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Abstract Adaptive (downhill) walks are a computationally convenient way of analyzing
the geometric structure of fitness landscapes. Their inherently stochastic nature has limited
their mathematical analysis, however. Here we develop a framework that interprets adaptive
walks as deterministic trajectories in combinatorial vector fields and in return associate these
combinatorial vector fields with weights that measure theirsteepness across the landscape.
We show that the combinatorial vector fields and their weights have a product structure that
is governed by the neutrality of the landscape. This productstructure makes practical com-
putations feasible. The framework presented here also provides an alternative, and mathe-
matically more convenient, way of defining notions of valleys, saddle points, and barriers
in landscapes. As an application, we propose a refined approximation for transition rates
between macrostates that are associated with the valleys ofthe landscape.

Keywords Fitness landscape· Adaptive Walk· Barrier tree· Combinatorial Vector Field

1 Introduction

Fitness landscapeshave played an important role in mathematical biology ever since Sewall
Wright’s seminal paper [30] as a means of conceptualizing evolutionary adaptation. As a
mathematical structure — a finite but typically very large “search space” endowed with
a cost or fitness function — landscapes appear naturally in many different contexts and
fields of science. They can be seen as a generic formulation ofcombinatorial optimization
problems in computer science and operations research [11],they describe the Hamiltonians
of disordered systems in physics [2,19], and they are (discretized versions of) potential
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Fig. 1 Basins and membership in basins. A gradient descent walk starting from a vertexz may end up in a
local minimum (herey) that is neither the deepest nor the closest accessible one.Different adaptive walks
may connectz to different local minima, herex andy.

energy surfaces in theoretical chemistry [20]. In structural biology, energy landscapes are
used to understand the folding of biopolymers into their three-dimensional structures, and
discrete versions are used to study folding processes at thelevel of lattice protein models
[21] and RNA secondary structures [5].

The relationship between dynamical processes on landscapes and geometric properties
of the landscape itself is a long-standing research problemthat is still far from a satisfactory
solution [25]. In particular,basinsand the barriers between them have attracted attention
from several points of view. The replica approach to disordered spin systems for instance,
emphasized the break-up of the state space into many valleysseparated by saddle points
[19]. Direct approaches to elucidate the basin structure naturally leads to the concept of
barrier trees. In this picture, local minima are identified with the leavesof the tree, while
the interior nodes represent (equivalence classes of) saddle points that separate local minima.
This construction was introduced more or less independently in several different application
domains, see e.g. [16,1,12,27,3,4,24].

A simple, but much less informative, measure for the size of abasin is the length distri-
bution of the steepest descent (gradient) paths that terminate in a given local minimum [28,
9]. In contrast to gradient paths, anadaptive walkaccepts steps whenever they improve fit-
ness, instead of insisting on steepest descent. Gillespie [13] suggested to use adaptive walks
as models of evolutionary adaptation. They have been studied extensively in NK models
[28,15,8], in particular in the context of the maturation ofthe immune response [18,17,23],
in RNA folding landscapes [9], and in a model of early vascular land plants [22]. The length
distribution of adaptive walks appears to be linked to the size distribution of the basins; the
details of this connection, however, remain to be elucidated.

In [29], a coarse-grained representation of energy landscapes is introduced in which
the barrier trees represent a partition into “basins of attraction” of the local minima. This
is achieved by assigning each point to (the basin of) the local minimum that is reached by
gradient descent. Given this partition of the search space into “macro states” one can then
derive an approximation for the transition rates between macro-statesα andγ in the form

rα ,γ = ∑
x∈α

∑
y∈γ

rxyProb[y|γ ] (1)
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whererxy are the transition rates between micro-states andProb[y|γ ] is the conditional prob-
ability for the system to be in microstatey given that it is in macrostateγ . In practise, the
last term is approximated by the equilibrium distribution within γ [29]. The usefulness of
this approximation, however, depends on the “correctness”of the assignment of microstates
to macrostates.

As shown in Fig. 1 the use of adaptive or gradient walks may lead to unintuitive or unde-
sired assignments. Adaptive walks, for instance, may connect points to several distinct local
minima. Gradient walks, on the other hand, may well connect apoint to a local minimum
that is neither the closest (in terms of the number of steps) nor the deepest (in terms of the
value of f ) among the minima that can be reached by adaptive walks. In the case of degen-
erate landscapes [6], furthermore, gradient descent is notuniquely defined. Hence, a more
rational and mathematically sound assignment of states to basins/valleys is highly desirable
and may lead to an improved approximation of folding dynamics. Here, we propose to use
combinatorial vector fields as a suitable framework for the study of adaptive walks and their
interrelationships with the basin structure of a landscape.

Combinatorial vector fields were introduced by Robin Forman[10] to describe dynami-
cal systems on simplicial complexes. A central concept in this theory is that of aLyapunov
function F. In analogy with a Lyapunov function in a vector space setting, the values ofF
decrease along trajectories. The basic idea of this contribution is to interpret adaptive walks
as trajectories generated by combinatorial vectors for which the given fitness landscape be-
haves like a Lyapunov function. Adaptive walks are inherently stochastic objects. Thus we
associate a weight with each combinatorial vector field. This weight can then be translated
into a probability for the combinatorial vector field. The weights can naturally be chosen
such that paths of gradient descent are at least locally morelikely than all other trajectories.
In this setting it becomes natural to model the probability that vertexz is connected to local
minimumx as the probability of a combinatorial vector field containing a trajectory fromz
to x.

This contribution is organized as follows: In the next section we introduce the necessary
notation, provide a convenient representation of combinatorial vector fields on undirected
graphs and make precise in what sense the given fitness landscape is a Lyapunov function.
We then proceed to show that combinatorial vector fields on landscapes have a natural prod-
uct structure that can be exploited to derive a simple Markovmodel of adaptive walks. This
in turn implies a canonical way in which microstates are partially assigned to alternative
local minima that can be reached from them, and finally leads to a refinement of equ.(1).

