclude tha¥/ U {z} is not a closed
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Fig. 4 Valley structure of a simple landscape. Each vertex is atedtwith the list of reachable local minima.
Each valley is characterized by such a ¥§sand contains all vertices labeled by a subséft.iThe minimal
closed subsets, hefd} through{5} are always valleys. In addition, this landscape has they&{l1,2},
{2,3}, {4,5}, {3,4,5}, and{1,2,3,4,5}. Valley-connecting points are indicated by circles.

set. ThudwV is a maximal connected closed set.

Now suppose thal/ is a maximal closed connected set, and¥set|Jy.yw = (X). Then (ii) is
trivially true andW contains in particular all minimal closed s€isc Y. Now suppose that
there is a vertex ¢ W with =(z) C Y. All adaptive walks emanating fromthus eventually
reachw and all verticey along such a walk satisfy (y) C =(z) C Y. Hence we can expand
W by the last mutually reachable sub&ptoutside ofW, contradicting maximality. Hence
Z(z) CYimpliesz¢ W.

The valleys of the landscag6&, f) do not form a hierarchical structure. In Fig. 4, the
valleys{1,2} and{2,3} are a counterexample. Nevertheless, the valleys are glosdated
to the barrier trees of the landscape. In particular, we dantify the (lowest) points that
connect valleys with each other.

Definition 10 A vertexu € V is avalley-connecting verteik =(u)=(v) # 0 for everyv €
C(u) \W,, whereW, is the set of vertices that are mutually reachable ftom

In general, there can be multiple, disconnected, valleyaeoting vertices linking the same
two valleys. In Fig. 4, there are two vertices connectingviieys{1} and{2}, which have
different fitness values.

In order to connect our present discussion with earlier wiorlparticular [4,6,29], we
briefly discuss the notation of saddle points in the contéxuo present formalism.
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Fig. 5 Valleys, basins, and adaptive walks. In this example, theze/ valleys denoted to G. The minimal
valleys areA throughD corresponding to the four local minima of the landscape. Vdileys A andB are
connected by the direct saddle paénhe direct saddlg betweenA andC has a strictly higher energy than
saddleu between the same two valleys (assuming that there is noieelaylk connectings with a point in
A). It is a saddle betweeA andD because it is the direct saddle between the valleysdD andA C E.
The barrier tree of the landscape reflects the inclusiotioek of the valleysA,B CE, C,D CF, E.,F CG.
The valleyG corresponds to the entire landscape.

Definition 11 A vertexsis a direct saddle point separating two minimal closed\8gtand
W, if (i) there are pointy; € Wq andy, € W, with P(s~ y1) # 0 andP(s~- y2) # 0, and
(ii) there is no vertexs' with f(s') < f(s) that also has property (i).

A direct saddle point is therefore a valley-connecting p@iith minimal fithness connect-

ing two valleys. In [7],basinsof a landscape are discussed that are defined in terms of
the connected components pf € V|f(x) < n} wheren is the fitness of a saddle point.
This connects well to our present discussion. The subsetsllelys below a certain fitness
threshold are always connected sets. Thus, basins areatedrsets of the form

U {xew|f(x) <n} (31)
Wey

constructed from maximal collections of vallése 7. Saddle points, i.e., vertices of min-
imal fitness that connect distinct basins are thereforesseciy valley-connecting points
between valleys associated with the distinct basins tlegt therge. Given an arbitrary pair
of disjoint valleys, their direct saddle can have a stritdiger value off than the saddle

point connecting the associated basins, Fig. 5.

