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Abstract

A graph is said to be S-prime if, whenever it is a subgraph of a nontrivialCarte-
sian product graph, it is a subgraph of one of the factors. A diagonalized Cartesian
product is obtained from a Cartesian product graph by connecting two vertices of
maximal distance by an additional edge. We show there that a diagonalizedprod-
uct of S-prime graphs is again S-prime. Klavžaret al. [Discr. Math.244: 223-230
(2002)] proved that a graph is S-prime if and only if it admits a nontrivialpath-
k-coloring. We derive here a characterization of all path-k-colorings of Cartesian
products of S-prime graphs.

1 Introduction and Preliminaries

A graphS is said to beS-prime(Sstands for “subgraph”) w.r.t. to an arbitrary graph-
product⋆ if for all graphsG andH with S⊆ G⋆H holds: S⊆ H or S⊆ G. A graph
is S-compositeif it is not S-prime. The class of S-prime graphs was introduced and
characterized for the direct product by Gert Sabidussi in 1975 [10]. He showed that the
only S-prime graphs with respect to the direct product are complete graphs or complete
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graphs minus an edge. Analogous notions of S-prime graphs with respect to other prod-
ucts are due to Lamprey and Barnes [8, 9]. They showed that theonly S-prime graphs
w.r.t. the strong product and the lexicographic product arethe single vertex graphK1,
the disjoint unionK1∪K1 and the complete graph on two verticesK2. Moreover, they
characterized S-prime graphs w.r.t. the Cartesian product.

We consider finite, simple, connected and undirected graphsG= (V,E). A graphH
is a subgraph of a graphG, in symbolsH ⊆ G, if V(H)⊆V(G) andE(H)⊆ E(G). We
will be concerned here with the Cartesian productG�H. It has vertex setV(G�H) =
V(G)×V(H); two vertices(g1,h1), (g2,h2) are adjacent inG�H if (g1,g2) ∈ E(G)
andh1 = h2, or (h1,h2) ∈ E(G2) andg1 = g2. A Cartesian productG�H is called
trivial if G≃ K1 or H ≃ K1. A graphG is primewith respect to the Cartesian product
if it has only a trivial Cartesian product representation. For detailed information about
product graphs we refer the interested reader to [4] and [5].

In the following we will consider the Cartesian product only. Therefore, the terms
S-prime and S-composite refer to this product from here on.

S-prime graphs can be characterized in terms ofbasic S-prime graphs[8, 9]. Fol-
lowing [8, 9], we define basic S-prime graphs recursively: AnS-prime graph is basic if
it has at least three vertices and contains no proper basic S-prime subgraphs. Moreover,
these same authors showed that every S-prime graph is eithera basic S-prime graph or
can be obtained from basic S-prime graphs using two special operations. The only ba-
sic S-prime graphs with less than 7 vertices areK3 andK2,3. Other examples of S-prime
graphs include the complete graphsKn with n≥ 1 vertices and the complete bipartite
graphsKm,n with m≥ 2,n ≥ 3. Not much is known, however, about the structure of
(basic) S-prime graphs, although Klavžar et al. [6, 7] and Brěsar [1] proved several
characterizations of (basic) S-prime graphs. For our purposes, the characterization of
S-composite graphs in terms of particular colorings [6] is of most direct interest.

Before we proceed, we introduce some notation. GivenG= (V,E), we will write
G‡(uv) for the graph with vertex setV andE ‡(u,v) for each of the set operations
‡∈ {\,∪,∩}.

The Cartesian product is associative. Therefore, a vertexx of a Cartesian product
�

n
i=1Gi is properly “coordinatized” by the vectorc(x) := (c1(x), . . . ,cn(x)) whose en-

tries are the verticesci(x) of its factor graphsGi . Two adjacent vertices in a Cartesian
product graph therefore differ in exactly one coordinate. In a Cartesian product�n

i=1Gi ,
the induced subgraphGx

j with vertex set{(c1(x), . . .c j−1(x),v,c j+1(x), . . . ,cn(x)) ∈
V(G) | v ∈ V(G j)} is isomorphic to the factorG j for everyx ∈ V(G). We call this
subgraph aG j -layer. Throughout this contribution we will useIn = {1, . . . ,n} to index
the factors.