2 Definitions and Preliminaries

Let G(V,E) be a connected undirected simple finite graph with vertex setV and edge setE.
We writeG[W], W ⊆V, for the subgraph ofG induced byV, i.e.,{x,y} ∈ E(G[W]) if and
only if {x,y} ∈ E andx,y ∈ W. We writeN(x) = {y|{x,y} ∈ E} for the neighborhood of
x∈V andN[x] = N(x)∪{x} for its closed neighborhood.

Let f : V → R be an arbitrary function defined on the vertex set ofG. We call(G, f ) =
(V,E, f ) a fitness landscapeand refer tof as the “fitness function”. A vertexx is a strict
local minimum of f if f (x) < f (y) for all y∈ N(x). If f (x) ≤ f (y), we callx a weak local
minimum. Note that the notion of local optima explicitly depends on the graph structure,
i.e., on the edge setE.
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2.1 Combinatorial Vector Fields on Graphs

We will not need the complete formalism of combinatorial vector fields on simplicial com-
plexes [10], hence we only provide definitions restricted tosimple undirected graphs. For
details we refer to the Appendix.

Definition 1 A combinatorial vector field(cvf) on G is a mapη : V → E∪{∅} such that,
for all e∈ E, η−1(e) is either empty or consists of one of the two vertices incident with e.

A vertexx∈V is arest pointof η if η(x) = ∅.
An η-path (of length r) is a sequenceγ = (v0,e0,v1,e1, ...,er−1,vr) such thatei =

η(vi) and{vi ,vi+1} = ei . Since the edgesei ∈ γ are uniquely determined by the sequence
(v0, . . . ,vr ), we may equivalently interpretγ as its sequence of vertices. Anη-path is non-
trivial if it contains at least two vertices. Ifv0 = vr , we say thatγ is a closed path. Two
vertices or edgesx,y ∈ V ∪E areη-equivalent,x ∼η y, if there is a closedη-pathγ with
x,y∈ γ . Again, it will be sufficient for our purposes to restrict ourselves to vertices.

An η-pathψ = (x0 = x,e1,x1,e2,x2, ...), ei = η(xi−1), ei = {xi−1,xi} is theη-trajectory
starting atx. The associated vertex setψ̂(x) = {x0,x1, . . .} is theorbit of x. Note thatψ̂(x)
is always finite.

Definition 2 Theω-limit ωη (x) of a vertexx is either the (unique) rest pointy at which the
trajectory starting atx comes to an end, or the set of vertices that appear infinitely often in
the trajectoryψ starting atx.

Definition 3 Thechain recurrent setRη of a combinatorial vector fieldη on G is the set
of vertices that are either rest points ofη or that are contained in some non-trivial closed
η-path.

Clearly,ωη(x) 6= /0 andωη(x) ⊆ Rη for all x∈V. A vertex is a rest point if and only if
ωη(x) = {x}. Hence

Rη =
⋃

x∈V

ωη(x) (2)

Definition 4 Let η be a combinatorial vector field onG. A function f : V ∪E → R is a
Lyapunov functionfor η if

1. f (v)≥ f (e) > f (v′) if η(v) = e ande= {v,v′} andv /∈ Rη .
2. f (v) = f (η(v)) = f (v′) if v 6= v′ andv∼η v′.

Before we proceed it will be convenient to introduce an alternative representation of
combinatorial vector fields onG as a relation on the vertex setV(G).

Definition 5 Let P⊂V ×V be a relation that satisfies

1. (x,y) ∈ P implies{x,y} ∈ E (consistency withG)
2. (x,y) ∈ P and(x,z) ∈ P impliesy = z (uniqueness)
3. (x,y) ∈ P implies(y,x) /∈ P (antisymmetry)

Lemma 1 There is a one-to-one correspondence between combinatorial vector fields on G
and relations (arc sets) satisfying the three properties indefinition 5 such that(x,y) ∈ P if
and only ifη(x) = {x,y}.
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Proof (⇐) SupposeP satisfies (1)-(3).η(x) = e= {x,y} is a uniquely defined edgee∈ E
according to properties (1) and (2). Property (3) implies that y /∈ η−1(e), and henceη−1(e)
is at most a single vertex for anye∈ E.
(⇒) Supposeη is a combinatorial vector field onG. Sinceη : V → E is a map, properties
(1) and (2) follow immediately. Fromη(x) = {x,y} we obtain(x,y) ∈ P. Now suppose
(y,x) ∈ P, i.e., η(y) = {y,x}. This would implyη−1({x,y}) = {x}, a contradiction to the
definition ofη . HenceP must be antisymmetric.

In the following it will sometimes be convenient to identifya combinatorial vector field
η with its equivalent orientationPη ⊂V ×V.

3 Combinatorial Vector Fields and Landscapes

Given a landscape(G, f ) on G and let us define the following subsets and subgraphs: for
all x∈V let N(x) = {y∈V|{x,y} ∈ E}, N[x] = N(x)∪{x}, andN>(x) = {y∈ N(x)| f (y) <
f (x)}. Furthermore, letN>(W) =

⋃

z∈W N>(z). We callx a drainage pointif N>(x) 6= /0.
Denote byGf (x) the connected component ofG[{z∈ V| f (z) = f (x)}] that containsx.

A landscape islocally non-degenerateor invertible on edgesif Gf (x) consists of a single
vertex for allx∈V.

For any subgraphH of G we define
−→
H by the following sets of vertices and edges:

V(
−→
H ) =

⋃

x∈V(H)

N>[x]

E(
−→
H ) = E(H)∪

{

{x,y} ∈ E|x∈V(H),y∈ N>(x)
}

(3)

Let Π = {Gf (x)|x∈V} be the set of maximal connected components ofG on which the
landscape is constant.

Definition 6 We will call the subgraphs
−→
Π = {

−−−→
Gf (x)|x∈V} the shelves of the landscape.