We remark, finally, that the flooding algorithm implementadhebarriers program
[4,6] identifies saddle points as the lowest energy poirds lfave neighbors with lower
energy that are connected by means of gradient descenttedtical minima in two distinct
valleys. This is equivalent to the existence of two adaptiaéks starting at the saddle points
that terminate in the same local minima. This flooding altoni can easily be modified to
keep track of the labelling (x). In the non-degenerate case(x) is simply the union of
the set=(y) of all neighbors ok that are reachable. In the degenerate case one has to keep
track of all neighbors of the s&t that is mutually reachable fromas described in [6].
This gives rise to the recursion

=x=U U = 32)

X' eWx yeN(x')NC(x)
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Valley-connecting points are therefore recognizable exaburse of the flooding algorithm
as those verticesfor which the union=(x) does not coincide with the label s&ty) of at
least one of the downward neighbgrs

A detailed investigation of the relationships between thkey structure of the land-
scape and the basins and barriers of the landscape disinsstier work [4,6,7,29] goes
beyond the scope of this contribution. These connectiofi®eiexplored in a forthcoming
contribution.

8 Macrostates

In [29], macrostates were identified with “basins”, i.et, alvertices that are connected to
the same local minimum (or equivalently, the same minim#leyaby means of gradient
descent walks. Since gradient walks are not unique in degenkandscapes, this definition
becomes problematic in many applications. Here, we profmselax the requirement that
macrostates must be classes of a partition of microstatténatead consider macrostates
that are linear combinations of microstates. Of course, aet\the definition of macrostates
to reflect the geometric structure of the landscape as gl@epossible. Thus we index
macrostates by the collection of minimal valleys. This nsagense because all trajectories
under all combinatorial vector fields on the landscape emhénof these valleys. Instead of
assigning each vertexc V to a unique macrostate, we now distribute “sharest afmong
all those minimal valleys that can be reached freniNaturally, the share of valleg is
computed as the probability

Pa(X) = ¥ P(x~Y) (33)

yea

that a trajectory starting at ends up ina. The partition function associated with this
macrostate is then simply given by

Qu= 3 3 Pix=y)exn-B1(0) (34)
XEV yEu

and we easily convince ourselves that

3 Qu= 3 el -pi(x) (35)
a Xe
is satisfied, i.e., this construction of the macrostatéigostiperly reflects the thermodynam-
ics of the microscopic system.
We can now use our “mixed” macrostates to refine equ.(1).eSihe contribution of
y to the partition function of the macrostateis pq(y) exp(—Bf(y)), the approximation
assumption that the folding trajectory equilibrates witthie macrostate becomes

Problyy] ~ py(y) exp(—Bf(y)/Qy.- (36)
A transition tox, on the other hand takes us to macrostateith probability ps (), so that
lay~ 2\/ Pa (X)rxyPy(y) eXp(—BT(y))/Qy (37)

X,YE

For deep valleys equ.(1) will still be an excellent appreaiion: Below the saddle point that
separategfrom its most easily accessible neighbor we hppg/) = 1, while exg—B1(y))/Qy
is already small above this saddle height. Similarly, i tigpe of landscapegyq (x) will be
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1 or at least close to 1 for points not much above the saddte.géénce we approximately
recover equ.(1). On the other hand, if the valleys are shadioeven nearly flat, separated
by low saddles, then the stastistics of pathways leadingffereint valleys will play a large
role [26].

9 Concluding Remarks

We have developed here a framework to study adaptive watksissociated structures for
fitness landscapes with complex degeneracies. Combiaktertor fields play a central role
in this endeavour. They imply a deterministic “down-hilytamics on the landscape that
essentially considers adaptive walks as admissible tajes. The given landscape can be
understood as a Lyapunov function of the admissible contiizd vector fields. In case of
landscapes with neutrality, there is some freedom to chebgeh steps to neutral neighbors
are acceptable, i.e., how the Lyapunov function must bealrey neutral steps. The crucial
technical result is that the set of admissible combinattegator fields has a simple product
structure, that allows combinatorial vector fields on théredandscape to be constructed
as the unrestricted combinations of combinatorial vec&ddsion the shelves @6, f). The
shelves are subgraphs determined by the connected contpafemeutral networks, and
specialize to individual vertices and their downward nbiis in the non-degenerate case.
Introducing weights for the combinatorial vector fieldstttiepend on their steepness allows
us to bring back the stochastic aspect of adaptive walks amaaled way that is amenable
to a thermodynamics-like formulation in terms of partitimmctions.