A k-coloring of G is a surjective mappingF : V(G) → {1, . . . ,k}. This coloring
need not be proper, i.e., adjacent vertices may obtain the same color. A pathP in G is
well-coloredby F if for any two consecutive verticesu andv of P we haveF(u) 6=F(v).
Following [6], we say thatF is a path-k-coloringof G if F(u) 6= F(v) holds for the
endpoints of every well-coloredu,v-path P in G. For k = 1 andk = |V| there are
trivial path-k-colorings: Fork= 1 the coloring is constant and hence there are no well-
colored paths. On the other hand if a different color is used for every vertex, then
every path, of course, has distinctly colored endpoints. A path-k-coloring is nontrivial
if 2 ≤ k≤ |V(G)|−1.
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Theorem 1 ([6]). A connected graph G is S-composite if and only if there existsa
nontrivial path-k-coloring.

The next corollary, which follows directly from Theorem 1, will be useful in the
subsequent discussion.

Corollary 1. Consider an S-prime graph S and let F be a path-k-coloring of S. If there
are two distinct vertices u,v∈V(S) with F(u) = F(v) then F is constant, i.e., k= 1.

Now consider a product graph�iGi . We say that all verticeswithin the G j -layer
Gx

j have the same color ifF(a) = F(b) holds for all verticesa,b ∈ V(Gx
j). Note that

this does not imply that vertices of differentG j -layer obtain the same color.
The main topic of this contribution arediagonalizedCartesian product graphs.

Definition 1. A graph G is called adiagonalizedCartesian product, if there is an edge
(u,v) ∈ E(G) such that H= G\ (uv) is a nontrivial Cartesian product and u and v
have maximal distance in H.

u

v

Figure 1: A diagonalized Cartesian Product of the graphK2�K2�K3.

For an example of a diagonalized Cartesian product see Figure 1. Clearly, diago-
nalized Cartesian products need not be basic S-prime graphsbecause Cartesian prod-
ucts of basic S-prime graphs contain basic S-prime graphs astheir layers. Likewise,
diagonalized Cartesian products ofK2’s, i.e., diagonalized hypercubes, are not basic S-
prime graphs in general, even though the graphK2 is not itself a basic S-prime graph.
As an example consider the diagonalized hypercubeQ2 andQ3 that containK3 and
K2,3 as subgraphs, respectively, see Figure 2. Furthermore, there are families of (ba-
sic) S-prime graphs that are not diagonalized Cartesian products, e.g.,K3, K2,3 and the
construction of the graphAn in [6].

Nevertheless, in this contribution we will show that diagonalized Cartesian prod-
ucts of S-prime graphs are S-prime. Diagonalized Cartesianproducts of S-prime graphs
play a crucial role in the local prime factor decomposition algorithm for strong product
graphs, see [3, 2]. Furthermore, we will give a necessary andsufficient condition for
k-colorings of S-prime graphs to be path-k-colorings of Cartesian products of S-prime
graphs.
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Figure 2: Diagonalized HypercubesQ2 andQ3 are not basic S-prime, since they con-
tain basic S-prime graphsK3, resp.K2,3, highlighted by dashed edges.

2 Path-k-colorings of Cartesian Products of S-prime graphs

Let us start with a brief preview of this section. We first establish that every nontrivial
Cartesian productG1�G2 has a nontrivial path-k-coloring. For instance, choosek =
|V(G1)| and assign to every vertexx with coordinates(x1,x2) the colorx1.

Given a Cartesian productG=�
n
i=1Si of S-prime graphs with a nontrivial path-k-

coloringF , first we will show that there is anSi-layer on whichF is constant. Next,
we prove that is true for allSi-layers. We then proceed to show thatF is constant even
on anyH-layer withH = � j∈JSj , provided that certain conditions are satisfied. This
eventually leads us to necessary and sufficient conditions for path-k-colorings. This
result, in turn, will be demonstrated to imply that diagonalized Cartesian products of
S-prime graphs are S-prime.