Note that
−→
Π is uniquely determined by the landscape(G, f ). It will be convenient, further-

more, to distinguish between the “flat surface” of the shelfA given byAflat = {y∈ A|A∈ Π}
and its “exit points”A> = {y∈N>(x)|x∈A f orA∈Π}. A shelf is locally minimal ifA> = /0.

Lemma 2 The sets V(A), A ∈ Π , form a partition of V . The sets E(A), A ∈
−→
Π , form a

partition of E.

Proof If x is a vertex, it is trivially contained in someV(Gf (x)). Let x,y be two vertices with
f (x) = f (y) andV(Gf (x))∩V(Gf (y)) 6= 0. Then there exists az∈ V(Gf (x))∩V(Gf (y))
such thatf (x) = f (y) = f (z). Thus, every maximally connected component that contains
x andz also has to containy, and thereforeV(Gf (x)) = V(Gf (y)). Let e be an edge that

is contained inE(
−−−→
Gf (x))∩E(

−−−→
Gf (y)). Then there are two possibilities: (1)Both endpoints

of e are inV(Gf (x))∩V(Gf (y)). Then, sinceV(Gf (x)) = V(Gf (y)), e∈ E(Gf (x)) holds.
(2)e= {x,N>(x)}, wherex∈V(Gf (x))∩V(Gf (y)). SinceV(Gf (x)) =V(Gf (y)), it follows

thatE(
−−−→
Gf (x)) form a partition ofE.
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Fig. 2 Example of a small highly degenerate landscape. Vertices ofG are arranged according to the fitness
valuesf (x). Connected componentesGf (x) are indicated by dotted boxes. For one of them, the corresponding

shelf-graph
−−−→
Gf (x) is highlighted in gray. A combinatorial vector fieldη (consistent withf ) can be visualized

as arrows correponding to the setPη of oriented edges.

We can therefore write every combinatorial vector fieldη onGas a “vector”(ηA1, . . . ,ηAk)

whereηAk is the restriction ofη to a shelfAk ∈
−→
Π . In terms of the arcs we have

Pη =
⋃

A∈
−→
Π

PηA and PηA ∩PηB 6= /0⇒ A = B (4)

Definition 7 Given a simple undirected graphG(V,E), a landscape(G, f ) and a combina-
torial vector fieldη onG we now consider the following properties

(A1) (x,y) ∈ Pη implies f (x)≥ f (y).
(A2) (x,y) ∈ Pη andx 6∈ Rη implies f (x) > f (y)
(A3) (x,y) ∈ Pη andx∼η y implies f (x) = f (y).
(B1) N>(x) 6= /0 implies that there is(x,y) ∈ Pη with y∈ N>(x).
(B2) N>(V(Gf (x))) 6= /0 implies that there is anη-path γ = (x = z1, . . . ,zk = x′) in Gf (x)

from x to anx′ with N>(x′) 6= /0.
(B3) N>(V(Gf (x))) 6= /0 implies that there is anη-path γ = (x = z1, . . . ,zk = x′) in Gf (x)

from x to anx′ with N>(x′) 6= /0 such thatN>(zj) = /0 for 2≤ j ≤ k−1.
(C1) R consists only of isolated points.

Conditions (A1) through (A3) specify in what sense the combinatorial vector fieldη
“points downwards” in the landscape(G, f ). We note that (A1) implies (A3). On the other
hand, (A2) and (A3) together imply (A1). Suppose (A1) holds.Then, if y ∼η x, we have
y∈V(Gf (x)), i.e., the connected components of the chain recurrent setRη are confined to
the subgraphsGf (x) on which f is flat.

We observe thatf can be extended to a Ljapunov function ofη provided (A2) and (A3)
are satisfied. More precisely, we have:

Lemma 3 Suppose (A2) and (A3) are satisfied. Then there is a Ljapunov function F: V ∪E
for η satisfying F(x) = f (x).
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Proof We defineF on the edges as follows: if{x,y} ∈ η(V) then F({x,y}) = ( f (x) +
f (y))/2. This impliesf (x) > f (e) > f (y) if (x,y) ∈ Pη andx /∈ Rη and f (x) = f ({x,y}) =
f (y) if x∼η y. On the other hand, if{x,y} is not oriented inη , i.e.,{x,y} ∈ E \η(V), we
setF({x,y}) = max( f (x), f (y))+1, so thatf ({x,y}) > f (x), f (y).

If (A1) but not necessarily (A2) and (A3) are satisfied, we canthink of F as constructed in
the proof above as aweak Ljapunov function.

Conditions (B1), (B2), and (B3) require thatη points downwards in a certain sense
whereever this is possible. Clearly (B3) implies (B2). Condition (B1) implies that the only
rest points ofη are the weak local minima off . Conditions (B2) and (B3) imply that flat
subgraphsGf (x) do not contain rest points unless all neighbors ofGf (x) have a higher
fitness, i.e.,Gf (x) form an extended strict local minimum off . Otherwise, anyz∈ Gf (x) is
connected by anη-path to vertexy with f (y) < f (z), i.e.,V(Gf (x))∩R = /0. The distinction
between (B2) and (B3) is that (B3) requires in addition thatη “points downwards” on every
drainage point.

Much of our subsequent discussion hinges on the observationthat combinatorial vector
fields satisfying (A1) as well as any combinationX of the properties defined above, can be
composed of combinatorial vector fields on the shelves of(G, f ) satisfying (A1) andX.

Lemma 4 Suppose (A1) and any collectionX of additional properties (A2) through (C1)

are satisfied. Then the restrictionη−−−→
Gf (x)

of η to the shelf
−−−→
Gf (x) is a combinatorial vector

field that satisfies the same properties for the restricted landscape(
−−−→
Gf (x), f

|V(
−−−→
Gf (x))

).

Proof We first observe that (A1) is satisfied globally if and only if it is true on every shelf

because for eachx∈V, V(
−−−→
Gf (x)) contains all neighborsy of x for which f (y)≤ f (x) holds.