The framework represented here connects in a natural wagtmps work on the basin
and barrier structure of landscapes. In particular, rdaitityaw.r.t. admissible combinatorial
vectorfields onG, f) defines a finite topology on the vertex 8ebf the underlying graph.
This topological structure gives rise to a natural notiorfvaflleys” that is closely related
to the barriers and saddle points investigated in previoogkwrhis valley structure, in
particular, can be identified in the course of the same flapdigorithm that is used to
determine basins and barriers in e riers program.

The framework developed here can be of interest much bey@aidhdwever. It becomes
straightforward, for example, to investigate dependenisetween adaptive walks. It follows
immediately from the discussion here that two paths, ona #to y and the other fronp to
g, are independent if they traverse disjoint sets of she®esthe other hand, they become
dependent if they pass through a common point: uniquendssjettories implies that they
must be identical from the intersection point. Otherwisgytban only be realized by disjoint
sets of combinatorial vector fields.

Acknowledgements We thank Jurgen Jost for his suggestion to consider theéaeships of landscapes and
combinatorial vector fields.
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Appendix: Combinatorial Vector Fields on Simplicial Complexes

Let M be a simplicial complex constructed over the Kedf simplices, see e.g. [14]. B
andt are simplices oM, we writeo < T if o lies in the boundary of.

Definition 12 A combinatorial vector fieldn M [10] is a mapn : K — KU {@} such that
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1. If n(o) # @ thendimn (o) = dim(o) + 1, ando < n (o).
2. Ifn(o)=1+# @, thenn(1) = 2.
3. ForalloeK, o7t < 1.

The simplicial complexV(G) associated with a grap® consists of the vertices and
edges ofG, K=V UE, withv< eif and only if ve V is a vertex incident with the edge
e € E. Condition (i) implies that) (v) is eitherg or an edge incident witk for any vertex
v eV, while n(e) = @ for all e € E because there is no higher-dimensional simplex for and
edgeeto be mapped to. Condition (ii) thus becomes void on grapig wge can view) on
G simply as a map from vertices to edges. Condition (iii) fipaihplies that an edge € E
is the image of at most one of its two incident vertices. lidiek that a combinatorial vector
field onG is characterized by the properties stated in Definition 1.

Definition 13 A simplexo € K is arest pointof n if n(o) = @ andn—(o) =0

On graphs, thusix,y} is a rest point if and only if (x) # {x,y} andn(y) # {x,y}.

Definition 14 An n-path is a finite sequence of simplices: (0o, To, 01, T1, - - - On—1, Tn—1, On)
such thaty(gi) =1, for0<i <nandoi;1 < 7.

On a graphy necessarily alternates between vertices and edges. Smeslges is deter-
mined as) (v) it follows thatvi1 is the other end o&. It is therefore uniquely determined
by n(vi). Hencey is an ordinary path ot whose sequence of vertices is determinedjby
(except for the start and end point).

Definition 15 [10] A Lyapunovfunctiorof the combinatorial vector field is a function
F : M — R such that

1. if 0 ¢ # andt > o then
(@) F(o) <F(r)if T #n(0)
(b) F(o) =F(1)if t=n(0)

2. ifo e Zandt > o then
(@ F(o)=F(n)ifo~T1
(b) F(o)<F(r)ifoxt

To specialize this to graphs, we simply translate the catone-by-one

1. If xe V\Z andx € ethenF (x) > F(e) if e=n(x) andF (x) < F(e) otherwise.
2. If xeVNZ andx € ethenF (x) = F(e) if x~ eandF(x) < F(e) otherwise

Now consider explicitly the “other end” of the edge

1. If xeVNZ andn(x) = {x,y} thenF(y) = F(x).

2. Ife={x,y} € ENZ thenF(e) > F(x) andF (e) > F(y).

3. Ifec E\ Z then, w.l.o.g.e= {X,y} ande= n(x). In this case~(x) > F(e) > F(y).
This implies

4. IfxeV\Z andn(x) = {x,y} thenF(y) < F(x).

This in turn easily translates to definition 4 in the main text