We start our exposition with a simple necessary condition:

Lemma 1. Let H ⊆ G and suppose F is a path-k-coloring of G. Then the restriction
F|V(H) of F on V(H) is a path-k-coloring of H. Moreover, if V(H) =V(G) and F is a
nontrivial path-k-coloring of G, then it is also a nontrivial path-k-coloring of H.

Proof. SupposeH is not path-k-colored. Then there is au,v-path Pu,v in H that is
well-colored, butu andv have the same color. This pathPu,v is also contained inG,
contradicting the assumption thatF is a path-k-coloring of G. The second statement
now follows directly from|V(G)|= |V(H)|.

Lemma 2. Let F be a nontrivial path-k-coloring of G. Then there are adjacent vertices
u,v∈V(G) with F(u) = F(v).

Proof. Sincek ≤ |V(G)|−1 it follows that there are at least two vertices of the same
color, sayx andy. Assume now there is a pathPx,y from x to y, such that all consecutive
vertices have different colors. ThenPx,y would be well-colored. But the endpoints of
Pxy satisfyF(x) = F(y) so thatF cannot be a path-k-coloring, a contradiction. Thus
there are consecutive, and hence adjacent, vertices with the same color.

For later reference, we state the following observation that can be verified by ex-
plicitly enumerating all colorings, see Figure 3 for a subset of cases.

Lemma 3. The hypercube Q2 = K2�K2 has no path-3-coloring. In particular, every
path-2-coloring of Q2 has adjacent vertices with the same color.
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Figure 3: Possible path-k-coloring of a squareQ2 for k = 1,2,4. A possible well
coloring that is not a path 3-coloring is shown on the right-hand side graph

We next show thatF is constant on eachSj -layer whenever there is oneSj -layer
that contains two distinct vertices with the same color. More precisely:

Lemma 4. Let G= �
n
i=1Si be a given Cartesian product of S-prime graphs and let

F be a nontrivial path-k-coloring of G. Furthermore let u,w ∈ V(Su
j ) be two distinct

vertices satisfying F(u) = F(w). Then F(x) = F(y) holds for all vertices x,y∈V(Sb
j )

in each Sj -layer Sb
j .

Proof. Corollary 1 and Lemma 1 imply that all vertices of the layerSu
j have the same

color. Forb∈V(Su
j ) there is nothing to show. Thus, assumeb /∈V(Su

j ), i.e.,Su
j 6= Sb

j ,

and an arbitrary edgee= (u,v) ∈ E(Su
j ). Let ũ∈V(Sb

j ) be the vertex with coordinates
c j(ũ) = c j(u). Moreover, letPu,ũ := (u= u1,u2, ..,ul = ũ) be a path fromu to ũ such
thatc j(uk) = c j(u) for all k= 1, . . . , l . None of the edges(uk,uk+1) is contained in an
Sj -layer. By definition of the Cartesian product there is a unique square(u,u2,v2,v)
wherev2 has coordinatesci(v2) = ci(u2) for i 6= j andc j(v2) = c j(v). Lemma 3 now
implies that the onlyF on the square is either constant or a path-2-coloring, i.e.,the
assumptionF(u) = F(v) impliesF(u2) = F(v2).

By induction on the length of the pathPu,ũ we see thatF(uk) = F(vk), whenever
ci(vk) = ci(uk) for all i 6= j andc j(vk) = c j(v). The assumption ˜u ∈ V(Sb

j ) and our

choice of the coordinates implies(ul ,vl ) = (ũ,vl ) ∈ E(Sb
j ). We apply Lemma 3 to the

square(ul−1, ũ,vl ,vl−1) with F(ul−1) = F(vl−1) to inferF(ũ) = F(vl ). Corollary 1 and
Lemma 1 imply that for all verticesx,y∈V(Sb

j ) holdsF(x) = F(y).