Since theE(
−−−→
Gf (x)) form a partition ofE, every possible arc ofη is contained in exactly one

shelf. The discussion above already showed that the connected components of the chain re-
current setRη are contained in the flat partsGf (x) of the shelves, hence the assertion is true
for (A2) and (A3). Conditions (B1) through (B3), and (C1), finally are already formulated

restricted to shelves sinceN>(x) ⊆V(
−−−→
Gf (x)).

Let CVFX(A) denote the set of cvfs on the graphA that satisfy the conditionsX which
in particular include 1a.

Theorem 1
CVFX(G) = ∏

A∈
−→
Π

CVFX(A) (5)

Proof Using lemma 4 and equ.(4) we see that the union of combinatorial vector fields sat-
isfying (A1) on the individual shelves is indeed a vector field satisfying (A1) on the entire
graphG. The proof of lemma 4 shows in particular that each of the properties (A2) through
(C1) holds globally if and only if it holds on each shelf provided (A1) is satisfied.

The importance of this result is the observation that it is sufficient to understand the
admissible combinatorial vector fields on the shelves. In particular, it implies that combina-
torial vector fields on locally non-degenerate landscapes are entirely characterized by their

behavior on the trivial shelves
−−−→
N>(x). If there are large shelves, on the other hand, quite

complex vector field structures can be consistent with (A1) because degenerate fitness func-
tions, therefore, impose fewer constraints on the combinatorial vector fields.
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Fig. 3 Combinatorial vector fields on a single shelf. This example satisfies (A1) and (B2) but not (A2) [there
are arcs connecting points with the same fitness that are not on a cylce], not (B1) [the trajectory does not point
to one of the downward neighbors of the leftmost drainage point], and not (B3) [the trajectory passes through
a drainage point without going downwards].

From here on, we will assume thatη satisfies (A1) and any fixed collectionX of addi-
tional properties. Condition (A1) in particular implies that there is a close relationship be-
tween the local minima of the landcape(G, f ) and the chain-recurrent setRη . The details,
however, depend on the additional conditions. In any case, if x is a strict local minimum,
thenx∈ Rη .

Lemma 5 Suppose (A1-A3), (B1) and (C1) are satisfied. ThenR is the set of all weak local
minima of(G, f ).

Proof (⇒) Let us assume thatx∈R and (A1-A3), (B1) and (C1) are satisfied. (B1) implies
that whenever there is ay ∈ N>(x), then there is an arc(x,y) and thereforex /∈ R. This
means that for allx∈ R, N>(x) = /0 must hold. Thus, for ally ∈ N(x), f (y) ≥ f (x) holds,
i.e.x is a weak local minimum off .

(⇐) Now, let us assume thatx is a weak local minimum. (A2) and (C1) imply that for
all y∈ N(x), f (y) > f (x) must hold. Thus,η(x) = ∅ and thereforex∈ R.

If we require (A1-A3),and (B2) or (B3), we see that all trajectories end in a shelfU with
an empty setN>(U), i.e., all non-trivial recurrent cycles are confined to these locally strictly
minimal shelves.

4 Weights and Partition Functions

Now consider a weight functionω : E → R defined on the edges ofG. A natural choice for
the weight of a combinatorial vector field onG is then

ω(η) = ∏
(x,y)∈η

ω({x,y}) (6)

Since we are considering landscapes, we derive the weight function ω from the landscape
(G, f ). Interpretingf as a potential energy function, the most natural choice are Boltzmann
weights of the form

ω({x,y}) = exp(β | f (x)− f (y)|) (7)

These weights increase with the steepness of the landscape along the edge. The “inverse
temperature”β tunes our emphasis on steepness: Forβ = 0, all transitions(x,y)∈Pη receive
the same weight 1. On the other hand, the steepest edges dominate in each setN>(x) for
β → ∞.
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It will be useful to introduce thepartition functionof all combinatorial vector fields on
(G, f )

Z = ∑
η

ω(η) (8)

and its restriction to combinatorial vector fields that contain a particular transition(u,w) ∈
Pη .

Z(u,w) = ∑
η:(u,w)∈η

ω(η). (9)

With Boltzmann weights, equ.(7),Z simply counts the number of distinct combinatorial
vector fields in the limitβ = 0. On the other hand,ω(η)/Z → 0 unlessη consists of edges
of steepest descent only in the limitβ → ∞.

The weightsω(η) can be written as a product of the weights of restrictions ofη to the
shelves ofG,

ω(η) = ∏
A∈

−→
Π

ω(ηA) (10)

Theorem 1 therefore implies immediately that the partitionfunctions are also products of
partition functions restricted to the individual shelves:

Z = ∑
η

ω(η) = ∑
η

∏
A∈

−→
Π

ω(ηA) = ∏
A∈

−→
Π

∑
ηA

ω(ηA) = ∏
A∈

−→
Π

ZA (11)

Similarly, we can evaluate restricted partition functionssuch as

Z(u,w) = ∏
A∈

−→
Π

{u,w}/∈E(A)

∑
ηA

ω(ηA)×Z′
(u,w) = Z′

(u,w) × ∏
A∈

−→
Π

{u,w}/∈E(A)

ZA (12)

whereZ′
(u,w) is evaluated just like equ.(9) restricted to the shelf that contains the edge{u,w}.

For locally non-degenerate landscapes, these expressionsare simplified greatly because
each shelf contains only one “top point”, sayx, and edges of the form{x,y} with y∈ N>(x).
Thus

Z = ∏
x∈V

Zx and Z(u,w) = ∏
x∈V\{u}

Zx×Z′
(u,w) (13)

with

Zx = ∑
y∈N>(x)

ω(x,y) and Z′
(u,w) = ω(u,w). (14)

In the case of locally degenerate landscapes, on the other hand, the computation of the
partition functions for the individual shelves can be quitetedious and complex. The details
depend, furthermore, on the exact combinations of propertiesX in definition 7 that one cares
to enforce.
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5 Path Probabilities

In [29] an approximation for the folding kinetics of biopolymers is proposed that depends
on a partition ofV into basins. These basins are defined by assigning to each local minimum
x the subset of verticesB(x) ⊂V that are transported tox by means of a gradient walk. For
a fixed combinatorial vector fieldη , the natural analog is to define

B(x) = {y∈V|x∈ ψy} (15)

whereψy is theη-trajectory starting iny. In practise, of course this makes sense only for
local minima of the landscape(G, f ).

