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Abstract:
Despite the rapidly increasing number of sequenced and re-sequenced genomes, many issues regarding the computational
assembly of large-scale sequencing data have remain unresolved. Computational assembly is crucial in large genome
projects as well for the evolving high-throughput technologies and plays an important role in processing the information
generated by these methods. Here, we provide a comprehensive overview of the current publicly available sequence as-
sembly programs. We describe the basic principles of computational assembly along with the main concerns, such as
repetitive sequences in genomic DNA, highly expressed genes and alternative transcripts in EST sequences. We sum-
marize existing comparisons of different assemblers and provide a detailed descriptions and directions for download of
assembly programs at:http://genome.ku.dk/resources/assembly/methods.html.

Keywords: Assembly methods, EST, shotgun, genomes, high-throughputsequencing.

2



1 Introduction

Genome sequencing is a discipline that has undergone tremendous development in the past. With the introduction of
the different new massively parallel sequencing technologies the field will go through further transformations as new
challenges arise. Today 567 bacterial genomes with up to 10.5 million base pairs (Plesiocystis pacifica SIR-1) have been
sequenced and submitted to NCBI (as of October 9, 2008). In addition several eukaryote genomes with approximately
three billion base pairs have been sequenced and assembled (http://www.ensembl.org), and many other sequencing
projects are under way (http://www.genomesonline.org) [1].

The experimental technique used in most de novo sequencing projects of higher organisms, DNA chain termination,
was developed three decades ago and remains, except for muchhigher levels of automation, basically the same. The
introduction of new massively parallel sequencing methods, however, opens completely new fields of application. Shortly
after the introduction of sequencing methods, some of the first reports of the determination and comparison of cDNA
sequences were published. Late in the 1970s the bacteriophages phiX174 and Lambda [2, 3, 4] were among the first
genomes to be completed together with the human mitochondrion [5, 6].

In the following decade the shotgun sequencing strategy wasintroduced [7, 8], and during the subsequent years it was
extended by applying it to larger and larger DNA sequences cloned in plasmids (a few kilobases (kb)), cosmids (40 kb)
[9], artificial chromosomes cloned in bacteria (BAC – Bacterial Artificial Chromosome) and yeast (YAC – Yeast Artificial
Chromosome), with inserts of 100 to 500 kb [10]. The assemblyof whole genome shotgun sequencing data was deemed to
be futile until the successful WGS assembly of the 1.8Mb genomeHaemophilus influenzaein 1994 [11]. An approximate
time line of the major breakthroughs and milestones in sequencing is shown on Fig. 1.

[Figure 1]

“High throughput” sequencing (HTS) of cDNA was initiated in1991 by Adams [12], who also introduced the term
"Expressed Sequence Tag" (EST) to refer to this new type of sequence information. Collections of ESTs have given a first
good approximation of the diversity of all protein coding genes in a tissue [13]. During the years ESTs have become an
important tool with many applications, mostly in relation to gene analysis and gene discovery [14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37,38]

The amount of data generated by the different sequencing projects is overwhelming. For example, sequencing of the
human genome produced 23 and 27 billion bases of raw shotgun sequences in the International Human Genome Sequenc-
ing Consortium and the Celera projects, respectively [39, 40]. However, the vast amount of fragments can not readily be
concatenated to a final sequence. Only by using computers it becomes possible to carry out the assembly of the pieces, but
the outcome as well as the reliability of the result for a given type of data depends on the underlying strategy implemented
in the computer program. Some strategies might be more suited for one type of data than others. Also, the computational
resources of some methods might not scale well with the number of sequences in the data set. Though the experimental
techniques have essentially driven the computational aspect of sequence assembly, the computational aspect is still of
utmost importance since any meaningful assembly needs to becomputer assisted.

One of the first assemblers introduced by Staden in 1980 [41] was a computer program developed to store and manipulate
DNA gel reading data obtained from the shotgun method of DNA sequencing. During the next decade several other
programs were presented, among them SEQAID [42], CAP [43], PHRAP [44], and the TIGR assembler, which was
used to assemble the genome ofHaemophilus influenzae[11]. In order to assemble larger and more complex eukaryotic
genomes, new assemblers have been designed and implemented. Among them the Celera Assembler (now part of AMOS)
[45, 46] and GigAssembler [39], both applied to human genomedata sets; the JAZZ-assembler, which was applied to both
the genome ofTakifugu rubripes(the pufferfish) [47] andCiona intestinalis[48]; and the ARACHNE [49] and Phusion
[50] assemblers, both applied to the mouse genome.

Several specific efforts have been undertaken in the contextof EST assembly, and several tools are available. Among them
are StackPack [51, 52], TIGR TGICL [53], and geneDistiller [54]. Some of the tools deal with splice variants [55] or other
problems such as chimerism (and includes alternative splice variants detection) [54, 56, 57]. Approaches to incorporate
rather than remove repetitive sequences are discussed in [58, 59, 60].

Along with the increasing number of completed genomes, efforts are also made in developing computational methods for
comparing genomes. These include TIGRs MUMmer [61, 62], TWINSCAN, GENEWISE, GENOMESCAN [63, 64],
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BLAT [65], and AVID [66, 67] used for alignment and comparison of whole genomes, and FORRepeats which is used to
detect repeats on entire chromosomes and between genomes [68].

The massive effort to sequence the human genome produced a first draft version in 2001 [39], and did, as a draft sequence,
contain numerous gaps. It took another 3 years of sequencingand assembly before the finished version was presented
(which still contains more than 300 gaps) [69].

2 Sequencing approaches

As mentioned the choice of assembly strategy depends on the sequencing method, and the choice of sequencing method
may also depend on the organism that is being sequenced. Issues that can affect the final assembly (other than the
obvious quality of sequence data) are the size of the inserts, whether the sequencing was uni- or bi-directional, the library
construction, the cloning vector, the selection of clones to be sequenced, and the availability of additional information
(consensus genome, ESTs, known verified genes, gene maps, etc.).

Approaches for the de novo sequencing of genomes from higherorganisms using Sanger sequencing [70] will be described
first. In the context of genome resequencing we take a closer look on the new massively parallel sequencing technologies
and their obstacles, though many of the concerns are overlappingeg.sequencing quality assessment.

2.1 Basic sequencing procedure

The basic procedure in sequencing has been to isolate genomic DNA or RNA (reverse transcribed into cDNA), and clone
it into vectors (eg.plasmids, BACs) capable of stable propagation in suitable host cells such asEscherichia coli, see Fig.
2 for a schematic illustration of a sequencing vector. Several cloning systems with insert sizes varying from hundreds of
base pairs to megabases have been developed. The ideal clonelibrary for genomic sequencing has the following features.

1. The clones are highly redundant, covering the entire genome many times (typically 6–10).

2. The clone coverage is random and not biased towards or against specific regions of the genome.

3. The clones are stable, not subject to recombination or reorganization during the propagation process [71].

It should be noted that one of the major improvements of the new massively parallel sequencing technologies is that they
do not rely on vector cloning prior to sequencing, and the concerns listed here are therefore not directly applicable to those
technologies.

[Figure 2]

After propagation, the clones are selected and the sequencing is performed. An essential feature in sequencing is the
attachment of quality values to the raw sequences. The quality values indicate the likelihood of each base call being
correct. In the assembly stage the quality values will help to distinguish true DNA polymorphisms from sequencing errors
and match end sequences of low quality [72, 73, 74, 75].

In genomic shotgun sequencing, which typically uses a single individual DNA source, sequences sharing less than 98%
identity are usually assumed to come from different regionsof a genome (including different repetitive elements) [76]. In
contrast, EST data is usually derived from a variety of sources representing the spectrum of polymorphisms in the original
samples. These will usually include a number of erroneous polymorphism which are caused by sequencing errors inherent
in single pass sequencing, a relatively high rate of insertions and deletions, contamination by vector and linker sequences
and the non-random distribution of sequence start sites in oligo(dT)-primed libraries. Therefore, the degree of identity in
overlapping sequences from the same gene will often be lowerin EST projects than in genomic sequencing projects. In
addition, the patterns of overlapping sequences caused by alternative spliceforms are different from those observed in a
genomic shotgun project [76].
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The major tool to gather sequence information was the methodintroduced by Fred Sanger in the second half of the 70’ties.
It uses dideoxynucleotide triphosphates (ddNTPs) as DNA chain terminators [77, 70]. The classical Sanger approach is
carried out in four independent DNA polymerase reactions. Besides the DNA template and deoxynucleotides (dNTPs)
a reaction mix contains either ddATP, ddCTP, ddTTP or ddGTP.Each reaction results in DNA fragments of different
length terminating with the respective ddNTP. Electrophoresis of the fluorescence- or radio labeled fragments allows the
recovery of the template sequence. Later, the use of dye-terminators made it possible to perform sequencing in a single
reaction rather than four – the basic principle however remained the same. While the classical Sanger approach requires
separate synthesis and detection steps, High Throughput Sequencing (HTS) technologies employ sequencing-by-synthesis
and sequencing-by-ligation approaches, allowing for simultaneous synthesis and detection.

2.2 Shotgun sequencing

Two approaches for genome shotgun sequencing can be distinguished: whole-genome shotgun (WGS) sequencing and
hierarchical shotgun sequencing.

2.2.1 Whole Genome Shotgun

Sequencing using the whole genome shotgun approach basically means that the genome is randomly broken into pieces
and cloned into a sequencing vector. The inserts are subsequently processed to generate sequences of bases (referred to
as reads). See illustration on Fig. 3a. During the mid 1990s several groups recognized that sequence information from
both ends of relatively long inserts dramatically improvesthe efficiency of sequence assembly [9, 78, 79, 80, 81, 82].
In contrast to single sequence reads from one end of the shotgun clones pairs of sequence reads from both ends have
known spacing and orientation. Exact knowledge of the length of the insert is not required to utilize the advantages of end
sequencing in assembly [83], but good estimates of clone length will aid the assembly immensely.

[ Figure 3 ]

2.2.2 Hierarchical shotgun sequencing

The ’Hierarchical shotgun sequencing’ (also referred to as’map-based’, ’BAC-based’ or ’clone-by-clone’) approach in-
volves generating and organizing a set of large insert clones (typically 100–200 kb each) covering the genome (a “minimal
tiling path”), followed by separate shotgun sequencing on each clone. For illustration see Fig. 3. It is possible to establish
a tiling path of overlapping BAC-clones using only BAC fingerprinting technologies [84]. However, knowledge of unique
genome markers (eg.ESTs or sequence-tagged sites (STS)) and their location in the genome map is of great help for
organizing the BAC clones in the correct order. In hierarchical shotgun sequencing the sequence information is local,
therefore the risk of long-range and short-range misassembly is reduced.

2.2.3 Mixed strategy sequencing

A strategy that can be used on large complex genomes is the ’mixed strategy sequencing’. The technique utilizes both
hierarchical and whole-genome shotgun. The method combines a light (x1) BAC clone coverage of the genome, with
whole genome shotgun sequencing . The BAC clones act as a basic framework for WGS sequence assembly. The method
was successfully applied to rat genome [85].

2.2.4 Reduced Representation Sequencing

A variant of WGS is “reduced representation sequencing” (RRS), where one selectively chooses subsets of the genome
to avoid sequencing the (often much) larger regions that arenot of interest. In [86], SNPs were discovered by mixing
DNA from many individuals, preparing a library of appropriately sized restriction fragments, and randomly sequencing
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clones. Here, the choice of the restriction fragments effectively selects only a small subset of the human genome. Several
approaches to RRS have been employed for plant genomes [87, 88, 89]: Methyl-filtration (MF) sequences uses the
endogenous restriction-modification system ofE. coli to eliminate methylated DNA inserts, the RescueMu (RM) approach
focuses on the gene-rich regions which are rich in mutator transposons, and High-Cot filtration avoids repetitive and low-
copy sequences due to differences in the relative rates of DNA re-association. Most of the Maize and Sorghum genomes
have been sequenced using MF.

Many of the applications of the new high throughput sequencing platforms are based on various RSS strategies (see 2.2.6).
This includes electrophoretic size separation to enrich for small RNA molecules (eg. [90, 91]); reduced representation
bisulphite sequencing for genome wide methylation analysis [92]; flow sorting of derivative translocation chromosomes
for breakpoint mapping [93]; enrichment of DNA-fragments bound to specific proteins by chromatin immunoprecipitation
of fixed, sheared DNA, for identification of transcription factor binding sites (CHiP-Seq) [94, 95, 96]; enrichment of
specific parts of the genome by multiplex PCR-amplification [97] or by hybridization to custom made arrays [97, 98],eg.
for SNP discovery [99] and in situ exon capture [100].