It is important to notice that Lemma 4 only implies thatF is constant onSj -layers,
but it does not imply that allSj -layers obtain the same color.

Corollary 2. Let G= �
n
i=1Si be a given product of S-prime graphs and let F be a

nontrivial path-k-coloring of G. Then there is a j∈ In such that, for every v∈V(G), F
is constant on Svj .

Proof. The assertion follows directly from Lemma 2, Lemma 4, and thedefinition of
the Cartesian product.

Lemma 5. Let F be a nontrivial path-k-coloring of the Cartesian product G=�
n
i=1Si

of S-prime graphs Si . Let H=� j∈JSj be the product of a subset of factors of G, where
J⊆ In denotes an arbitrary subset of indices. Moreover, let Ha be an H-layer such that
F is constant on V(Ha). Then F is constant within each H-layer.
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u
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v2

ul−1

vl−1

ũ

vl

b

Sb
jS

ul−1

j
S
u2

jS
u
j

Pu,ũ

Figure 4: Idea of the proof of Lemma 4. The pathPu,ũ connects verticesu anduk (k=
2, . . . , l ) of distinctSj -layers. IfF(uk−1) = F(vk−1) then the squares(uk−1,uk,vk,vk−1)
located in adjacentSj -layers must admit a path-1-coloring or a path-2-coloring,enforc-
ing thatuk andvk must have the same color. This, in turn, is used to show thatF is
constant on the entire layerSuk

j .

Proof. Let Ha be anH-layer defined as above and assumeHa 6= Hb. By assumption,
F is constant onV(Ha). ThusF is also constant on eachSj -layerSj ⊆ Ha, j ∈ J, and
Lemma 4 then implies thatF is also constant within everySj -layer with j ∈ J. Now
choose two arbitrary verticesx,y ∈ V(Hb). By connectedness ofHb there is a path
Px,y from x to y consisting only of vertices of thisH-layer Hb. Notice that any two
consecutive verticesxk,xk+1 ∈ Px,y are contained in someSj -layer such thatj ∈ J and
thereforeF(xk) = F(xk+1). Therefore, the coloringF must be constant alongP, hence
F(x) = F(y). ThusF is constant onV(Hb).

Next we consider two (not necessarily prime) factorsH1,H2 of a Cartesian product
of S-prime graphs and ask under which conditions a path-k-coloring on (H1�H2)-
layers must be constant.

Lemma 6. Let F be a nontrivial path-k-coloring on the Cartesian product G=�
n
i=1Si

of S-prime graphs Si . Let H1 = � j∈JSj and H2 = �k∈KSk be two distinct Cartesian
products of factors Si of G, where J,K ⊆ In and J∩K = /0. Then F is constant on each
(H1�H2)-layer whenever F is constant on some H1-layer Ha

1 and on some H2-layer
Hb

2 .

Proof. Let Ha
1 andHb

2 as constructed above. Lemma 5 implies that all vertices within
eachH1 layer and within eachH2-layer, resp., have the same color. For all vertices
z∈ V(Ha

1) there is anH2-layer Hz
2, Thus for all verticesx,y ∈ V(Hz

2) holdsF(x) =
F(y) = F(z) = F(a). By definition of the Cartesian product, this implies in particular
that all vertices within the layer(H1�H2)

a have the same colorF(a). Hence we can
apply Lemma 5 and conclude that all vertices within each(H1�H2)-layer have the
same color.

Now we are in the position to characterize nontrivial path-k-colorings.
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Lemma 7. Let F be a nontrivial path-k-coloring of the Cartesian product G=�
n
i=1Si

of S-prime graphs Si , and consider two distinct vertices u,v∈V(G) satisfying F(u) =
F(v). Let J= { j | c j(u) 6= c j(v)}⊆ In denote the index set of the coordinates in which u
and v differ, and let H=� j∈JSj be the Cartesian product of the corresponding factors
Sj of G. Then F is constant within each H-layer Hb.