In the spirit of statistical mechanics, we endow the set of all combinatorial vector fields
on (G, f ) satisfying (A1) and a combination of propertiesX with the discrete probability
measure

p(η) := ω(η)/Z (16)

In particular, then, the probability of picking a combinatorial vector field that contains the
arc(u,w) ∈ Pη is given by

p(uw) = Z(u,w)/Z =
1

ZA
∑

η∈CVF
X

(A)
(u,w)∈η

ω(η) = Z′
(u,w)/ZA , (17)

whereA∈
−→
Π is the (unique) shelf that contains the edge{u,w}∈E(A). In other words,p(uw)

is determined only by the combinatorial vector field on the shelf in which the restriction is
defined.

Let us now consider trajectories connecting two verticesx andy. More precisely, we are
interested in the probability to draw a combinatorial vector field that containsan arbitrary
trajectory fromx to y. We write x y for the set of all such trajectories in(G, f ). Let
x∈ Ax ∈

−→
Π . Then

P{x y} :=
1
Z ∑

η
x y∈η

ω(η) =
1
Z ∑

z∈A>
x

∑
η−→

Π \Ax
z y

∑
ηAx
x z

ω(η−→
Π \Ax

)ω(ηAx) (18)

The partition functionZ, on the other hand, can be decomposed in the following way:

Z = ∑
η

ω(η) = ∑
η−→

Π \Ax

ω(η−→
Π \Ax

) ∑
ηAx

ω(ηAx) = Z−→
Π \Ax

ZAx (19)

Substituting this decomposition into equ.(18) yields

P{x y} = ∑
z∈A>

x

∑
η−→

Π \Ax
z y

1
Z−→

Π \Ax

ω(η−→
Π \Ax

)×
1

ZAx
∑
ηAx
x z

ω(ηAx) (20)

In order to compute this transition probability explicitly, we first consider paths within a
shelf. Let us introduce the notation

Tx z =
1

ZAx
∑
ηAx
x z

ω(ηAx) (21)
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for the probability of a path within the shelfAx from x∈ Aflat
x to z∈V(Ax)

>. In other words,
we consider paths that start in the “flat” part of the shelf, maybe stay on the flat for a while,
and then end with a single downward step.

Before we proceed, we remark thatTx z can be computed trivially if the landscape is
locally non-degenerate. Indeed, in this casex z can be realized exclusively by the arc
(x,z) ∈ Pη , and hence

Tx z = ω(x,z)/Z{x} Z{x} = ∑
y∈N>(x)

ω(x,y) . (22)

In general, the situation is more complicated since we may have a nontrivial path inAflat
x

to some drainage point, sayw, before taking the arc(w,z) to the exit pointz. In the following
let Dx = {u∈V(Aflat

x )|N>(u) 6= /0} denote the drainage points inAflat
x . We have

Tx z =
1

ZAx
∑

u∈Dx

∑
η

Aflat
x

x u

∑
η ′

onN>(u)
z∈N>(u)

ω(η)ω(η ′) (23)

Introducing

T>
w→z :=

1
Z{w}

∑
η ′

onN>(w)
z∈N>(w)

ω(η ′) =
1

Z{w}
ω(w,z) (24)

we can rewrite equ.(23) in the form

Tx z = ∑
w∈Dx

Z{w}

ZAx
∑

η
on Aflat

x
x w

ω(η)T>
w→z (25)

We finally define the abbreviation

Tflat
x w :=

Z{w}

ZAx
∑

η
onAflat

x
x w

ω(η) (26)

and obtain theTx y with x∈ Aflat
x andy∈ A>

x as

Tx y = ∑
w∈Dx

Tflat
x wT>

w→y (27)

The probabilityP̃(x y) of a path that starts inx and terminates iny such thatthe final
step is a downward step can be computed recursively because any path of this type consists
of disjoint subpaths of the type described by equ.(21). The first subpath runs from the start
point x to some exit pointu∈ N>(V(Gf (x))), and continues from there toy.

P̃(x y) = ∑
u∈N>(V(Gf (x)))

Tx uP̃(u y) (28)

For fixedy, eq.(28) can be evaluated iteratively for allx with increasing fitness valuesf (x) >
f (y) and the following initializations: Iff (x) < f (y) thenP̃(x y) = 0 because of condition
(A1). If f (x) = f (y) thenP̃(x y) = Tflat

x w if Gf (x) = Gf (y), andP̃(x y) = 0 otherwise.
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An arbitrary path fromx to y, finally, is either of the type described by equ.(28), or it
entersGf (y) at a vertexz∈V(Gf (y)) and continues within this set until it reachesy. Thus,
the probability to reachy from x is

P(x y) = ∑
z∈V(Gf (y))

P̃(x z)Tflat
z y (29)

For completeness, finally, we setP(x x) = 1.

6 Reachability as a Topology

Definition 8 A vertexy is unreachable fromx on (G, f ) if there is no combinatorial vector
field η (satisfying (A1) and a desired collection of propertiesX) that contains a trajectory
from x to y.

In other words,y is unreachable fromx if and only if P(x y) = 0. Note that this no-
tion of “unreachable” is a slightly more precise way of saying “there is no adaptive walk
from x to y”. In non-degenerate landscapes, these statements are equivalent. Here we may
also allow for certain walks that traverse “flat areas” of thelandscape depending on which
combinations of (A1-3), (B1-3) and (C1) we wish to enforce.

A vertex setW is mutually reachableif for all x,y ∈ W we haveP(x y) > 0 and
P(y x) > 0. Note that if the landscape is invertible on edges then all sets of mutually
reachable points are trivial, consisting of a single vertex.