2.2.5 EST sequencing

Expressed Sequence Tags (ESTs) are sequences representinggenes which can originate from specific tissues [12]. In
EST-sequencing a single automated sequencing from one or both ends of a cDNA-inserts is performed. This single-
pass approach is the major reason EST-sequencing is cost effective [101]. For additional information, seeeg. [102] and
references therein.

In most cases EST sequencing projects are aimed at establishing partial sequences of transcribed genes rather than full
length cDNA sequences. However, this approach features some special challenges such as common sequence motifs,
alternative transcripts and paralogous genes are challenges that potentially impact the assembly quality. These issues will
be discussed further in section 4.4.3.

2.2.6 Massively parallel sequencing

Recently, a number of new sequencing technologies have emerged. The development was initiated by 454 sequencing and
followed by Solexa sequencing and others [103, 104, 105, 106, 107]. The common feature of all these technologies is that
they are massively parallel,ie. they generate a large number of different sequence reads in asingle run. The generated
small reads are usually aligned to a reference genome, and further analyzed, see Fig. 3d for an illustration.

The methods generally use one variant or another of fixing many sequence fragments on a substrate, cyclically adding
different bases with some – technology-specific – luminal characteristics, and recording an image at each cycle. Image
analysis is used to recover the all sequences at once. Sequencing of all immobilized fragments thus proceeds in parallel.

Compared to traditional sequencing a large amount of sequence data is generated at a drastically reduced cost per base.
The most important disadvantage of high throughput sequencing is the significantly reduced read length, which limits
their application in de novo sequencing of complex genomes (eg.due to repeats), at least using simple shotgun strategies.
However, these new platforms have many uses in genome resequencing, especially if it is possible to align the fragments
to an existing good quality reference genome.

Due to the amount of raw sequence data, high throughput sequencing is valuable in areas such as SNP finding. In EST
sequencing, HTS technologies might enable a researcher to make accurate digital expression profiles, even including low
abundance transcripts, and help detecting alternative splicing (depending on the platform chosen).

One of the key technologies that gave rise to the era of HTS, pyrosequencing, was introduced in 1998 [103]. This
sequencing-by-synthesis method is at the very heart of GS FLX systems by 454 Life Sciences [104]. The detection
is based on pyrophosphates (PPi) released during the polymerase reaction. Sulfurylase converts PPi to ATP which is
subsequently consumed by luciferase to emit light in the visible spectrum. In GS FLX systems, a library of DNA templates
is immobilized on DNA capture beads, amplified using emulsion PCR (emPCR) and loaded onto proprietary titer plates
with several hundreds of thousands reaction wells. During arun, the four nucleotides are flowed sequentially over the
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plates. The luciferase reaction triggered by nucleotides complementary to DNA templates is recorded by a CCD camera.
A washing step is necessary to allow the next detection step.The GS FLX currently allows read lengths of several hundred
bases. According to the manufacturer a single instrument run with two high-density plates generates information for about
20 million base pairs.

A competing technology, Solexa, now sold by Illumina (http://www.illumina.com), uses optically transparent surfaces
to immobilize fragmented and adapter-tagged DNA. Each attached fragment is subsequently amplified∼1000 fold by
repeated steps of bridge amplification. The resulting clonal clusters are then sequenced using reversible terminatorswith
removable fluorescent dyes. With approximately 30-40 bp Solexa reads are significantly shorter compared to GS FLX.
However, close to 50 million clones per flow cell can be sequenced in parallel, resulting in presently >1.5 Gb of sequenced
DNA in a single sequencing run. This amount can be doubled by sequencing the other end of each fragment (paired-end).
Improvement in chemistry may further increase the read lengths and hence push the total amount of sequenced DNA well
beyond the size of a human diploid genome.

A third synthesis-based technology, tSMS (true Single Molecule Sequencing), is currently distributed by Helicos (http:
//www.helicosbio.com). No DNA amplification is required for this approach. Instead, fragmented single stranded
DNA molecules are directly immobilized on a solid surface. Similar to Solexa, tSMS works with nucleotides that carry a
removable, laser light-detectable fluorescent. At the moment the system is able to sequence reads with lengths up to 55
bases at a speed of 25 to 90 million usable bases per hour.

SOLiD, a system now sold by Applied Biosystems (http://www.appliedbiosystems.com), is a technology that uses
a sequencing-by-ligation approach. An adapter-tagged library of short DNA fragments is amplified with emPCR, immo-
bilized on capture beads and then deposited onto high-density glass arrays. The SOLiD sequencing-by-ligation protocol
uses four by four sets of 8-mer probes. In each set only two bases, fluorescently labeled, are specific. The interrogation of
sequences is done in four phases. If a probe has specifically bound to the free template in the first phase, say at position
1 and 2, it is enzymatically ligated to the current 5′ end at position 0. After the detection step 3 nucleotides of the probe
along with the fluorescence label are cleaved. The next ligation step interrogates 6 and 7 and so forth. After the first
phase, the ligated sequence is removed, and another set of bases are called. So in the second phase bases 2 and 3 are read,
in the third 3 and 4 and so forth. The advantage of the SOLiD system is that the double base reading leads to an increased
accuracy. Currently SOLiD produces read lengths of about 30-40 bp and a total of 9 Gb per single run, with read length
expected to become longer in the future.

In the future, other technologies may become available, such as the use of solid state nanopores for sequencing of single
DNA molecules [108]. We refer to [109] for an overview, in which several interesting ideas how this approach could be
implemented in practice are presented.

3 Mapping of short high-throughput sequencer reads

Compared to de novo assembly, the mapping of resequenced reads to a template genome is a computationally easier
problem. Still, efficient mapping tools are crucial (see section 4.7), and several tools for mapping of short reads are
available. Most of the tools,ie. MAQ, SOAP, SHRiMP or Eland (proprietary), use seeding techniques that gain their
speed from precomputed hash look-up tables [110, 111, 112].Typically, seeds of fixed length allow for not more than
one or two mismatches. In addition, the capability to detectinsertions and deletions, as they frequently occur in 454
sequences (see section 4.4.4) is very limited,and most programs can only detect indels in subsequent alignment runs.
For short sequences it would be helpful, but computationally more expensive, to incorporate indels right from the start.
Current mapping tools have different additional features.The program MAQ,eg., additionally supports paired-end read
matching — helpful to deal with paired-end reads producedeg.by the GS FLX and other high throughput platforms.

4 Computational assembly

Computational assembly is the only way to efficiently assemble sequenced fragments of DNA. However, a sufficient
amount of high quality sequences are required. The assemblyprograms should be able to handle large data sets effectively
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and avoid misassemblies in the presence of large repetitiveor duplicated regions and redundant sequences. To accomplish
this, effective algorithms to handle large input data sets with the use of minimal computer time and memory are needed.

One of the primary difficulties in computational genome assembly is to develop an algorithmic approach capable of de-
tecting stretches of repetitive DNA without causing misassemblies. Repetitive sequences complicate assembly as different
pieces of sequence can share the same repeat sequence originating from different genomic locations. Since the pieces are
put together by searching for matching overlapping nucleotides, repeats can be put together erroneously. Typically, for
shotgun data, repetitive sequences are revealed by clusters containing more overlapping reads than would be expected by
chance, illustrated on Fig. 4.

[ Figure 4]

In EST datasets the main difficulty is to develop an algorithmic approach that, in addition to efficient assembly, can handle
highly expressed genes, paralogous genes, alternative spliceforms and chimerism in the dataset.

The theoretical background for genome assembly lies in computer science, and an insight into the mathematical and
theoretical background can be found in [113] and referencestherein.

Although pyrosequencing with a whole-genome shotgun approach has been successfully applied to bacterial genomes
[104], the construction of high-quality assemblies with high-throughput sequencing data is still a non-trivial problem
even for short genomes. At present, no approach has been proposed to directly assemble large animal or plant genomes
directly from short sequences obtained using HTS. As described below the SHort Read Assembly Protocol (SHRAP)
[114], however, comprises a protocol for high-throughput short read sequencing that differs in two respects from classical
hierarchical sequencing approaches. This protocol however, expects read lengths much longer (200 nucleotides) than
those produced by SOLiD or Solexa. The assembly methodologyis based on the Euler engine introduced in 2004 [60].
The Euler-SR assembler, specifically designed to assemble short reads, uses an updated version of the Euler engine to
reduce memory requirements. The results for real Solexa reads, however, were less convincing [115] due to the poorly
understood error model and highly variable error rates across different machines and run times.

4.1 Basic principles of Assembly

For the majority of traditional assembly programs the basicscheme is the same, namely the overlap-layout-consensus
approach. Essentially it consists of the following steps [44, 116]:

• Sequence and quality data are read and the reads are cleaned.

• Overlaps are detected between reads. False overlaps, duplicate reads, chimeric reads and reads with self-matches
(including repetitive sequences) are also identified and left out for further treatment.

• The reads are grouped to form a contig layout of the finished sequence.

• A multiple sequence alignment of the reads is performed, anda consensus sequence is constructed for each contig
layout (often along with a computed quality value for each base).

• Possible sites of misassembly are identified by combining manual inspection with quality value validation.

Prior to the assembly, the electropherogram (for Sanger sequencing, images for massively parallel sequencers) for a given
sequence is interpreted as a sequence of bases (a read) with associated quality values, these values reflect the log-odds
score of the bases being correct. The basecaller PHRED [117]is often used, however alternatives exist,eg. the CATS
basecaller [118].

The reads can then be screened for any contaminant DNA such asEscherichia coli, cloning or sequencing vector. Low
quality regions can be identified and removed [45]. Base quality values can be used in computation of significant overlaps
and in construction of the multiple alignments [44, 116]. The pipeline for a typical sequence assembly is sketched on Fig.
5.
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[ Figure 5 ]

For high-throughput sequencing data, the basic proposition for SHRAP is to sample clones from the genome at high
coverage, while sequencing reads from these clones at low coverage. SHRAP starts off with assembling the reads greedily
to small local assemblies and subsequently to contigs on each clone. It proceeds by ordering the clones in a “clone graph”,
and constructing “clone contigs”, which are then assembledindependently. Computer simulations of the procedure show
that the approach can reach a quality comparable to the current assemblies of single human chromosomes and fruit fly
genomes using reads of 200nt with an error rate of not more than 1%. These are constraints that are too strict for short
(Solexa or SOLiD) reads (≈ 40bp) and because of higher error rates challenging for real 454 reads [119]. Furthermore,
for mammalian genomes the use of a hierarchical sequencing strategy might be somewhat cumbersome.

However, the use of templates might bail Solexa and SOLiD users out: In a recent study, de novo assemblies of chloroplast
genomes (≈ 120 kb) were improved by aligning preassembled contigs to reference genomes [120]. After de-Bruijn graph
assembly of reads [121], small contigs were aligned to closely related chloroplast genomes. Between 67% and 98% of
the contigs could be aligned to such templates. If alignmentfailed, sequences were scanned for similarity using BLASTN
[122]. The authors reported that successful BLASTN matchestypically contained> 100 bp insertions relative to the
reference genome. In the end, however, their assemblies were estimated to be 88–94% complete. Yet, the assembly of
mammalian genomes or genomes without good reference sequences seems to be a considerably more difficult task. The
successful de novo assembly of Chloroplasts genomes with 454 reads has been shown earlier [123].

454, SOLiD, Solexa technologies allow convenient generation of mate-pair/paired-end sequences,ie. the ability to se-
quence both ends of each DNA fragment. However, in an assembly using a hybrid dataset of real 454 reads and simulated
mate-pair data, about 96% of the mate-pairs did not contribute additional information and hence did not improve the
assembly [115]. Likewise, in a hybrid dataset of 454 reads and Sanger reads the vast majority of long sequences did not
improve the assembly substantially, measured by N50 contigsize. Hence, the authors concluded that hybrid protocols
should be reviewed critically. Despite those simulation results, the latter method has already been shown to work quite
well in practice [124], and one area where mate-pair/paired-end sequencing should improve the analysis dramatically is for
the detection of breakpoints related to structural rearrangements,eg.deletions, duplications, inversions and translocations
[125].

4.2 General Assembler differences

When different assemblers try to piece the DNA puzzle together they essentially work from the same input, but the
assemblers differ in the way they utilize the sequence information, and in the way this is combined with additional
information. In general the differences fall in the following categories.

• Overlaps: A lot of different methods are used to find potential overlapsbetween sequences. Some are based on
BLAST (eg.geneDistiller [54, 56]), while other assemblers use various other methods to find similarities between
reads.