Proof. First assume thatv∈V(Su
l ) for somel , which implies thatJ= {l} by definition

of the Cartesian product. In this case, the statement follows directly from Lemma 4.
Now assume that there is nol such thatv∈V(Su

l ). Lemma 4 and Corollary 2 together
imply that there is an indexi such that all vertices within eachSi-layer have the same
color. In particular, this is true forSu

i andSv
i . Together with Lemma 4, this observation

implies that, sinceF(u) = F(v), F is constant onV(Su
i )∪V(Sv

i ). Now let ũ∈V(Sv
i ) be

the vertex with coordinatesci(u) = ci(ũ) and denote byJ1 = { j | c j(u) 6= c j(ũ)}= J\
{i} the set of indices in which the coordinates ofu andũ differ. Notice thatJ\{i}= J,
if v= ũ.
Let Pu,ũ := (u= u1,u2, ..,uk = ũ) be a path fromu to ũ such that for all verticesx∈ Pu,ũ

holdscr(x) = cr(u) for all r ∈ In \ J1. In other words, no edge of anSr -layer, r /∈ J1

is contained in the pathPu,ũ, and hence in particular no edge of anSi-layer. From
F(u) = F(ũ) and the fact thatG is path-k-colored, we can conclude that there is an
edge(ul ,ul+1) ∈ Pu,ũ of some layer different fromSi such thatF(ul ) = F(ul+1).

u ũPu,ũ

v

S
v
iS

u
i

ul

ul+1

S
ul

i
S
ul

j1
Su
j1 Sũ

j1

H
u
1 H

ul

1 H
v
1

Figure 5: Idea of the proof of Lemma 7. The pathPu,ũ connects a pair of vertices with
the same color inSu

i to Sv
i . It therefore must contain two consecutive verticesul and

ul+1 with the same color. It follows that all vertices within the layerSul
i andSul

j1
have

the same colorF(ul ) and finally one shows that all vertices within eachH1-layer with
H1 = Si�Sj1 have the same color.

These consecutive verticesul andul+1 differ in exactly one coordinatec j1 for some
j1 ∈ J1, henceul andul+1 are contained in someSj1-layer. Lemma 4 implies that all
vertices of this layerSul

j1
and therefore all vertices within eachSj1-layer have the same

color. Lemma 6 now implies thatF is constant on eachH1-layer withH1 =Si�Sj1, and
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in particular, all verticesx,y∈V(Hu
1)∪V(Hv

1) have the same color, we have again two
different layers that have the same color. Just as before we will construct a path between
these layers, which implies that the endpoints of this path have the same color. Since
G is path-k-colored, this path must contain an edge(ut ,ut+1) with F(ut) = F(ut+1).

More precisely, let ˜u be a vertex of this newH1-layer Hv
1 such thatci(ũ) = ci(u)

and c j1(ũ) = c j1(u). Again we choose a PathPu,ũ constructed as above, whereJ1

is replaced byJ2 = J1 \ { j1}. In other words for all verticesx ∈ Pu,ũ holdscr(x) =
cr(u) for all r ∈ In \ J2, i.e. in particular no edge ofPu,ũ is contained in anyH1-layer.
Notice that|J2| = |J1|−1. Again we can conclude that there are consecutive vertices
ut ,ut+1 ∈ Pu,ũ such thatF(ut) = F(ut+1), sinceF(ũ) = F(u) andG is path-k-colored.
Let these consecutive verticesut andut+1 differ in coordinatec j2 for some j2 ∈ J2.
Using the same arguments as before we can infer that all vertices in between each
H2 = (Si�Sj1�Sj2)-layer must have the same color.