For eachx∈V we define the set

C(x) = {y∈V|P(x y) > 0} (30)

of vertices reachable fromx. By construction,x ∈ C(x). Furthermore,y ∈ C(x) implies
C(y) ⊆ C(x) because reachability is a transitive relation. It will be convenient to define
C(W) =

⋃

x∈W C(x). One easily checks that the set-valued set-functionC : P(V) → P(V)
has the following five properties for allW,W′,W′′ ∈ P(V).

(K1) C( /0) = /0
(K2) W′ ⊂W′′ =⇒C(W′) ⊂C(W′′)
(K3) W ⊆C(W)
(K4) C(W′∪W′′) = C(W′)∪C(W′′)
(K5) C(C(W)) = C(W)

These are Kuratowski’s axioms for a closure function ofV, see e.g. [7]. Thus,C is a closure
function that defines a (finite) topologyτC on V. Clearly, a setW is closed in(V,τC) if it
consists exactly of all vertices reachable fromW. We call τC the reachability topologyof
the landscape. We note in passing that it may also be of interest to study in more detail the
generalized, not idempotent, closure function defined by reachability on a single shelf.

In the following, we will need a characterization of connected sets.

Lemma 6 A set W isconnectedin the topological space(V,τC) if and only if there is a
(finite) sequence x= x0,x1, . . . ,xl = y such that xi ∈C(xi−1) or xi−1 ∈C(xi), i.e., if and only
if P(xi−1 xi) > 0 or P(xi  xi−1) > 0.
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Proof Recall that, in any topological space, the setC({x}) is connected and the union of two
intersecting connected sets is also connected. The condition above amounts to the existence
of a (finite) chain of connected sets connecting any two points inW. HenceW is connected
whenever the condition is satisfied. Conversely, suppose there is no such chain betweenx
andy. Then there is a maximal setU ⊂W of points that are connected tox, while y /∈U . For
everyz∈W\U ,C(z)∩U = /0 andz /∈C(U). ThusC(W\U)∩U = /0 andC(U)∩(W\U) = /0,
i.e,W violates the Hausdorff-Lennes condition for connectedness.

In the following we will also need a slightly modified notion of maximality w.r.t. set
inclusion. Usually, a setA is maximal for a propertyQ if A has properyQ but A∪{x} does
not have propertyQ for all x /∈ A. Here we need to modify this to “A∪Rx does not have
propertyQ for all x /∈ A” whereRx is the set of mutually reachable points.

7 Valleys, Basins, and Barriers

The topologyτC provides a useful device to describe the structure of the landscape. A natural
notion is that of a “valley”:

Definition 9 A valleyis amaximalconnected subsetW ⊆V(G) such that all verticesy /∈W
are unreachable from everyx∈W andW is connected.

If W is a valley, thenx∈W impliesC(x) ⊆W since by definition no vertices outside ofW
are reachable from withinW. Therefore,W =

⋃

x∈W C(x) = C(W). The valleys are therefore
the maximal closed connected sets w.r.t. the topology defined byC.

Consider a locally minimal shelfGf (x) and setL := V(Gf (x)). Local minimality means
N>(L) = /0. ThusL together with the set of all pointsz for whicheveryadaptive walk ends in
L forms a valleyWL. Under conditions (A2), (A3), (B1), and (C1),L will contain sub-valleys
Wz, each consisting of a single local minimumz∈ L and all those verticesz for which all
adaptive walks lead toz. The importance of the valleys of typeWL lies in the fact that every
trajectory of any combinatorial vector field statisfying (A1) and any of (B1-B3) ends in a
uniquely definedWL.

More generally, minimal closed sets correspond to the vertices that are restpoints in all
admissible combinatorial vector fields,C(x) = {x}, or to unions (again over all admissible
combinatorial vector fields) of∼η equivalence classes. By transitivity of reachability, these
sets are of the form{y∈V|P(x y > 0) andP(y x > 0)} 6= {x}. Every adaptive walk in
the landscape necessarily ends in one of these minimal closed sets. We can therefore label
everyx∈V by the collectionΞ(x) of minimal closed sets that are reachable fromx, Fig. 4.

A valley can be identified by the setϒ of minimal closed sets that it contains.

Lemma 7 A subset W⊆V(G) is the valley labeled byϒ if and only if (i) W is connected,
(ii) x ∈W impliesΞ(x)⊆ϒ , and (iii) Ξ(x)⊆ϒ implies x∈W.

Proof SupposeW satisfies (i), (ii), and (iii). We first observe that (ii) implies thatW is closed
because every vertexy reachable fromx∈W satisfiesΞ(y)⊆ Ξ(x), and hencey∈W. To see
thatW is maximal, we argue as follows: Consider a vertexz∈V \W. By (iii), Ξ(z) 6⊆ϒ . If z
is contained in a minimal closed setC /∈ϒ , i.e.,Ξ(z) = {C}, thenW∪{z} is not connected
because by constructionz is not reachable from withinW and no vertex inW can be reached
from within C. On the other hand, ifz is not contained in a minimal closed setC, then there
is a minimal closed setC′ ∈ Ξ(z)\ϒ , and in particular a vertexz′ ∈C′ that is reachable from
z. Sincez′ /∈ W∪{z} while z′ ∈ C(W∪{z}), we we conclude thatW∪{z} is not a closed
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Fig. 4 Valley structure of a simple landscape. Each vertex is annotated with the list of reachable local minima.
Each valley is characterized by such a listϒ and contains all vertices labeled by a subset ifϒ . The minimal
closed subsets, here{1} through{5} are always valleys. In addition, this landscape has the valleys{1,2},
{2,3}, {4,5}, {3,4,5}, and{1,2,3,4,5}. Valley-connecting points are indicated by circles.

set. ThusW is a maximal connected closed set.
Now suppose thatW is a maximal closed connected set, and setϒ =

⋃

x∈W Ξ(x). Then (ii) is
trivially true andW contains in particular all minimal closed setsC ∈ϒ . Now suppose that
there is a vertexz /∈W with Ξ(z)⊆ϒ . All adaptive walks emanating fromz thus eventually
reachW and all verticesy along such a walk satisfyΞ(y)⊆Ξ(z)⊆ϒ . Hence we can expand
W by the last mutually reachable subsetRy outside ofW, contradicting maximality. Hence
Ξ(z)⊆ϒ impliesz /∈W.