• Additional information: Depending on how the sequence reads are produced some additional information might
be available. This information might consist of read pair information, BAC clone information, base quality infor-
mation, etc. Some assemblers use this data to impose additional structure on the assembly of the sequences (eg.
GigAssembler [39]).

• Short read assembly:De novo assembly of the micro reads generated from next generation sequencing platforms
is still challenging. While assemblers have been developedand applied to assemble bacterial genomes successfully
[115, 126], on larger genomes the assembly is performed by mapping the micro reads to reference genomes. The
major next generation sequencing platforms all have built-in software to handle this task,eg.GS Reference mapper,
Gerald for Solexa. In SOLiD systems the mapping tool “mapreads” converts reference sequences into color space
and perform the mapping in color space.

A somewhat related issue is how the sequences are cleaned of contaminant sequences (ie. vector sequences, repeat se-
quences,etc.). While this can essentially be considered separately and independently from the assembly itself, some
assemblers incorporate cleaning in the way they process thereads (eg.[49]).
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These basic ideas will be discussed further in the followingtext, and an overview on how the different assemblers applies
these ideas can be found in the supplemental material (http://genome.ku.dk/resources/assembly/methods.html).

4.3 Overlap identification and alignment

In a whole-genome context, trillions of overlaps between reads are examined [45]. The majority of assemblers uses
alignment algorithms which are general modifications of methods first introduced by Needleman and Wunsch in 1970
[127], Smith and Waterman in 1981 [128] and Gotoh in 1982 [129].

Initial overlap detection is often performed by finding exact identical subsequences (often called words, k-words or k-
mers) between reads, prior to making the actual alignments.These identical subsequences are used to find pairs of
potentially overlapping sequences, which can then be aligned to each other in order to check if they represent a true
overlap. The size of the subsequences varies from method to method, and is dynamic in some assemblers. Furthermore,
the identical subsequences are grouped and used in different ways depending on the assembler.

For almost all assemblers, a modified Smith-Waterman [128] algorithm is used to align candidate overlapping reads.
The basic idea in the alignment algorithms is to use dynamic programming to construct a matrix containing scores of
all subsequences, which is then analyzed to find the “optimal” alignment. Dynamic programming simply means that
the alignment is calculated as extensions to already aligned subsequences. The assembly programs differ in their exact
implementation of this algorithm, as (nearly) all of them use a heuristic approach to decrease the computational load,
thereby increasing speed (eg. [116]). In the assembly of ESTs a clustering step is used to group the input sequences
sharing significant regions of near identity together [130]. On Fig. 6, an assembled cluster is shown, the example is taken
from the Sino-Danish pig EST sequencing project [131].

[ Figure 6 ]

4.3.1 Multiple alignments and the consensus sequence

While the alignment of two sequences is usually straightforward, aligning more than two is not so simple. The standard
Smith-Waterman algorithm can easily be extended to the taskof aligning many sequences by constructing a “multi-
dimensional matrix”. However, the number of calculations rise exponentially with the number of sequences. This sets
severe practical limits of the number of sequences that are viable to align, and therefore finding the true sequence from a
number of overlapping reads becomes difficult.

Precisely how the different assemblers generate a multiplealignment and consensus sequence is only vaguely describedin
the literature, but a common approach is to use a heuristic greedy algorithm (see for example [132]). The greedy algorithm
typically performs pairwise alignment between overlapping reads, from which a multiple alignment is build up iteratively,
ie. adding one sequence at a time, but with this approach there isno guarantee that such a multiple alignment is correct.

After the multiple alignment has been constructed the consensus sequence is found. This would typically be the sequence
generated by taking the most common base at each position in the alignment, however other methods exist. For instance
geneDistiller [54], where ungapped alignments of reads is performed (thus simplifying the multiple alignment). The con-
sensus sequence is constructed by splitting the multiple alignment in 12-mer words and analyzing the relative frequencies
of these, where the presence of alternative transcripts is detected through the frequencies of the 12-mers (and displayed
as stretches of ’alternate consensus’).

The assumption is that the final consensus sequence correspond to the original genomic sequence where the sequenced
fragment originate.
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4.3.2 Eulerian Fragment Assembly

In assemblers aimed at short read assembly (eg.SOLiD reads) an approach based on mathematical graph theoryis often
used, namely the Eulerian fragment assembly method. The Eulerian fragment assembly avoids the costly computation of
pairwise alignments between reads [133]. TheDe Bruijn graphof a genome has as its vertices all distinctk−1 tuples
that occur within the sequence (wherek is the word length that is used). A directed edge is inserted betweens andt if
there is ak tuple〈u1,u2, . . . ,uk−1,uk〉 in the genome such thats= 〈u1,u2, . . . ,uk−1〉 and〈t = u2, . . . ,uk−1,uk〉, ie., if sand
t appear shifted by single nucleotide. A sketch of a graph construction procedure is shown on Fig. 7. In practice one uses
thek-tuples appearing in the collection of the sequence reads and a value ofk between 6 and 9 or 10. In the error-free
case, the genomic sequence can be read off directly as an Eulerian path through the De Bruijn graph (with repeats forming
“tangles”). In real, error-prone data underrepresented k-tuples,ie. k-tuples that appear less frequently than expected from
the coverage rate, indicate sequencing errors and can be omitted.

[ Figure 7 ]

4.4 Data reliability

4.4.1 Preprocessing and cleaning

A critical aspect of any large-scale sequencing effort is the production of high quality data. To obtain this preprocessing
is applied to the reads. For Sanger sequencing this includesbase-calling, filtering of low quality reads, short length
reads (typically less than 100 bp), identification of sequence features such as linker restriction sites, cloning vectors,
polyadenylation tails, library tags, polyadenylation signals [134] and other contaminants like bacterial sequences[135].

There are different computational programs available to detect these contaminations. Most of the existing programs used
for processing solely focus on a single step. While PHRED [117] deals with base-calling, cross_match [44] aims to
identify and mask vector sequences in reads. Preprocessingcan also be done using other programs such as LUCY [135],
a sequence trimming script like SeqClean [136], or ESTprep [134].

In the Solexa system, the module for sequence alignments, Gerald, applies some filters to remove low quality base calling
before the real mapping starts. As it is based on optical detection of ultra-high dense sequence clusters on surface,
chastity and purity of optical signals are crucial for accessing the quality. Distance between clusters is also taken into
consideration. Thresholds for these features can be customized in the program (see Illumina in-house documentation for
details). Other next-generation sequencing systems employ different measures according to their methods.

4.4.2 Repeats

In mammalian genomes the repetitive content can be as high as50%. The repeated fraction includes interspersed re-
peats derived from transposable elements, and long genomicregions that have been duplicated in tandem, palindromic
or dispersed fashion,eg.ribosomal RNA genes, centromeres, heterochromatin and retrotransposons. Such features com-
plicate the assembly into a correct finished genome sequenceand have a great influence on the design of assemblers.
Computationally repeats are typically handled as follows:

• Comparing: By comparing reads to known repeated regions in other genomes, potential repetitive sequences can
be separated (and typically discarded) from the assembly.

• Masking: Regions which have a high depth, that is regions where many reads share the same sequence, are marked
as repeats (illustrated on Fig. 4). Usually such regions arediscarded by the assembler, and are not incorporated in
the assembly,eg.by the method presented in [137].

A standard program for masking repeats is RepeatMasker [138]. It searches through curated repeat databases (eg.Repbase
[139]) using the alignment program cross_match [44] to identify and mask repeats. The speed of cross_match can be
increased by using the software wrapper MaskerAid [140].
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4.4.3 Expressed Sequence Tags

Due to the way that the EST sequences are generated, there areseveral concerns which can severely disrupt attempts to
analyze the data:

Over-clustering: This happens when ESTs from different genes are clustered together, and therefore associated with the
same genetic sequence. This often arise as a result of the cloning procedure, which falsely place two originally separate
sequences in the same read,ie.chimerism. However, paralogous genes can also be clusteredtogether due to high sequence
similarity. Using the traditional (TGICL, d2_cluster) single transitive single linkage clustering methods [141, 142], can
cause all EST from both genes to be assigned to the same cluster. More stringent clustering methods such as the double
linkage of geneDistiller [54] can reduce the amount of falsely clustered reads, and create more consistent assemblies and
consensus sequences [56].

Highly expressed genes:In non-normalized cDNA libraries the fraction of the genes that is highly expressed, will be
represented in a high number and lead to large and deep clusters, that may accidentally contain EST from more than one
gene. There are several ways to handle highly expressed genes depending on the purpose of the investigation: (i) Removal
of known house keeping genes: If the sequence of some house keeping genes of the organism are known, removing
ESTs that originate from these genes can alleviate the problems. (ii) Adding annotated gene sequences: If a genetic
sequence of an annotated gene is known, it can be used as a template for the ESTs. (iii) Seeded clustering: Known full-
length transcripts can be used for ’seeded clustering’, which helps to create smaller, better partitioned clusters andavoid
chimeric assemblies [130].

These procedures can alleviate some of the problems, however some clusters of highly expressed genes can still contain
several thousands EST sequences. Producing a consensus sequence from such a large cluster can be tricky as most
assembler are not able to handle such deep clusters. Severalmethods have been created to deal with this problem, such as
the “containment clustering” of TGICL [130], or the alignment/consensus strategy of geneDistiller [54, 56].

Other minor concerns in EST assembly are overlapping geneseg.they can be on opposite strand and share a UTR-tail or
have common motifs. This can cause the assembly program to assign ESTs from two different genes to the same cluster
[52], and will complicate analysis of the cluster.

4.4.4 Reliability of high-throughput assemblies and sequence data

Although no major comparison of assemblies generated with different HTS technologies has been published yet, prelimi-
nary analysis shows that assemblies with 454 and Solexa significantly differ from those obtained with classical sequencing
reads. In a survey of assemblies forStreptcoccus suisfrom 454, Solexa and capillary data, 454 sequencing of a library
with 5-fold coverage produced 5336 contigs while the Sangermethod, two-fold coverage, resulted in only 1011 contigs.
The length of the largest contig was 5336 for 454 and 12257 forthe capillary sequencing method. Moreover, using Solexa,
a ten-fold coverage was necessary to produce 8370 contigs with a maximum length of only 1687 [143]. The best results
were seen for hybrid assemblies comprising data from at least two different sequencing technologies. The authors con-
cluded that assembly methods are to be refined to address the specific shortcomings of each method [143]. As mentioned
earlier, the differences are likely to be caused by very different error patterns. In the case of the Solexa technology, error
rates are highly position-dependent, variable across different machines and even across different runs [115]. In a recent
investigation on the quality of Solexa reads, the authors found a bias in the read coverage: significantly more reads were
found in GC-rich genomic intervals. Despite the manufactures specifications for the read quality, error rates varied from
0.3% to 3.8% [144]. Compared to 454 sequences, only few insertions and deletions were found [119]. In the future a new
basecalling software,eg.Alta-Cyclic [145], might be able to improve the quality of Solexa sequences. Additionally, it has
been shown that under idealized conditions it is theoretically possible to assemble bacterial genomes (with 80x coverage
of 30 nt reads) [146].

4.5 Assembly of contigs - scaffolding

While the assembly of the individual reads into contigs givesome (local) information, the contigs still need to be set into
the context of the whole genome. This is carried in the last phase of an assembly process: scaffolding, which is the process
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where different (genomic) contigs are organized into even larger frameworks (scaffolds or super-contigs). The contigs are
ordered and oriented in a consistent way, so that the scaffold build is a true representation of chromosomes, though there
may still be gaps between contigs, which are dealt with in newrounds of sequencing (see finishing below).

In the scaffolding stage of an assembly, all the informationusually come from other sources than the reads themselves.
This information includes read-pair information, STS (Sequence Tag Sites), and other sources [147].

4.6 Finishing

When an assembly has been completed, specific parts of the assembly usually need to be reexamined, perhaps due to low
quality of the data, low (or no) coverage of the sequence, sites under suspicion of misassembly, etc. The reexamination
are usually dealt with in an elaborate process where manual inspection is used to analyze the ambiguous section(s) and
new ways are devised to clarify the particular ambiguities.

Analysis of the assembled contigs can be performed with a number of tools. One is Consed [148], which allows navigation
of the assembled contigs and reads, problematic regions canbe searched for with different criteria, and regions can be
tagged for further inspection. Others are Autofinish [149],BACcardi [150], and GAP4 [151], all of which has different
strengths and purposes.