Repeating this procedure generates, in each step, a new index setJs with |Js| =
|Js−1|−1 fors= 2, . . . , |J1|, and all vertices within eachHs-layer withHs=Si�

(

� j∈J1\JsSj
)

�Sjs
for some js ∈ Js are shown to have the same color. Fors∗ = |J1| we have|Js∗ | = 1.
Moreover the pathPu,ũ with cr(ũ) = cr(u) for all r ∈ In \ { j∗} with j∗ ∈ Js∗ con-
sists only of vertices that are included in thisSj∗ -layer Su

j∗ . SinceF(u) = F(ũ) and
u, ũ ∈ Su

j∗ we can conclude that all verticesx ∈ Su
j∗ have the same colorF(u). From

Lemma 5 and Lemma 6 it follows thatF is constant on eachHs∗ -layer, whereHs∗ =
(

Si�(� j∈J1\Js∗
Sj)�Sj∗

)

. Since{i}∪(J1\Js∗)∪{ j∗}= {i}∪((J\{i})\{ j∗})∪{ j∗}=
J, we conclude that all vertices within each(� j∈JSj)-layer have the same color, com-
pleting the proof of the lemma.

Since two vertices with maximal distance contained in a Cartesian product of non-
trivial factors differ in all coordinates we can conclude the following corollary.

Corollary 3. Let F be a path-k-coloring of the Cartesian product G= �
n
i=1Si of S-

prime graphs Si and suppose u,v ∈ V(G) are two vertices with maximal G-distance
that have the same color. Then F is constant on G, i.e., k= 1.

3 Main Results

We are now in the position to give a complete characterization of path-k-colorings of
Cartesian products of S-prime graphs.

Theorem 2(Path-k-coloring of Cartesian products of S-prime Graphs). Let G=�
n
j=1Sj

be a Cartesian product of S-prime graphs, and let F be a k-coloring of G. Then F is a
path-k-coloring of G if and only if there exists an index set I⊆ In such that the follow-
ing two conditions hold for the graph H defined as H= �i∈I Si for I 6= /0 and H= K1

for I = /0.

1. F(a) = F(b) for all a,b∈V(Hx) for all x ∈V(G) and

2. F(a) 6= F(b) for all a ∈V(Hx) and b∈V(Hy) with Hx 6= Hy.

The coloring F consists of k= |V(G)|/|V(H)| distinct colors. F is nontrivial if and
only if I 6= In and I 6= /0.
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Proof. Let F be an arbitrary path-k-coloring ofG. If F is trivial, then it follows that
k= 1 ork= |V(G)| and thus we can conclude thatI = In or I = /0, respectively. In both
cases, conditions (1) and (2) are satisfied. IfF is nontrivial, thenk ≤ |V(G)|−1 and
there are two vertices with the same color. Conditions (1) and (2) now follow directly
from Lemma 6 and Lemma 7.

We will prove the converse by contraposition. Thus assume thatF satisfied proper-
ties (1) and (2) for someI ⊆ In andF is not a path-k-coloring ofG. Thus, there must be
a well colored pathPu,v between two verticesu andv with F(u) = F(v). If there is an
edge(a,b) ∈ Pu,v such that(a,b) is contained in anH-layerHx for somex∈V(G) we
would contradict Condition (1). Thus assume there is no edge(a,b) ∈ Pu,v that lies in
anyH-layer. Notice that this implies thatu andv are not contained in the sameH-layer,
otherwise some edge(a,b) ∈ Pu,v must be an edge of anH-layer, by definition of the
Cartesian product. SincePu,v is a well colored path betweenu andv with F(u) = F(v)
andHu 6= Hv, we contradict Condition (2).

It remains to show thatF consists ofk= |V(G)|/|V(H)| different colors. ForI = In
and I = /0 this assertion is trivially true. Therefore assumeI 6= In and I 6= /0. Con-
dition (2) implies that all pairwise differentH-layer are colored differently and from
Condition (1) we can conclude that all vertices in between eachH-layer have the same
color. Thus we have just as many colors asH-layers exists. In a Cartesian product
G = H�H ′ the number of differentH-layers is|V(H ′)| = |V(G)|/|V(H)| and thus
k= |V(G)|/|V(H)|.