The valleys of the landscape(G, f ) do not form a hierarchical structure. In Fig. 4, the
valleys{1,2} and{2,3} are a counterexample. Nevertheless, the valleys are closely related
to the barrier trees of the landscape. In particular, we can identify the (lowest) points that
connect valleys with each other.

Definition 10 A vertexu∈ V is avalley-connecting vertexif Ξ(u)Ξ(v) 6= /0 for everyv∈
C(u)\Wu, whereWu is the set of vertices that are mutually reachable fromu.

In general, there can be multiple, disconnected, valley-connecting vertices linking the same
two valleys. In Fig. 4, there are two vertices connecting thevalleys{1} and{2}, which have
different fitness values.

In order to connect our present discussion with earlier work, in particular [4,6,29], we
briefly discuss the notation of saddle points in the context of our present formalism.



15

f

A

B
D

C

E F

G

u

s
t

q

Fig. 5 Valleys, basins, and adaptive walks. In this example, thereare 7 valleys denotedA to G. The minimal
valleys areA throughD corresponding to the four local minima of the landscape. ThevalleysA andB are
connected by the direct saddle points. The direct saddleq betweenA andC has a strictly higher energy than
saddleu between the same two valleys (assuming that there is no adaptive walk connectingu with a point in
A). It is a saddle betweenA andD because it is the direct saddle between the valleysE andD andA ⊆ E.
The barrier tree of the landscape reflects the inclusion relations of the valleys:A,B ⊆ E, C,D ⊆ F, E,F ⊆ G.
The valleyG corresponds to the entire landscape.

Definition 11 A vertexs is a direct saddle point separating two minimal closed setsW1 and
W2 if (i) there are pointsy1 ∈ W1 andy2 ∈W2 with P(s y1) 6= 0 andP(s y2) 6= 0, and
(ii) there is no vertexs′ with f (s′) < f (s) that also has property (i).

A direct saddle point is therefore a valley-connecting point with minimal fitness connect-
ing two valleys. In [7],basinsof a landscape are discussed that are defined in terms of
the connected components of{x ∈ V| f (x) < η} whereη is the fitness of a saddle point.
This connects well to our present discussion. The subsets ofvalleys below a certain fitness
threshold are always connected sets. Thus, basins are connected sets of the form

⋃

W∈V

{x∈W| f (x) < η} (31)

constructed from maximal collections of valleysW ∈ V . Saddle points, i.e., vertices of min-
imal fitness that connect distinct basins are therefore necessarily valley-connecting points
between valleys associated with the distinct basins that they merge. Given an arbitrary pair
of disjoint valleys, their direct saddle can have a strictlylarger value off than the saddle
point connecting the associated basins, Fig. 5.

We remark, finally, that the flooding algorithm implemented in thebarriers program
[4,6] identifies saddle points as the lowest energy points that have neighbors with lower
energy that are connected by means of gradient descent walksto local minima in two distinct
valleys. This is equivalent to the existence of two adaptivewalks starting at the saddle points
that terminate in the same local minima. This flooding algorithm can easily be modified to
keep track of the labellingΞ(x). In the non-degenerate case,Ξ(x) is simply the union of
the setΞ(y) of all neighbors ofx that are reachable. In the degenerate case one has to keep
track of all neighbors of the setWx that is mutually reachable fromx as described in [6].
This gives rise to the recursion

Ξ(x) =
⋃

x′∈Wx

⋃

y∈N(x′)∩C(x)

Ξ(y) (32)
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Valley-connecting points are therefore recognizable in the course of the flooding algorithm
as those verticesx for which the unionΞ(x) does not coincide with the label setΞ(y) of at
least one of the downward neighborsy.

A detailed investigation of the relationships between the valley structure of the land-
scape and the basins and barriers of the landscape discussedin earlier work [4,6,7,29] goes
beyond the scope of this contribution. These connections will be explored in a forthcoming
contribution.

8 Macrostates

In [29], macrostates were identified with “basins”, i.e., set of vertices that are connected to
the same local minimum (or equivalently, the same minimal valley) by means of gradient
descent walks. Since gradient walks are not unique in degenerate landscapes, this definition
becomes problematic in many applications. Here, we proposeto relax the requirement that
macrostates must be classes of a partition of microstates and instead consider macrostates
that are linear combinations of microstates. Of course, we want the definition of macrostates
to reflect the geometric structure of the landscape as closely as possible. Thus we index
macrostates by the collection of minimal valleys. This makes sense because all trajectories
under all combinatorial vector fields on the landscape end inone of these valleys. Instead of
assigning each vertexx∈V to a unique macrostate, we now distribute “shares” ofx among
all those minimal valleys that can be reached fromx. Naturally, the share of valleyα is
computed as the probability

pα(x) = ∑
y∈α

P(x y) (33)

that a trajectory starting atx ends up inα . The partition function associated with this
macrostate is then simply given by

Qα = ∑
x∈V

∑
y∈α

P(x y)exp(−β f (x)) (34)

and we easily convince ourselves that

∑
α

Qα = ∑
x∈V

exp(−β f (x)) (35)

is satisfied, i.e., this construction of the macrostates still properly reflects the thermodynam-
ics of the microscopic system.

We can now use our “mixed” macrostates to refine equ.(1). Since the contribution of
y to the partition function of the macrostateα is pα(y)exp(−β f (y)), the approximation
assumption that the folding trajectory equilibrates within the macrostate becomes

Prob[y|γ ] ≈ pγ (y)exp(−β f (y)/Qγ . (36)

A transition tox, on the other hand takes us to macrostateα with probability pα(x), so that

rα ,γ ≈ ∑
x,y∈V

pα(x)rxypγ (y)exp(−β f (y))/Qγ (37)

For deep valleys equ.(1) will still be an excellent approximation: Below the saddle point that
separatesγ from its most easily accessible neighbor we havepγ (y) = 1, while exp(−β f (y))/Qγ
is already small above this saddle height. Similarly, in this type of landscape,pα(x) will be
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1 or at least close to 1 for points not much above the saddle point. Hence we approximately
recover equ.(1). On the other hand, if the valleys are shallow or even nearly flat, separated
by low saddles, then the stastistics of pathways leading to different valleys will play a large
role [26].