4.7 Genome Resequencing

Recent developments in high-throughput sequencing technologies have ignited the scientific community’s imagination.
Terms such as the “personal genome“ or “1000$ genome“ are nowpopular in the media [152, 153]. The growing number
of publicly available reference genomes allows genome resequencing on a larger scale, as sequencing costs decrease and
throughput increases [154]. However, currently even HTS only allows deep resequencing of a small number of large
individual genomes [155] or of specific parts of the genome. It has been remarked that the full power of high-throughput
sequencers might not be unleashed since no suitable methodsto select for specific genomic subsets are available and
methods for targeted amplification are more likely to be effective [97]. However, recent methods using hybrid techniques
such as microarray-based genomic selection (MGS) and multiplex exon capture to narrow down the number of sequences
or to focus on specific genomic locations may overcome this shortcoming [98, 97]. Thanks to the contribution of James D.
Watson a first complete personal genome, sequenced using 454, was published in 2008 [156]. In this project a set of 106.5
million reads, representing 24.5 billion bases and a depth of 7.4-fold, was generated. The mapped reads in combination
with 454 quality values (Q-values) were used to gather a set of 3.32 million SNPs. Several filters had to be applied to
increase specificity. A read was only included if the BLAT [65] alignment (i) was spanning at least 90% of the read
length, (ii) did not have alternate hits, (iii) had less thanfive mismatches, (iv) had less than five indels. Subsequently, the
remaining 93 million reads were again realigned with PHRAP’s cross_match tool. Three additional filter steps using the
quality score, (see supplementary material for [156]), theratio of the variant to total coverage (> 0.2) and the vicinity
to homopolymer runs (< 5bp) in order to avoid false positive indels ended this complicated procedure. Finally, the
authors were able to discover approximately 500 000 new putative SNPs. Additionally, approximately 2.6 million reads
of novel sequence and reads with low quality alignments wereassembled in 170 000 contigs spanning 48Mb. After a
filter step 110000 contigs spanning 29Mb remained [69]. The authors concluded that those contigs might represent the
25Mb predicted to be absent from the current reference genome. With costs of about 1 million US$, however, the “1000$
genome“ genome still seems to be a distant prospect.

Next-generation HTS has also been applied for the mapping oftranslocation breakpoints. HTS not only reduces the labor
and time cost of traditional methods in detecting translocation breakpoints,eg.in situ hybridization with fluorescent dye-
labeled bacterial artificial chromosome clones (BAC-FISH), but also greatly improve the resolution so that the disrupted
gene can be identified by PCR cloning. Thus, mapping and sequencing breakpoints region with Solexa platform has
been used to identify novel candidate genes for mental retardation [93]. Probability calculations as well as simulations
suggest that current paired-end sequencing technology already provides a high probability of breakpoint detection and
good resolution in localizing structural chromosomal the rearrangements [125].
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5 Overview of assembly methods

Different assemblers use different information in the assembly process. Some only use sequences in fasta format and
the corresponding quality values, while others can assemble without quality values. Additional information on known
sequences (eg. genes), clones, clone sizes and the orientation of the reads(forward-reverse) might be helpful in the
assembly process.

An overview of different assemblers is presented in tables 1a and 1b, which summarizes the approach each program
utilizes in assembly.

[Table 1a]
[Table 1b]

5.1 Assemblers

In the following a large selection of different assemblers that have been created over time are presented. An overview
with shorts presentations of the different assemblers are given on the web-pagehttp://genome.ku.dk/resources/
assembly/methods.html.

One of the (relatively) early assemblers is PHRAP [44], which is still in use, both in itself (for small DNA sequence sets),
and as a subcomponent of WGS assemblers,eg.RePS [157], Phusion [50], JAZZ [158], and ATLAS [159]. OtherWGS
assemblers that also use some variety of the standard overlap-layout-consensus approach are, the Celera assembler [45],
CAP3 [116], RAMEN [160], PCAP [161], the TIGR assembler [162], STROLL [132], and ARACHNE2 [49]. Some new
approaches to assembly have been attempted, among them mira[59] and TRAP [58], which try novel ways to deal with
repetitive sequences by checking the trace and quality files. An emerging approach is to use more explicit graph based
programs, such as Euler [133], Partial ordered alignment (POA) [163], Velvet [121], Splicing graphs [55], ASmodeler
[164], and xtract [57], where the last three are used specifically for ESTs. Other programs that analyze ESTs are TGICL
[165], StackPack [13], PaCE [166], Hidden Markov Model (HMM) Sampling [167], and geneDistiller [54]. Finally, some
programs are used in the scaffolding stage, where contigs are processed and put in order,eg.GigAssembler [168] and
Bambus [147] (part of the AMOS package [46]).

5.2 Assembler Comparisons

Comparing the different assemblers is not a trivial task dueto several factors. Not to mention the problems of constructing
appropriate benchmark data. First the different assemblers use a variety of input data, and so comparing an assembler
which uses a lot of the additional information to one which only uses a fragment of the information is inappropriate.
Another aspect is evaluating the success criteria, the goalis to create a single error-free contig of each chromosome,
which means that fewer gaps, longer contigs, and fewer errors are desired. However, different assemblers might do better
in one area and worse in another, so weighing the performanceof one assembler against another can be difficult. Still
there have been a few attempts to compare assemblers.

In [132], PHRAP, TIGR Assembler, and STROLL were compared onsequence data from the bacteriumBorrelia burgdor-
feri. Phusion and ARACHNE were both applied to the assembly of theMouse genome [169, 50]. PHRAP has been
compared to CAP3 in [116] (on four BAC datasets) and [76] (on EST data) where the TIGR Assembler was also included.
Furthermore, a short comparison between PHRAP, Arachne, and Euler is presented in [60].

Common to these studies is that the individual performance of the assemblers depend on the data they are presented with.
PHRAP is generally aggressive in joining reads and creates large contigs, though sometimes at the expense of introducing
errors. This assembler would be a fairly good choice if the dataset consisted only of reads with assigned quality values.
However if additional information, such as forward-reverse constraints, is available other programs (eg.CAP3, STROLL)
would perform better. Another observation is that the performance of PHRAP degrades when it is applied to some large
data sets. Additionally an updated assembler based on the Euler package [60], Euler-SR [115], is available. Euler-SR
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which uses a revised version of the Euler package, is less space intensive and optimized for short Reads. Alternatives are
assemblers such as Arachne or Velvet [121].

6 Applying assemblies for other analyzes

There are different possibilities for further processing of the data and thereby for finding interesting and important features
for future investigation, for example searching for SNPs (Single Nucleotide Polymorphisms) and alternative splice forms,
or comparing genomes with each other.

SNP detection:ESTs are the most often used data source for SNP detection, but SNPs can be found from shotgun data as
well. SNPs in transcribed sequences can either be synonymous (no amino acid change), or non-synonymous (encoding a
different amino acid). A variety of different computer programs are designed for SNPs analysis. Some find and predict
whether a given site is polymorphic,eg.Polybayes [170], Polyphred [171] and novoSNP [172]. Otherstry to predict
whether a given SNP is potentially harmful or neutral,eg.Polyphen [173] and SIFT [174].

Massively parallel SequencingThe new massively parallel sequencing technologies will provide a wealth of new infor-
mation. As mentioned above they have already been applied for the sequencing of an individuals genome [156], and
detection of genomic rearrangements [93, 125], and in the future new ways of utilizing their enormous capacity will likely
appear, both with respect to the number of clones that are analyzed and the total amount of sequenced DNA.

Detection of alternative splicing:In eukaryotes, the removal of introns by splicing is a crucial step in gene expression.
For some genes, splicing results in only one single type of mRNA, but studies have revealed that up to 60% of the human
genes result in two or more mRNA isoforms due to alternative splicing [36, 175]. One approach to investigate alternative
splicing is through assemblies of ESTs. However, assemblies of ESTs usually has multiple solutions in the presence of
alternative splicing, which might end in truncated, misassembled or missing transcripts [175, 176]. Having a completed
genome as a reference can help because it allows comparison of the EST to the corresponding genomic sequence. Some
programs have been created which explicitly try to address the problem of assembling alternative splice variants from
ESTs, among them are Splicing Graph [55] and geneDistiller [54].

Genome Comparison: Furthermore, as different sequencing project complete their respective genomes and the data
become available, it becomes possible to compare differences and similarities between different species on a sequence
basis. This can generate a wealth of new information, and give new insights into the evolution and biology of living
organisms. Examples of how such a comparative analysis can be performed are given in [177, 67, 62].

7 Discussion

As still more genomes are studied and more sophisticated computer programs for genome assembly and analysis are
developed, our knowledge of genomics will expand tremendously. Sequencing technologies have already given us a
consensus sequence ofhomo sapiens, and in the future we can expect that many individual human genomes will be
sequenced , which will add to the steadily growing number of genetic variations and genetic predisposition to disease that
has been revealed in our specie. Furthermore, many model organisms and eventually, all species remain to be sequenced,
which will give a better understanding of life and its evolution.

For mammalian genomes whole genome shotgun sequencing is likely to entail similar costs for producing a finished
sequence as a hierarchical shotgun solution. The hierarchical approach has a higher initial cost than the whole-genome
approach, owing to the need to create a map of clones (about 1%of the total cost of sequencing) and to identify sequence
overlap between clones. On the other hand, the whole-genomeapproach is likely to require much greater work and
expense in the final stage of the assembly, because of the challenge of resolving misassemblies.

New high-throughput sequencing technologies have rapidlyemerged. However, the sequencing methods as well as the
computational tools have to be further improved, to allow a complete de novo assembly for large genomes with these
technologies. However, today only little data on the error models of different massively parallel sequencing technologies
is available. These error models are crucial to interpret and analyze the sequence data correctly [144]. When it comes to
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de novo assembly, the short read lengths of SOLiD and Solexa methodologies seem to be a momentous disadvantage and
the high number of reads produced might not be able to compensate for this handicap. However, all manufacturers aim
to increase the read lengths. Currently, a reasonable approach to the assembly of such short sequences could include data
from low coverage Sanger sequencing. Although hybrid data set approaches are cumbersome [115], they have already
been shown to produce useful assemblies [124].

The choice of sequencing strategy should also be influenced by the goal of the project. In some organisms it might be
desirable to quickly generate a few contigs covering key points in the genome, while in others a broader strategy might
apply. Still other projects combine whole–genome with hierarchical shotgun in a hybrid approach trying to utilize the
strengths of each [159].

Other applications of sequencing and assembly are continuously being explored. For example, the growing field of
environmental sequencing (or metagenomics) [178, 179, 180], will undoubtedly present new challenges to assemblers,
since sequence data will no longer be known to come from a single source organism, but from several and often from
a multitude of distinct organisms, with different relativeabundances, different genome structures, repeat content,and
so on. A somewhat related field is paleogenomics – is sequencing of fossil DNA. This field has become much more
accessible with the new massively parallel sequencing methods, as the traditional Sanger sequencing is difficult and
technical impractical on fossil DNA samples. The new techniques, however, have made it possible to extract genomic
information from long extinct species, for example the woolly mammoth [181].

The assemblers presented in this paper show the great diversity and ingenuity that has gone into finding better ways of
assembling the DNA puzzle from diverse types of data. The various strategies for overcoming the challenges revealed
in assembly are also discussed. Newer assemblers (and associated programs) endeavor to surmount these challenges in
novel ways, and it is likely that computational whole genomeassembly will be further refined in the future. Also, it
should be remembered, that a substantial fraction of the large genomes still evades sequencing/assembly with existing
technology [69]. The estimated∼10% of the human genome which has not been sequenced may not bewithout function,
as exemplified by the centromeres and pericentric heterochromatic regions. Many of the tandem repeats within these
regions have been sequenced at clone scale, but none have been sequenced at genome-scale, where their size exceeding
many megabases preclude assembly. Why the remaining >250 smaller gaps, scattered over the euchromatic part of the
human genome, with sizes ranging from 20 to 100 kb, cannot be sequenced/assembled is unknown. It is likely that
this terra incognita will only be sequenced when (if) singlemolecule, very long read sequencing technologies have been
developed.

Acknowledgments

Thanks to Anders Blomberg for comments on a early version of the manuscript. KSA was supported by a grant from
the Faculty of Life Sciences, University of Copenhagen. This work was further supported by the Danish research council
FTP and the Danish Center for Scientific Computing. The Wilhelm Johannsen Centre for Functional Genome Research
is established and funded by the Danish National Research Foundation.

References

[1] K. Liolios, K. Mavromatis, N. Tavernarakis, N. Kyrpides, The genomes on line database (gold) in 2007: status of
genomic and metagenomic projects and their associated metadata., Nucleic Acids Res 36 (Database Issue) (2008)
D475–9.