Finally, we have to show thatF is nontrivial if and only ifI 6= In andI 6= /0. If F is
nontrivial the assumption is already shown at the beginningof this proof. Thus assume
now thatI = In, i.e.,H =�i∈I Si = G. Condition (1) implies that all verticesv∈V(G)
have the same color and hencek= 1, contradicting thatF is nontrivial. Now letI = /0,
i.e. H = K1. As for all verticesv,x∈V(G) holdsv∈V(Kx

1) if and only if v= x, we can
conclude thatF(a) 6= F(b) for all a,b∈V(G). Hencek= |V(G)|, again contradicting
thatF is nontrivial.

In the following, letFI denote a path-k-coloringF of a Cartesian productG of S-
prime graphsSi that satisfies the conditions of Theorem 2 with index setI . We can now
proceed proving the main result of this contribution.

Theorem 3. The diagonalized Cartesian Product of S-prime graphs is S-prime.

Proof. Let G = H ∪ (uv) be a diagonalized Cartesian product of graphsSi , i.e., H =
�

n
i=1Si is a Cartesian product of S-prime graphs and the verticesu andv have maximal

distance inH. Lemma 1 shows that any nontrivial path-k-coloring of G gives rise
to a nontrivial path-k-coloring of H, which in turn implies that there is a nontrivial
subsetI ⊂ In and an according nontrivial path-k-coloringFI such that the conditions of
Theorem 2 are satisfied forH. We can conclude thatFI (u) 6= FI (v), since otherwise the
coloring ofH is trivial with k = 1 according to Corollary 3 andFI would be constant.
Let HI denote the Cartesian product�i∈I Si of prime factors ofG and letHu

I andHv
I be

theHI − layer containingu andv, respectively. Clearly,Hu
I 6= Hv

I , sinceI 6= {1, . . . ,n},
by definition of the Cartesian product and sinceu andv have maximal distance inH.
Let ũ∈V(Sv

i ) be the vertex with coordinatesci(ũ) = ci(u) for all i ∈ I . Note thatv 6= ũ,
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becauseci(ũ) = ci(u) 6= ci(v) for all i ∈ I , otherwiseu andv would not have maximal
distance.

Let Pu,ũ be a path betweenu andũ such that for all verticesx∈ Pu,ũ holdsci(x) =
ci(u) for all i ∈ I . Thus no edge of anyHI -layer is contained in this pathPu,ũ. From
Theorem 2 and the fact thatFI is nontrivial, it follows thatFI (a) 6= FI (b) for all a ∈
V(Hx

I ) andb∈V(Hy
I ) with Hx

I 6= Hy
I . This is true in particular also for any two distinct

verticesa andb in the pathPu,ũ, sinceHa
I 6= Hb

I by choice of the coordinates. ThusPu,ũ

is well colored. Moreover it holdsFI (u) 6= FI (ũ).

u ũPu,ũ

v

Hu
I Hv

I

Figure 6: Sketch of the proof of Theorem 3. TheHI -layersHu
I andHv

I are connected by
a well-colored pathPu,ũ with distinct colors at the endpoints,FI (u) 6= FI (ũ). The path
P∗ = Pu,ũ∪ (u,v) is well colored, butFI (u) = FI (v), i.e.,FI is not a path-k-coloring.

Now consider the pathP∗ = Pu,ũ ∪ (u,v) in G, which is by construction a well
colored path fromv to ũ. However,FI (v) = FI (ũ). ThusFI is not a path-k-coloring ofG
for any nontrivialI ⊂ In. Theorem 1 and Lemma 1 imply thatG= H∪ (uv) is S-prime,
from what the assumption follows.

Corollary 4. Diagonalized Hamming graphs, and thus diagonalized Hypercubes, are
S-prime.

We conclude our presentation with an example that shows thatnot every diagonal-
ized Cartesian product is S-prime, see Figure 7, and open problems:

Problem 1. Are there other classes of diagonalized Cartesian productsthat are S-
prime?

Problem 2. Which of the (known) families of S-prime graphs that are not diagonal-
ized Cartesian products can be non-trivially isometrically embedded into diagonalized
Cartesian products of S-prime graphs, i.e., they are not contained in single layers?
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