9 Concluding Remarks

We have developed here a framework to study adaptive walks and associated structures for
fitness landscapes with complex degeneracies. Combinatorial vector fields play a central role
in this endeavour. They imply a deterministic “down-hill” dynamics on the landscape that
essentially considers adaptive walks as admissible trajectories. The given landscape can be
understood as a Lyapunov function of the admissible combinatorial vector fields. In case of
landscapes with neutrality, there is some freedom to choosewhich steps to neutral neighbors
are acceptable, i.e., how the Lyapunov function must behavealong neutral steps. The crucial
technical result is that the set of admissible combinatorial vector fields has a simple product
structure, that allows combinatorial vector fields on the entire landscape to be constructed
as the unrestricted combinations of combinatorial vector fields on the shelves of(G, f ). The
shelves are subgraphs determined by the connected components of neutral networks, and
specialize to individual vertices and their downward neighbors in the non-degenerate case.
Introducing weights for the combinatorial vector fields that depend on their steepness allows
us to bring back the stochastic aspect of adaptive walks in a controlled way that is amenable
to a thermodynamics-like formulation in terms of partitionfunctions.

The framework represented here connects in a natural way to previous work on the basin
and barrier structure of landscapes. In particular, reachability w.r.t. admissible combinatorial
vectorfields on(G, f ) defines a finite topology on the vertex setV of the underlying graph.
This topological structure gives rise to a natural notion of“valleys” that is closely related
to the barriers and saddle points investigated in previous work. This valley structure, in
particular, can be identified in the course of the same flooding algorithm that is used to
determine basins and barriers in thebarriers program.

The framework developed here can be of interest much beyond that however. It becomes
straightforward, for example, to investigate dependencies between adaptive walks. It follows
immediately from the discussion here that two paths, one from x to y and the other fromp to
q, are independent if they traverse disjoint sets of shelves.On the other hand, they become
dependent if they pass through a common point: uniqueness oftrajectories implies that they
must be identical from the intersection point. Otherwise they can only be realized by disjoint
sets of combinatorial vector fields.

Acknowledgements We thank Jürgen Jost for his suggestion to consider the relationships of landscapes and
combinatorial vector fields.
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Appendix: Combinatorial Vector Fields on Simplicial Complexes

Let M be a simplicial complex constructed over the setK of simplices, see e.g. [14]. Ifσ
andτ are simplices ofM, we writeσ < τ if σ lies in the boundary ofτ .

Definition 12 A combinatorial vector fieldon M [10] is a mapη : K → K ∪{∅} such that
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1. If η(σ ) 6= ∅ thendimη(σ ) = dim(σ )+1, andσ < η(σ ).
2. If η(σ ) = τ 6= ∅, thenη(τ) = ∅.
3. For allσ ∈ K, |σ−1| ≤ 1.

The simplicial complexM(G) associated with a graphG consists of the vertices and
edges ofG, K = V ∪E, with v < e if and only if v ∈ V is a vertex incident with the edge
e∈ E. Condition (i) implies thatη(v) is either∅ or an edge incident withv for any vertex
v∈V, while η(e) = ∅ for all e∈ E because there is no higher-dimensional simplex for and
edgee to be mapped to. Condition (ii) thus becomes void on graphs, and we can viewη on
G simply as a map from vertices to edges. Condition (iii) finally implies that an edgee∈ E
is the image of at most one of its two incident vertices. It follows that a combinatorial vector
field onG is characterized by the properties stated in Definition 1.

Definition 13 A simplexσ ∈ K is arest pointof η if η(σ ) = ∅ andη−1(σ ) = /0

On graphs, thus,{x,y} is a rest point if and only ifη(x) 6= {x,y} andη(y) 6= {x,y}.

Definition 14 An η-path is a finite sequence of simplicesγ =(σ0,τ0,σ1,τ1, . . .σn−1,τn−1,σn)
such thatη(σi) = τi for 0≤ i < n andσi+1 < τi .

On a graph,γ necessarily alternates between vertices and edges. Since the edgeei is deter-
mined asη(vi) it follows thatvi+1 is the other end ofei . It is therefore uniquely determined
by η(vi). Henceγ is an ordinary path onG whose sequence of vertices is determined byη
(except for the start and end point).

Definition 15 [10] A Lyapunovfunctionof the combinatorial vector fieldη is a function
F : M → R such that

1. if σ /∈ R andτ > σ then
(a) F(σ ) < F(τ) if τ 6= η(σ )
(b) F(σ )≥ F(τ) if τ = η(σ )

2. if σ ∈ R andτ > σ then
(a) F(σ ) = F(τ) if σ ∼ τ
(b) F(σ ) < F(τ) if σ 6∼ τ

To specialize this to graphs, we simply translate the conditions one-by-one

1. If x∈V \R andx∈ e thenF(x) ≥ F(e) if e= η(x) andF(x) < F(e) otherwise.
2. If x∈V ∩R andx∈ e thenF(x) = F(e) if x∼ eandF(x) < F(e) otherwise

Now consider explicitly the “other end” of the edgee:

1. If x∈V ∩R andη(x) = {x,y} thenF(y) = F(x).
2. If e= {x,y} ∈ E∩R thenF(e) > F(x) andF(e) > F(y).
3. If e∈ E \R then, w.l.o.g.,e= {x,y} ande= η(x). In this caseF(x) ≥ F(e) > F(y).

This implies
4. If x∈V \R andη(x) = {x,y} thenF(y) < F(x).

This in turn easily translates to definition 4 in the main text.