[2] F. Sanger, G. Air, B. Barrell, N. Brown, A. Coulson, C. Fiddes, C. Hutchison, P. Slocombe, M. Smith, Nucliotide
sequence of bacteriophage phi X174 DNA., Nature 265 (5596) (1977) 687–95.

[3] F. Sanger, A. Coulson, T. Friedmann, G. Air, B. Barrell, N. Brown, J. Fiddes, C. r. Hutchison, P. Slocombe,
M. Smith, The nucleotide sequence of bacteriophage phiX174., J Mol Biol 125 (2) (1978) 225–46.

[4] F. Sanger, A. Coulson, G. Hong, D. Hill, G. Petersen, Nucleotide sequence of bacteriophage lambda DNA., J Mol
Biol 162 (4) (1982) 729–73.

16



[5] W. Fiers, R. Contreras, G. Haegemann, R. Rogiers, A. Van de Voorde, H. Van Heuverswyn, J. Van Herreweghe,
G. Volckaert, M. Ysebaert, Complete nucleotide sequence ofSV40 DNA., Nature 273 (5658) (1978) 113–20.

[6] S. Anderson, A. Bankier, B. Barrell, M. de Bruijn, A. Coulson, J. Drouin, I. Eperon, D. Nierlich, B. Roe, F. Sanger,
et al., Sequence and organization of the human mitochondrial genome., Nature 290 (5806) (1981) 457–65.

[7] S. Anderson, Shotgun DNA sequencing using cloned DNase I-generated fragments., Nucleic Acids Res 9 (13)
(1981) 3015–27.

[8] P. Deininger, Random subcloning of sonicated DNA: application to shotgun DNA sequence analysis., Anal
Biochem 129 (1) (1983) 216–23.

[9] A. Edwards, H. Voss, P. Rice, A. Civitello, J. Stegemann,C. Schwager, J. Zimmermann, H. Erfle, C. Caskey,
W. Ansorge, Automated DNA sequencing of the human HPRT locus., Genomics 6 (4) (1990) 593–608.

[10] R. Wooster, Identification of the breast cancer susceptibility gene BRCA2., Nature 378 (1995) 789–92.

[11] R. Fleischmann, M. Adams, O. White, R. Clayton, E. Kirkness, A. Kerlavage, C. Bult, J. Tomb, B. Dougherty,
J. Merrick, et al.;, Whole-genome random sequencing and assembly of Haemophilus influenzae Rd., Science
269 (5223) (1995) 496–512.

[12] M. Adams, J. Kelley, J. Gocayne, M. Dubnick, M. Polymeropoulos, H. Xiao, C. Merril, A. Wu, B. Olde, R. Moreno,
et al, Complementary DNA sequencing: expressed sequence tags and human genome project., Science. 252 (5013)
(1991) 1651–6.

[13] A. Christoffels, A. van Gelder, G. Greyling, R. Miller,T. Hide, W. Hide, STACK: Sequence Tag Alignment and
Consensus Knowledgebase., Nucleic Acids Res 29 (1) (2001) 234–8.

[14] M. Boguski, The turning point in genome research., Trends Biochem Sci. 20 (8) (1995) 295–6.

[15] M. Marra, L. Hillier, R. Waterston, Expressed sequencetags–ESTablishing bridges between genomes., Trends
Genet. 14 (1) (1998) 4–7.

[16] M. Adams, M. Dubnick, A. Kerlavage, R. Moreno, J. Kelley, T. Utterback, J. Nagle, C. Fields, J. Venter, Sequence
identification of 2,375 human brain genes., Nature. 355 (6361) (1992) 632–4.

[17] M. Adams, A. Kerlavage, C. Fields, J. Venter, 3,400 new expressed sequence tags identify diversity of transcripts
in human brain., Nat Genet. 4 (3) (1993) 256–67.

[18] T. Nakamura, G. Morin, K. Chapman, S. Weinrich, W. Andrews, J. Lingner, C. Harley, T. Cech, Telomerase
catalytic subunit homologs from fission yeast and human., Science. 277 (5328) (1997) 955–9.

[19] R. Medzhitov, P. Preston Hurlburt, C. J. Janeway, A human homologue of the Drosophila Toll protein signals
activation of adaptive immunity., Nature. 388 (6640) (1997) 394–7.

[20] F. Liang, I. Holt, G. Pertea, S. Karamycheva, S. Salzberg, J. Quackenbush, Gene index analysis of the human
genome estimates approximately 120,000 genes., Nat Genet.25 (2) (2000) 239–40.

[21] T. Hudson, L. Stein, S. Gerety, J. Ma, A. Castle, J. Silva, D. Slonim, R. Baptista, L. Kruglyak, S. Xu, et al.;, An
STS-based map of the human genome., Science. 270 (5244) (1995) 1945–54.

[22] G. Schuler, M. Boguski, E. Stewart, L. Stein, G. Gyapay,K. Rice, R. White, P. Rodriguez Tome, A. Aggarwal,
E. Bajorek, et al., A gene map of the human genome., Science. 274 (5287) (1996) 540–6.

[23] P. Deloukas, G. Schuler, G. Gyapay, E. Beasley, C. Soderlund, P. Rodriguez Tome, L. Hui, T. Matise, K. McKusick,
Beckmann, et al., A physical map of 30,000 human genes., Science. 282 (5389) (1998) 744–6.

[24] R. Waterston, C. Martin, M. Craxton, C. Huynh, A. Coulson, L. Hillier, R. Durbin, P. Green, R. Shownkeen,
N. Halloran, et al.;, A survey of expressed genes in Caenorhabditis elegans., Nat Genet. 1 (2) (1992) 114–23.

[25] W. McCombie, M. Adams, J. Kelley, M. FitzGerald, T. Utterback, M. Khan, M. Dubnick, A. Kerlavage, J. Ven-
ter, C. Fields, Caenorhabditis elegans expressed sequencetags identify gene families and potential disease gene
homologues., Nat Genet. 1 (2) (1992) 124–31.

17



[26] L. Brody, K. Abel, L. Castilla, F. Couch, D. McKinley, G.Yin, P. Ho, S. Merajver, S. Chandrasekharappa, J. Xu,
et al.;, Construction of a transcription map surrounding the BRCA1 locus of human chromosome 17., Genomics.
25 (1) (1995) 238–47.

[27] Z. Kan, E. Rouchka, W. Gish, D. States, Gene structure prediction and alternative splicing analysis using genomi-
cally aligned ESTs., Genome Res. 11 (5) (2001) 889–900.

[28] S. Tugendreich, D. J. Bassett, V. McKusick, M. Boguski,P. Hieter, Genes conserved in yeast and humans., Hum
Mol Genet. 3 Spec No (1994) 1509–17.

[29] N. Papadopoulos, N. Nicolaides, Y. Wei, S. Ruben, K. Carter, C. Rosen, W. Haseltine, R. Fleischmann, C. Fraser,
M. Adams, et al.;, Mutation of a mutL homolog in hereditary colon cancer., Science. 263 (5153) (1994) 1625–9.

[30] M. Adams, A. Kerlavage, R. Fleischmann, R. Fuldner, C. Bult, N. Lee, E. Kirkness, K. Weinstock, J. Gocayne,
O. White, et al.;, Initial assessment of human gene diversity and expression patterns based upon 83 million nu-
cleotides of cDNA sequence., Nature (1995) 3–174.

[31] R. Braren, K. Firner, S. Balasubramanian, F. Bazan, H. Thiele, F. Haag, F. Koch Nolte, Use of the EST database
resource to identify and clone novel mono(ADP-ribosyl)transferase gene family members., Adv Exp Med Biol.
419 (1997) 163–8.

[32] R. Allikmets, B. Gerrard, D. Glavac, M. Ravnik Glavac, N. Jenkins, D. Gilbert, N. Copeland, W. Modi, M. Dean,
Characterization and mapping of three new mammalian ATP-binding transporter genes from an EST database.,
Mamm Genome. 6 (2) (1995) 114–7.

[33] P. Nelson, D. Han, Y. Rochon, G. Corthals, B. Lin, A. Monson, V. Nguyen, B. Franza, S. Plymate, R. Aebersold,
et al., Comprehensive analyses of prostate gene expression: convergence of expressed sequence tag databases,
transcript profiling and proteomics., Electrophoresis. 21(9) (2000) 1823–31.

[34] K. Garg, P. Green, D. Nickerson, Identification of candidate coding region single nucleotide polymorphisms in 165
human genes using assembled expressed sequence tags., Genome Res. 9 (11) (1999) 1087–92.

[35] K. Buetow, M. Edmonson, A. Cassidy, Reliable identification of large numbers of candidate SNPs from public EST
data., Nat Genet. 21 (3) (1999) 323–5.

[36] D. Brett, J. Hanke, G. Lehmann, S. Haase, S. Delbruck, S.Krueger, J. Reich, P. Bork, EST comparison indicates
38contain possible alternative splice forms., FEBS Lett. 474 (1) (2000) 83–6.

[37] A. Mironov, J. Fickett, M. Gelfand, Frequent alternative splicing of human genes., Genome Res. 9 (12) (1999)
1288–93.

[38] R. Sorek, H. Safer, A novel algorithm for computationalidentification of contaminated EST libraries., Nucleic
Acids Res. 31 (3) (2003) 1067–74.

[39] . International Human Genome Sequencing Consortium, Initial sequencing and analysis of the human genome.,
Nature. 409 (6822) (2001) 860–921.

[40] J. Venter, M. Adams, E. Myers, P. Li, R. Mural, G. Sutton,H. Smith, M. Yandell, C. Evans, R. Holt, et al., The
sequence of the human genome., Science. 291 (5507) (2001) 1304–51.

[41] R. Staden, A new computer method for the storage and manipulation of DNA gel reading data., Nucleic Acids Res
8 (16) (1980) 3673–94.

[42] H. Peltola, H. Soderlund, E. Ukkonen, SEQAID: a DNA sequence assembling program based on a mathematical
model., Nucleic Acids Res. 12 (1984) 307–21.

[43] X. Huang, A contig assembly program based on sensitive detection of fragment overlaps., Genomics. 14 (1) (1992)
18–25.

[44] Green Laboratory, Phred, phrap, consed documentation, http://www.phrap.org/phredphrapconsed.html (1994).

[45] E. Myers, G. Sutton, A. Delcher, I. Dew, D. Fasulo, M. Flanigan, S. Kravitz, C. Mobarry, K. Reinert, K. Remington,
et al., A whole-genome assembly of Drosophila., Science. 287 (5461) (2000) 2196–204.

[46] AMOS consortium, Amos open-source assembler, http://amos.sourceforge.net/ (–).

18



[47] S. Aparicio, J. Chapman, E. Stupka, N. Putnam, J. Chia, P. Dehal, A. Christoffels, S. Rash, S. Hoon, A. Smit, et
al., Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes., Science 297 (5585) (2002)
1301–10.

[48] P. Dehal, Y. Satou, R. Campbell, J. Chapman, B. Degnan, A. De Tomaso, B. Davidson, A. Di Gregorio, M. Gelpke,
D. Goodstein, et al, The draft genome of Ciona intestinalis:insights into chordate and vertebrate origins., Science.
298 (5601) (2002) 2157–67.

[49] S. Batzoglou, D. Jaffe, K. Stanley, J. Butler, S. Gnerre, E. Mauceli, B. Berger, J. Mesirov, E. Lander, ARACHNE:
a whole-genome shotgun assembler., Genome Res 12 (1) (2002)177–89.

[50] J. Mullikin, Z. Ning, The phusion assembler., Genome Res. 13 (1) (2003) 81–90.

[51] R. Miller, A. Christoffels, C. Gopalakrishnan, J. Burke, A. Ptitsyn, T. Broveak, W. Hide, A comprehensive approach
to clustering of expressed human gene sequence: the sequence tag alignment and consensus knowledge base.,
Genome Res 9 (11) (1999) 1143–55.

[52] J. Burke, H. Wang, W. Hide, D. Davison, Alternative geneform discovery and candidate gene selection from gene
indexing projects., Genome Res 8 (3) (1998) 276–90.

[53] J. Quackenbush, J. Cho, D. Lee, F. Liang, I. Holt, S. Karamycheva, B. Parvizi, G. Pertea, R. Sultana, J. White, The
TIGR Gene Indices: analysis of gene transcript sequences inhighly sampled eukaryotic species., Nucleic Acids
Res 29 (1) (2001) 159–64.

[54] M. Gilchrist, A. Zorn, J. Voigt, J. Smith, N. Papalopulu, E. Amaya, Defining a large set of full-length clones from
a Xenopus tropicalis EST project., Dev Biol. 271 (2) (2004) 498–516.

[55] S. Heber, M. Alekseyev, S. Sze, H. Tang, P. Pevzner, Splicing graphs and EST assembly problem., Bioinformatics
18 Suppl 1 (2002) S181–8.

[56] K. Scheibye-Alsing, M. Gilchrist, J. Gorodkin, EST assembly with genedistiller,In preparation.

[57] K. Malde, E. Coward, I. Jonassen, A graph based algorithm for generating EST consensus sequences., Bioinfor-
matics 21 (8) (2005) 1371–5.

[58] M. Tammi, E. Arner, B. Andersson, TRAP: Tandem Repeat Assembly Program produces improved shotgun as-
semblies of repetitive sequences., Comput Methods Programs Biomed. 70 (1) (2003) 47–59.

[59] B. Chevreux, T. Pfisterer, B. Drescher, A. Driesel, W. Muller, T. Wetter, S. Suhai, Using the miraEST assembler
for reliable and automated mRNA transcript assembly and SNPdetection in sequenced ESTs., Genome Res. 14 (6)
(2004) 1147–59.

[60] P. Pevzner, H. Tang, G. Tesler, De novo repeat classification and fragment assembly., Genome Res. 14 (9) (2004)
1786–96.

[61] A. Delcher, A. Phillippy, J. Carlton, S. Salzberg, Fastalgorithms for large-scale genome alignment and comparison.,
Nucleic Acids Res 30 (11) (2002) 2478–83.

[62] K. Makino, K. Oshima, K. Kurokawa, K. Yokoyama, T. Uda, K. Tagomori, Y. Iijima, M. Najima, M. Nakano,
A. Yamashita, et al, Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of
V cholerae., Lancet 361 (9359) (2003) 743–9.

[63] P. Flicek, E. Keibler, P. Hu, I. Korf, M. Brent, Leveraging the mouse genome for gene prediction in human: from
whole-genome shotgun reads to a global synteny map., GenomeRes 13 (1) (2003) 46–54.

[64] A. Tenney, R. Brown, C. Vaske, J. Lodge, T. Doering, M. Brent, prediction and verification in a compact genome
with numerous small introns., Genome Res. 14 (11) (2004) 2330–5.

[65] W. Kent, BLAT–the BLAST-like alignment tool., Genome Res 12 (4) (2002) 656–64.

[66] N. Bray, I. Dubchak, L. Pachter, AVID: A global alignment program., Genome Res 13 (1) (2003) 97–102.

[67] O. Couronne, A. Poliakov, N. Bray, T. Ishkhanov, D. Ryaboy, E. Rubin, L. Pachter, I. Dubchak, Strategies and tools
for whole-genome alignments., Genome Res 13 (1) (2003) 73–80.

19



[68] A. Lefebvre, T. Lecroq, H. Dauchel, J. Alexandre, FORRepeats: detects repeats on entire chromosomes and be-
tween genomes., Bioinformatics 19 (3) (2003) 319–26.

[69] International Human Genome Sequencing Consortium., Finishing the euchromatic sequence of the human genome.,
Nature 431 (7011) (2004) 931–45.

[70] F. Sanger, S. Nicklen, A. R. Coulson, Dna sequencing with chain-terminating inhibitors, Proc Natl Acad Sci U S A
74 (12) (1977) 5463–5467.

[71] L. Rowen, G. Mahairas, L. Hood, Sequencing the human genome., Science 278 (5338) (1997) 605–7.

[72] G. Churchill, M. Waterman, The accuracy of DNA sequences: estimating sequence quality., Genomics. 14 (1)
(1992) 89–98.

[73] M. Giddings, R. J. Brumley, M. Haker, L. Smith, An adaptive, object oriented strategy for base calling in DNA
sequence analysis., Nucleic Acids Res. 21 (19) (1993) 4530–40.

[74] C. Lawrence, V. Solovyev, Assignment of position-specific error probability to primary DNA sequence data., Nu-
cleic Acids Res. 22 (7) (1994) 1272–80.

[75] R. Lipshutz, F. Taverner, K. Hennessy, G. Hartzell, R. Davis, DNA sequence confidence estimation., Genomics.
19 (3) (1994) 417–24.

[76] F. Liang, I. Holt, G. Pertea, S. Karamycheva, S. Salzberg, J. Quackenbush, An optimized protocol for analysis of
EST sequences., Nucleic Acids Res 28 (18) (2000) 3657–65.

[77] F. Sanger, A. Coulson, A rapid method for determining sequences in DNA by primed synthesis with DNA poly-
merase., J Mol Biol 94 (3) (1975) 441–8.

[78] E. Chen, D. Schlessinger, J. Kere, Ordered shotgun sequencing, a strategy for integrated mapping and sequencing
of YAC clones., Genomics. 17 (3) (1993) 651–6.

[79] M. Smith, A. Holmsen, Y. Wei, M. Peterson, G. Evans, Genomic sequence sampling: a strategy for high resolution
sequence-based physical mapping of complex genomes., Nat Genet. 7 (1) (1994) 40–7.

[80] K. Kupfer, M. Smith, J. Quackenbush, G. Evans, Physicalmapping of complex genomes by sampled sequencing:
a theoretical analysis., Genomics. 27 (1) (1995) 90–100.

[81] J. Roach, C. Boysen, K. Wang, L. Hood, Pairwise end sequencing: a unified approach to genomic mapping and
sequencing., Genomics. 26 (2) (1995) 345–53.

[82] D. Nurminsky, D. Hartl, Sequence scanning: A method forrapid sequence acquisition from large-fragment DNA
clones., Proc Natl Acad Sci U S A. 93 (4) (1996) 1694–8.

[83] J. Weber, E. Myers, Human whole-genome shotgun sequencing., Genome Res. 7 (5) (1997) 401–9.

[84] M. Marra, T. Kucaba, N. Dietrich, E. Green, B. Brownstein, R. Wilson, K. McDonald, L. Hillier, J. McPherson,
R. Waterston, High throughput fingerprint analysis of large-insert clones., Genome Res. 7 (11) (1997) 1072–84.

[85] Rat Genome Sequencing Project Consortium, Genome sequence of the Brown Norway rat yields insights into
mammalian evolution., Nature. 428 (6982) (2004) 493–521.

[86] D. Altshuler, V. Pollara, C. Cowles, W. Van Etten, J. Baldwin, L. Linton, E. Lander, An SNP map of the human
genome generated by reduced representation shotgun sequencing, Nature 407 (2000) 513–516.

[87] N. Springer, X. Xu, W. Barbazuk, Utility of different gene enrichment approaches toward identifying and sequenc-
ing the maize gene space, Plant Physiology Preview 136 (2004) 3023–3033.

[88] J. Bedell, M. Budiman, A. Nunberg, R. Citek, D. Robbins,J. Jones, E. Flick, T. Rholfing, J. Fries, K. Bradford,
J. McMenamy, M. Smith, H. Holeman, B. Roe, G. Wiley, I. Korf, P. Rabinowicz, N. Lakey, W. McCombie, J. Jed-
deloh, R. Martienssen, Sorghum genome sequencing by methylation filtration, PLoS Biology 3 (2005) e13.

[89] W. Barbazuk, J. Bedell, P. Rabinowicz, Reduced representation sequencing: a success in maize and a promise for
other plant genomes., Bioessays. 27 (8) (2005) 839–48.

20



[90] E. Glazov, P. Cottee, W. Barris, R. Moore, B. Dalrymple,M. Tizard, A microRNA catalog of the developing chicken
embryo identified by a deep sequencing approach, Genome Res 18 (6) (2008) 957–64.

[91] R. Morin, M. O’Connor, M. Griffith, F. Kuchenbauer, A. Delaney, A. Prabhu, Y. Zhao, H. McDonald, T. Zeng,
M. Hirst, C. Eaves, M. Marra, Application of massively parallel sequencing to microRNA profiling and discovery
in human embryonic stem cells, Genome Res 18 (4) (2008) 610–21.

[92] A. Meissner, T. Mikkelsen, H. Gu, M. Wernig, J. Hanna, A.Sivachenko, X. Zhang, B. Bernstein, C. Nusbaum,
D. Jaffe, A. Gnirke, R. Jaenisch, E. Lander, Genome-scale dna methylation maps of pluripotent and differentiated
cells, Nature 454 (7205) (2008) 766–70.

[93] W. Chen, V. Kalscheuer, A. Tzschach, C. Menzel, R. Ullmann, M. Schulz, F. Erdogan, N. Li, Z. Kijas,
G. Arkesteijn, I. Pajares, M. Goetz-Sothmann, U. Heinrich,I. Rost, A. Dufke, U. Grasshoff, B. Glaeser, M. Vin-
gron, H. Ropers, Mapping translocation breakpoints by next-generation sequencing, Genome Res 18 (7) (2008)
1143–9.

[94] D. Schones, K. Zhao, Genome-wide approaches to studying chromatin modifications, Nat Rev Genet 9 (3) (2008)
179–91.

[95] C. Schmid, P. Bucher, Chip-seq data reveal nucleosome architecture of human promoters, Cell 131 (5) (2007)
831–2.

[96] M. ER, ChIP-seq: welcome to the new frontier, Nat Methods 4 (8) (2007) 613–4.

[97] G. Porreca, K. Zhang, J. Li, B. Xie, D. Austin, S. Vassallo, E. Leproust, B. Peck, C. Emig, F. Dahl, Y. Gao,
G. Church, J. Shendure, Multiplex amplification of large sets of human exons, Nature Methods 4 (11) (2007) 931–
936. doi:http://dx.doi.org/10.1038/nmeth1110.
URL http://dx.doi.org/10.1038/nmeth1110

[98] D. Okou, K. Steinberg, C. Middle, D. Cutler, T. Albert, M. Zwick, Microarray-based genomic selection for high-
throughput resequencing., Nat Methodsdoi:http://dx.doi.org/10.1038/nmeth1109.
URL http://dx.doi.org/10.1038/nmeth1109

[99] C. Van Tassell, T. Smith, L. Matukumalli, J. Taylor, R. Schnabel, C. Lawley, C. Haudenschild, S. Moore, W. War-
ren, T. Sonstegard, Snp discovery and allele frequency estimation by deep sequencing of reduced representation
libraries, Nat Methods 5 (3) (2008) 247–52.

[100] E. Hodges, Z. Xuan, V. Balija, M. Kramer, M. Molla, S. Smith, C. Middle, M. Rodesch, T. Albert, G. Hannon,
W. McCombie, Genome-wide in situ exon capture for selectiveresequencing, Nat Genet 39 (12) (2007) 1522–7.

[101] G. Schuler, Pieces of the puzzle: expressed sequence tags and the catalog of human genes., J Mol Med. 75 (10)
(1997) 694–8.

[102] S. Nagaraj, R. Gasser, S. Ranganathan, A hitchhiker’sguide to expressed sequence tag (est) analysis, Brief Bioin-
form 8 (1) (2007) 6–21.

[103] M. Ronaghi, M. Uhlen, P. Nyren, A Sequencing Method Based on Real-Time Pyrophosphate., Science 281 (5375)
(1998) 363–5.

[104] M. Margulies, M. Egholm, W. Altman, S. Attiya, J. Bader, L. Bemben, J. Berka, M. Braverman, Y. Chen, Z. Chen,
S. Dewell, L. Du, J. Fierro, X. Gomes, B. Godwin, W. He, S. Helgesen, C. Ho, G. Irzyk, S. Jando, M. Alenquer,
T. Jarvie, K. Jirage, J. Kim, J. Knight, J. Lanza, J. Leamon, S. Lefkowitz, M. Lei, J. Li, K. Lohman, H. Lu,
V. Makhijani, K. McDade, M. McKenna, E. Myers, E. Nickerson,J. Nobile, R. Plant, B. Puc, M. Ronan, G. Roth,
G. Sarkis, J. Simons, J. Simpson, M. Srinivasan, K. Tartaro,A. Tomasz, K. Vogt, G. Volkmer, S. Wang, Y. Wang,
M. Weiner, P. Yu, R. Begley, J. Rothberg, Genome sequencing in microfabricated high-density picolitre reactors.,
Nature 437 (7057) (2005) 376–380. doi:10.1038/nature03959.
URL http://dx.doi.org/10.1038/nature03959

[105] S. Bennett, Solexa ltd, Pharmacogenomics 5 (4) (2004)433–438. doi:10.1517/14622416.5.4.433.
URL http://www.futuremedicine.com/doi/abs/10.1517/14622416.%5.4.433

21



[106] A. Valouev, J. Ichikawa, T. Tonthat, J. Stuart, S. Ranade, H. Peckham, K. Zeng, J. Malek, G. Costa,
K. McKernan, A. Sidow, A. Fire, S. Johnson, A high-resolution, nucleosome position map of C. ele-
gans reveals a lack of universal sequence-dictated positioning, Genome Res. 18 (7) (2008) 1051–1063.
arXiv:http://genome.cshlp.org/cgi/reprint/18/7/1051.pdf, doi:10.1101/gr.076463.108.
URL http://genome.cshlp.org/cgi/content/abstract/18/7/1051

[107] T. Harris, P. Buzby, H. Babcock, E. Beer, J. Bowers, I. Braslavsky, M. Causey, J. Colonell, J. Dimeo, J. Efcavitch,
E. Giladi, J. Gill, J. Healy, M. Jarosz, D. Lapen, K. Moulton,S. Quake, K. Steinmann, E. Thayer, A. Tyurina,
R. Ward, H. Weiss, Z. Xie, Single-Molecule DNA Sequencing ofa Viral Genome, Science 320 (5872) (2008) 106–
109. arXiv:http://www.sciencemag.org/cgi/reprint/320/5872/106.pdf, doi:10.1126/science.1150427.
URL http://www.sciencemag.org/cgi/content/abstract/320/5872%/106

[108] D. Fologea, M. Gershow, B. Ledden, D. McNabb, J. Golovchenko, J. Li, Detecting single stranded dna with a solid
state nanopore, Nano Letters 5 (10) (2005) 1905–1909.
URL http://pubs3.acs.org/acs/journals/doilookup?in_doi=10.1%021/nl051199m

[109] C. Dekker, Solid-state nanopores., Nat Nanotechnol 2(4) (2007) 209–215. doi:10.1038/nnano.2007.27.
URL http://dx.doi.org/10.1038/nnano.2007.27

[110] H. Li, J. Ruan, R. Durbin, Mapping short DNA sequencingreads and calling variants using mapping qual-
ity scores, Genome Res. (2008) gr.078212.108arXiv:http://genome.cshlp.org/cgi/reprint/gr.078212.108v1.pdf,
doi:10.1101/gr.078212.108.
URL http://genome.cshlp.org/cgi/content/abstract/gr.078212.%108v1

[111] R. Li, Y. Li, K. Kristiansen, J. Wang, SOAP: short oligonucleotide alignment program, Bioinformatics (2008)
btn025doi:10.1093/bioinformatics/btn025.
URL http://bioinformatics.oxfordjournals.org/cgi/content/ab%stract/btn025v1

[112] S. Rumble, M. Brudno, P. Lacroute, V. Yanovsky, M. Fiume, A. Dalca, Shrimp,
http://compbio.cs.toronto.edu/shrimp.

[113] M. Pop, Shotgun sequence assembly, Advances in computers 60 (2004) 193–248.

[114] A. Sundquist, M. Ronaghi, H. Tang, P. Pevzner, S. Batzoglou, , PLoS ONE 2 (5) (2007) e484.
doi:10.1371/journal.pone.0000484.
URL http://dx.doi.org/10.1371%2Fjournal.pone.0000484

[115] M. Chaisson, P. Pevzner, Short read fragment assemblyof bacterial genomes, Genome Res. 18 (2) (2008) 324–330.
arXiv:http://genome.cshlp.org/cgi/reprint/18/2/324.pdf, doi:10.1101/gr.7088808.
URL http://genome.cshlp.org/cgi/content/abstract/18/2/324

[116] X. Huang, A. Madan, CAP3: A DNA sequence assembly program., Genome Res 9 (9) (1999) 868–77.

[117] B. Ewing, P. Green, Base-calling of automated sequencer traces using phred. II. Error probabilities., Genome Res
8 (3) (1998) 186–94.

[118] Daniel H. Wagner Associates, Cats basecaller, http://www.wagner.com/technologies/biotech/catsadcopy.html (–).

[119] S. Huse, J. Huber, H. Morrison, M. Sogin, D. Welch, Accuracy and quality of massively parallel dna pyrosequenc-
ing, Genome Biology 8 (7) (2007) R143. doi:10.1186/gb-2007-8-7-r143.
URL http://genomebiology.com/2007/8/7/R143

[120] R. Cronn, A. Liston, M. Parks, D. Gernandt, R. Shen, T. Mockler, Multiplex sequencing of
plant chloroplast genomes using Solexa sequencing-by-synthesis technology, Nucl. Acids Res. (2008)
gkn502arXiv:http://nar.oxfordjournals.org/cgi/reprint/gkn502v1.pdf, doi:10.1093/nar/gkn502.
URL http://nar.oxfordjournals.org/cgi/content/abstract/gkn5%02v1

[121] D. Zerbino, E. Birney, Velvet: Algorithms for de novo short read assembly using de Bruijn graphs, Genome Res.
18 (5) (2008) 821–829. arXiv:http://genome.cshlp.org/cgi/reprint/18/5/821.pdf, doi:10.1101/gr.074492.107.
URL http://genome.cshlp.org/cgi/content/abstract/18/5/821

[122] S. Altschul, W. Gish, W. Miller, E. Myers, D. Lipman, Basic local alignment search tool., J Mol Biol. 215 (3)
(1990) 403–10.

22



[123] M. Moore, A. Dhingra, P. Soltis, R. Shaw, W. Farmerie, K. Folta, D. Soltis, Rapid and accurate pyrosequencing of
angiosperm plastid genomes, BMC Plant Biology 6 (1) (2006) 17. doi:10.1186/1471-2229-6-17.
URL http://www.biomedcentral.com/1471-2229/6/17

[124] S. Goldberg, J. Johnson, D. Busam, T. Feldblyum, S. Ferriera, R. Friedman, A. Halpern, H. Khouri, S. Kravitz,
F. Lauro, K. Li, Y. Rogers, R. Strausberg, G. Sutton, L. Tallon, T. Thomas, E. Venter, M. Frazier, J. Ven-
ter, A Sanger/pyrosequencing hybrid approach for the generation of high-quality draft assemblies of ma-
rine microbial genomes, Proceedings of the National Academy of Sciences 103 (30) (2006) 11240–11245.
arXiv:http://www.pnas.org/content/103/30/11240.full.pdf+html, doi:10.1073/pnas.0604351103.
URL http://www.pnas.org/content/103/30/11240.abstract

[125] A. Bashir, S. Volik, C. Collins, V. Bafna, B. Raphael, Evaluation of paired-end sequencing strategies for detection
of genome rearrangements in cancer., PLoS Comput Biol 4 (4) (2008) e1000051.

[126] D. Hernandez, P. François, L. Farinelli, M. Osterås, J. Schrenzel, De novo bacterial genome sequencing: millions
of very short reads assembled on a desktop computer., GenomeRes. 18 (5) (2008) 802–9.

[127] S. Needleman, C. Wunsch, A general method applicable to the search for similarities in the amino acid sequence
of two proteins., J Mol Biol. 48 (3) (1970) 443–53.

[128] T. Smith, M. Waterman, Identification of common molecular subsequences., J Mol Biol. 147 (1) (1981) 195–7.

[129] O. Gotoh, An improved algorithm for matching biological sequences., J Mol Biol. 162 (3) (1982) 705–8.

[130] G. Pertea, X. Huang, F. Liang, V. Antonescu, R. Sultana, S. Karamycheva, Y. Lee, J. White, F. Cheung, B. Parvizi,
et al., TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets.,
Bioinformatics 19 (5) (2003) 651–2.

[131] J. Gorodkin, S. Cirera, J. Hedegaard, M. Gilchrist, F.Panitz, C. Jorgensen, K. Scheibye-Knudsen, T. Arvin,
S. Lumholdt, M. Sawera, T. Green, B. Nielsen, J. Havgaard, C.Rosenkilde, J. Wang, H. Li, R. Li, B. Liu, S. Hu,
W. Dong, W. Li, J. Yu, J. Wang, H. Staefeldt, R. Wernersson, L.Madsen, B. Thomsen, H. Hornshoj, Z. Bujie,
X. Wang, X. Wang, L. Bolund, S. Bruna k, H. Yang, C. Bendixen, M. Fredholm, Porcine transcriptome analysis
based on 97 non-normalized cdna libraries and assembly of 1,021,891 ests, Genome Biology 8 (2007) R45.

[132] T. Chen, S. Skiena, A case study in genome-level fragment assembly., Bioinformatics 16 (6) (2000) 494–500.

[133] P. Pevzner, H. Tang, M. Waterman, An Eulerian path approach to DNA fragment assembly., Proc Natl Acad Sci U
S A 98 (17) (2001) 9748–53.

[134] T. Scheetz, N. Trivedi, C. Roberts, T. Kucaba, B. Berger, N. Robinson, C. Birkett, A. Gavin, B. O’Leary, T. Braun,
et al, ESTprep: preprocessing cDNA sequence reads., Bioinformatics. 19 (11) (2003) 1318–1324.

[135] H. Chou, M. Holmes, DNA sequence quality trimming and vector removal., Bioinformatics 17 (12) (2001) 1093–
104.

[136] G. Pertea, seqclean, http://www.tigr.org/tdb/tgi/software/.

[137] K. Schneeberger, K. Malde, E. Coward, I. Jonassen, Masking repeats while clustering ESTs., Nucleic Acids Res.
33 (7) (2005) 2176–80.

[138] A. Smit, R. Hubley, P. Green, RepeatMasker Open-3.0, <http://www.repeatmasker.org> (1996-2004).

[139] J. Jurka, Repbase update: a database and an electronicjournal of repetitive elements., Trends Genet. 16 (9) (2000)
418–20.

[140] J. Bedell, I. Korf, W. Gish, MaskerAid: a performance enhancement to RepeatMasker., Bioinformatics. 16 (11)
(2000) 1040–1.

[141] J. Quackenbush, F. Liang, I. Holt, G. Pertea, J. Upton,The TIGR gene indices: reconstruction and representation
of expressed gene sequences., Nucleic Acids Res 28 (1) (2000) 141–5.

[142] J. Burke, D. Davison, W. Hide, d2_cluster: a validatedmethod for clustering EST and full-length cDNAsequences.,
Genome Res 9 (11) (1999) 1135–42.

23



[143] T. Keane, Z. Ning, Assessing Assemblability of Reads from New Sequencing Platforms. ISMB 2007,
http://minds.nuim.ie/ tkeane/publications/ismb2007Poster.pdf (2007).

[144] J. Dohm, C. Lottaz, T. Borodina, H. Himmelbauer, Substantial biases in ultra-short read
data sets from high-throughput DNA sequencing, Nucl. AcidsRes. 36 (16) (2008) e105.
arXiv:http://nar.oxfordjournals.org/cgi/reprint/36/16/e105.pdf, doi:10.1093/nar/gkn425.
URL http://nar.oxfordjournals.org/cgi/content/abstract/36/1%6/e105

[145] Y. Erlich, P. Mitra, M. Delabastide, R. Mccombie, G. Hannon, Alta-cyclic: a self-optimizing base caller for next-
generation sequencing, Nature Methods 5 (8) (2008) 679–682. doi:http://dx.doi.org/10.1038/nmeth.1230.
URL http://dx.doi.org/10.1038/nmeth.1230

[146] J. Butler, I. MacCallum, M. Kleber, I. Shlyakhter, M. Belmonte, E. Lander, C. Nusbaum, D. Jaffe, Allpaths: de
novo assembly of whole-genome shotgun microreads, Genome Res 18 (5) (2008) 810–20.

[147] M. Pop, D. Kosack, S. Salzberg, Hierarchical scaffolding with Bambus., Genome Res. 14 (1) (2004) 149–59.

[148] D. Gordon, C. Abajian, P. Green, Consed: a graphical tool for sequence finishing., Genome Res 8 (3) (1998)
195–202.

[149] D. Gordon, C. Desmarais, P. Green, Automated finishingwith autofinish., Genome Res. 11 (4) (2001) 614–25.

[150] D. Bartels, S. Kespohl, S. Albaum, T. Druke, A. Goesmann, J. Herold, O. Kaiser, A. Puhler, F. Pfeiffer, G. Raddatz,
et al., BACCardI - a tool for the validation of genomic assemblies, assisting genome finishing and intergenome
comparison., Bioinformatics 21 (7) (2005) 853–9.

[151] J. Bonfield, K. Smith, R. Staden, A new DNA sequence assembly program., Nucleic Acids Res. 23 (24) (1995)
4992–9.

[152] E. Mardis, Anticipating the 1,000 dollar genome, Genome Biol 7 (7) (2006) 112.

[153] C. Hutchison, Dna sequencing: bench to bedside and beyond, Nucleic Acids Res 35 (18) (2007) 6227–37.

[154] D. R. Bentley, Whole-genome re-sequencing., Curr Opin Genet Dev 16 (6) (2006) 545–552.

[155] M. Stratton, Genome resequencing and genetic variation, Nature Biotechnology 26 (2008) 65–66.

[156] D. Wheeler, M. Srinivasan, M. Egholm, Y. Shen, L. Chen,A. McGuire, W. He, Y. Chen, V. Makhijani, G. Roth,
X. Gomes, K. Tartaro, F. Niazi, C. Turcotte, G. Irzyk, J. Lupski, C. Chinault, X. Song, Y. Liu, Y. Yuan, L. Nazareth,
X. Qin, D. Muzny, M. Margulies, G. Weinstock, R. Gibbs, J. Rothberg, The complete genome of an individual by
massively parallel dna sequencing, Nature 452 (7189) (2008) 872–876. doi:http://dx.doi.org/10.1038/nature06884.
URL http://dx.doi.org/10.1038/nature06884

[157] J. Wang, G. Wong, P. Ni, Y. Han, X. Huang, J. Zhang, C. Ye,Y. Zhang, J. Hu, K. Zhang, et al., RePS: a sequence
assembler that masks exact repeats identified from the shotgun data., Genome Res 12 (5) (2002) 824–31.

[158] M. Taylor, C. Semple, Sushi gets serious: the draft genome sequence of the pufferfish Fugu rubripes., Genome
Biol. 3 (9).

[159] P. Havlak, R. Chen, K. Durbin, A. Egan, Y. Ren, X. Song, G. Weinstock, R. Gibbs, The Atlas genome assembly
system., Genome Res. 14 (4) (2004) 721–32.

[160] K. Mita, M. Kasahara, S. Sasaki, Y. Nagayasu, T. Yamada, H. Kanamori, N. Namiki, M. Kitagawa, H. Yamashita,
Y. Yasukochi, et al., The genome sequence of silkworm, Bombyx mori., DNA Res. 11 (1) (2004) 27–35.

[161] X. Huang, J. Wang, S. Aluru, S. Yang, L. Hillier, PCAP: awhole-genome assembly program., Genome Res. 13 (9)
(2003) 2164–70.

[162] G. Sutton, O. White, M. Adams, A. Kerlavage, TIGR Assembler: A New Tool for Assembling Large Shotgun
Sequencing Project., Genome Sci Tech 1 (1) (1995) 9–19.

[163] C. Lee, C. Grasso, M. Sharlow, Multiple sequence alignment using partial order graphs., Bioinformatics. 18 (3)
(2002) 452–64.

[164] N. Kim, S. Shin, S. Lee, ASmodeler: gene modeling of alternative splicing from genomic alignment of mRNA,
EST and protein sequences., Nucleic Acids Res. 32(Web Server issue) (2004) W181–6.

24



[165] Z. Zhang, S. Schwartz, L. Wagner, W. Miller, A greedy algorithm for aligning DNA sequences., L.

[166] A. Kalyanaraman, S. Aluru, S. Kothari, V. Brendel, Efficient clustering of large EST data sets on parallel comput-
ers., Nucleic Acids Res. 31 (11) (2003) 2963–74.

[167] S. Cawley, L. Pachter, HMM sampling and applications to gene finding and alternative splicing., Bioinformatics
19 Suppl 2 (2003) II36–II41.

[168] W. Kent, D. Haussler, Assembly of the working draft of the human genome with GigAssembler., Genome Res.
11 (9) (2001) 1541–8.

[169] Mouse Genome Sequencing Consortium, Initial sequencing and comparative analysis of the mouse genome., Na-
ture 420 (6915) (2002) 520–62.

[170] G. Marth, I. Korf, M. Yandell, R. Yeh, Z. Gu, H. Zakeri, N. Stitziel, L. Hillier, P. Kwok, W. Gish, A general
approach to single-nucleotide polymorphism discovery., Nat Genet. 23 (4) (1999) 452–6.

[171] D. Nickerson, V. Tobe, S. Taylor, PolyPhred: automating the detection and genotyping of single nucleotide substi-
tutions using fluorescence-based resequencing., Nucleic Acids Res 25 (14) (1997) 2745–51.

[172] S. Weckx, J. Del Favero, R. Rademakers, L. Claes, M. Cruts, J. P. De, B. C. Van, R. P. De, novoSNP, a novel
computational tool for sequence variation discovery., Genome Res. 15 (3) (2005) 436–42.

[173] V. Ramensky, P. Bork, S. Sunyaev, Human non-synonymous SNPs: server and survey., Nucleic Acids Res. 30 (17)
(2002) 3894–900.

[174] P. Ng, S. Henikoff, SIFT: Predicting amino acid changes that affect protein function., Nucleic Acids Res. 31 (13)
(2003) 3812–4.

[175] B. Modrek, A. Resch, C. Grasso, C. Lee, Genome-wide detection of alternative splicing in expressed sequences of
human genes., Nucleic Acids Res. 29 (13) (2001) 2850–9.

[176] J. Bouck, W. Yu, R. Gibbs, K. Worley, Comparison of geneindexing databases., Trends Genet. 15 (4) (1999)
159–62.

[177] F. Chen, E. Vallender, H. Wang, C. Tzeng, W. Li, Genomicdivergence between human and chimpanzee estimated
from large-scale alignments of genomic sequences., J Hered92 (6) (2001) 481–489.

[178] J. Venter, K. Remington, J. Heidelberg, A. Halpern, D.Rusch, J. Eisen, D. Wu, I. Paulsen, K. Nelson, W. Nelson,
et al, Environmental genome shotgun sequencing of the Sargasso Sea., Science 2004.

[179] G. Tyson, J. Chapman, P. Hugenholtz, E. Allen, R. Ram, P. Richardson, V. Solovyev, E. Rubin, D. Rokhsar, J. Ban-
field, Community structure and metabolism through reconstruction of microbial genomes from the environment.,
Nature.

[180] S. Tringe, C. von Mering, A. Kobayashi, A. Salamov, K. Chen, H. Chang, M. Podar, J. Short, E. Mathur, J. Detter,
et al, Comparative metagenomics of microbial communities., Science 308 (5721) (2005) 554–557.

[181] H. Poinar, C. Schwarz, J. Qi, B. Shapiro, R. Macphee, B.Buigues, A. Tikhonov, D. Huson, L. Tomsho, A. Auch,
M. Rampp, W. Miller, S. Schuster, Metagenomics to paleogenomics: large-scale sequencing of mammoth dna,
Science 311 (5759) (2006) 392–4.

[182] S. Seemann, M. Gilchrist, I. Hofacker, P. Stadler, J. Gorodkin, Detection of RNA structures in porcine est data and
related mammals, BMC Genomics 8 (2007) 316.

[183] D. Jaffe, J. Butler, S. Gnerre, E. Mauceli, K. LindbladToh, J. Mesirov, M. Zody, E. Lander, Whole-genome
sequence assembly for mammalian genomes: Arachne 2., Genome Res 13 (1) (2003) 91–6.

[184] J. Dohm, C. Lottaz, T. Borodina, H. Himmelbauer, SHARCGS, a fast and highly accurate short-read assembly
algorithm for de novo genomic sequencing, Genome Res 17 (11)(2007) 1697–706.

[185] R. Warren, G. Sutton, S. Jones, R. Holt, Assembling millions of short dna sequences using ssake., Bioinformatics
23 (4) (2007) 500–1.

[186] Y. Xing, A. Resch, C. Lee, The multiassembly problem: reconstructing multiple transcript isoforms from EST
fragment mixtures., Genome Res. 14 (3) (2004) 426–41.

25



Figures

Figure 1 – Timeline

Figure 1: Figure showing the major breakthroughs in sequencing. The year of the different milestones is chosen to be the
publication year of the first article that presented the method. Software publications are marked in cursive. On the left,
the size of GenBank (in deposited basepairs) is shown, with the length and width of the bars representing the size on a
logarithmic scale.

Figure 2 – Sequencing vector

Figure 2: Figure showing a schematic drawing of a sequencingvector, such as a BAC (Bacterial Artificial Chromosome).
The insert can be a genomic fragment, or an cDNA (for EST sequencing). In both cases sequencing from each end will
produce a read pair that can provide additional informationfor assemblers.

Figure 3 – Sequencing methods

Figure 3: Schematic drawing of the four different sequencing procedures. (a) Hierarchical shotgun, where a BAC clone
map (tilling map) covering the genome is first created after which the BACs are sequenced. (a) Whole Genome Shotgun,
where the genome is randomly split into smaller parts and sequenced. (c) EST sequencing, where mRNA is extracted from
tissue and then sequenced. (d) Massively parallel sequencing where short sequence fragments are aligned to a reference
genome.

Figure 4 – Repeat Contig

Figure 4: Schematic drawing of a cluster contain a likely repeat. The region on the right is covered by many more reads
than would be expected by chance, and is therefore potentially a repeat region, which could be masked.

Figure 5 – Assembly pipeline

Figure 5: Figure showing the typical pipeline of a sequencing project. Sequenced reads are generated, after which they
are cleaned and assembled. Following the assembly annotation and analysis can be performed.The grey line show the
pipeline for massively parallel sequencing where the readsare mapped to a reference genome, while the full pipeline is
for de novo sequencing ans assembly. Part of the figure is adapted from [182]

Figure 6 – Assembly example

Figure 6: Figure showing an examples of an assembled (EST) contig (cluster). The thick line at the top represents
the consensus sequence produced by the applied assembler ([131]). The blowup shows a putative SNP present in the
sequences. The colored stretches mark specific tri-nucleotides, ’ATG’ is green and ’TAA’ is red, and are drawn to show
the structure of the assembly.

Figure 7 – Graph example
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Figure 7: Figure showing an examples of how a graph is constructed. Two reads are mapped onto the different k-mer
nodes (k = 6 in this example), and edges between the nodes are determined by the reads. The presence of a nucleotide
difference (eg.sequencing error, SNP,etc.) between the two reads cause the graph to split up, thus causing an ambiguity
in the sequence.
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Tables

Table 1a – Assemblers used primarily for shotgun data.

Assembler Computational Additional Common Reference
dependencies Information Features

Phusion RPPHRAP PR, BAC,Qr P, R, K [50]
JAZZ banded SW, Qr K [158]

malign, PHRAP
RePS BLAST/PHRAP PR R, K [157]
ARACHNE2 SW Qr, PR K [49]

[183]
GigAssembler psLayout PR, BAC, EST, Qr P, R [168]
Celera BLAST-like PR P [45]
assembler
Euler graph-based PR R [133]
CAP3 banded SW Qr, PR P [116]
GAP4 CAP3, PHRAP Q, PR [151]

or FAKII
RAMEN banded SW Qr R [160]
ATLAS PHRAP, Qr R, K [159]

banded SW
PCAP CAP3, banded SW P, R [161]
Bambus - contigs P [147]
TRAP mod SW Qr R, K [58]
PHRAP banded SW Q [44]
TIGR mod SW Q R [162]
Assembler
STROLL banded SW Q [132]
mira banded SW Qr R [59]
ALLPATHS graph-based PR [146]
SHARCGS contig elongation [184]
Velvet graph-based PR [121]
SSAKE contig elongation [185]

Table 1a: Overview of different assembly programs (including scaffolders), some of the programs have also been used
to assemble EST sequences. The additional information shows the information which a given assembler can use, besides
read information.PR: Paired Reads information,BAC: Bacterial artificial Chromosome data,Q: quality data,Qr : Quality
data and trimming reads without sufficient quality. Common features are features that the assembler shares with other
assemblers:P: Process can be run on parallel computers,R: Handles repeats,K : K-mer approach to find potential overlaps.
The last four programs listed are designed primarily for short read assembly.
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Table 1b – “Assemblers” designed for ESTs

Program Computational Additional Common Reference
dependencies Information Features

TGICL megablast/CAP3 known genes, Qr P [141]
StackPack PHRAP Qr [13]

PaCE Suffix tree R [166]
Splicing graphs graph-based [55]

ASmodeler Directed acyclic mRNA, EST [164]
graph protein sequences

HB-algorithm HB-algorithm EST [186]
geneDistiller megablast Qr [54]

xtract graph-based Qr [57]

Table 1b: Overview of the programs designed for clustering,analysis and assembly of EST data. See table 1a for abbre-
viations.
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