Diagonalized Cartesian Products of S-prime graphs are S-prime

Marc Hellmuth¹ Lydia Gringmann² Peter F. Stadler^{1,2,3,4,5}

¹Max Planck Institute for Mathematics in the Sciences Inselstrasse 22, D-04103 Leipzig, Germany

²Bioinformatics Group,
Department of Computer Science; and Interdisciplinary Center for Bioinformatics,

University of Leipzig,
Härtelstrasse 16-18, D-04107 Leipzig, Germany

³Fraunhofer Institut für Zelltherapie und Immunologie
– IZI Perlickstraße 1, D-04103 Leipzig, Germany

⁴ Department of Theoretical Chemistry

University of Vienna,

Währingerstraße 17, A-1090 Wien, Austria

⁵ Santa Fe Institute, 1399 Hyde Park Rd.,

Santa Fe, NM 87501

Abstract

A graph is said to be S-prime if, whenever it is a subgraph of a nontrivial Cartesian product graph, it is a subgraph of one of the factors. A diagonalized Cartesian product is obtained from a Cartesian product graph by connecting two vertices of maximal distance by an additional edge. We show there that a diagonalized product of S-prime graphs is again S-prime. Klavžar *et al.* [*Discr. Math.* **244**: 223-230 (2002)] proved that a graph is S-prime if and only if it admits a nontrivial path-*k*-coloring. We derive here a characterization of all path-*k*-colorings of Cartesian products of S-prime graphs.

1 Introduction and Preliminaries

A graph S is said to be S-prime (S stands for "subgraph") w.r.t. to an arbitrary graph-product \star if for all graphs G and H with $S \subseteq G \star H$ holds: $S \subseteq H$ or $S \subseteq G$. A graph is S-composite if it is not S-prime. The class of S-prime graphs was introduced and characterized for the direct product by Gert Sabidussi in 1975 [10]. He showed that the only S-prime graphs with respect to the direct product are complete graphs or complete

graphs minus an edge. Analogous notions of S-prime graphs with respect to other products are due to Lamprey and Barnes [8, 9]. They showed that the only S-prime graphs w.r.t. the strong product and the lexicographic product are the single vertex graph K_1 , the disjoint union $K_1 \cup K_1$ and the complete graph on two vertices K_2 . Moreover, they characterized S-prime graphs w.r.t. the Cartesian product.

We consider finite, simple, connected and undirected graphs G = (V, E). A graph H is a subgraph of a graph G, in symbols $H \subseteq G$, if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. We will be concerned here with the Cartesian product $G \square H$. It has vertex set $V(G \square H) = V(G) \times V(H)$; two vertices (g_1, h_1) , (g_2, h_2) are adjacent in $G \square H$ if $(g_1, g_2) \in E(G)$ and $h_1 = h_2$, or $(h_1, h_2) \in E(G_2)$ and $g_1 = g_2$. A Cartesian product $G \square H$ is called *trivial* if $G \simeq K_1$ or $H \simeq K_1$. A graph G is *prime* with respect to the Cartesian product if it has only a trivial Cartesian product representation. For detailed information about product graphs we refer the interested reader to [4] and [5].

In the following we will consider the Cartesian product only. Therefore, the terms S-prime and S-composite refer to this product from here on.

S-prime graphs can be characterized in terms of *basic S-prime graphs* [8, 9]. Following [8, 9], we define basic S-prime graphs recursively: An S-prime graph is basic if it has at least three vertices and contains no proper basic S-prime subgraphs. Moreover, these same authors showed that every S-prime graph is either a basic S-prime graph or can be obtained from basic S-prime graphs using two special operations. The only basic S-prime graphs with less than 7 vertices are K_3 and $K_{2,3}$. Other examples of S-prime graphs include the complete graphs K_n with $n \ge 1$ vertices and the complete bipartite graphs $K_{m,n}$ with $m \ge 2, n \ge 3$. Not much is known, however, about the structure of (basic) S-prime graphs, although Klavžar *et al.* [6, 7] and Brešar [1] proved several characterizations of (basic) S-prime graphs. For our purposes, the characterization of S-composite graphs in terms of particular colorings [6] is of most direct interest.

Before we proceed, we introduce some notation. Given G = (V, E), we will write $G \ddagger (uv)$ for the graph with vertex set V and $E \ddagger (u, v)$ for each of the set operations $\ddagger \in \{\setminus, \cup, \cap\}$.

The Cartesian product is associative. Therefore, a vertex x of a Cartesian product $\square_{i=1}^n G_i$ is properly "coordinatized" by the vector $c(x) := (c_1(x), \ldots, c_n(x))$ whose entries are the vertices $c_i(x)$ of its factor graphs G_i . Two adjacent vertices in a Cartesian product graph therefore differ in exactly one coordinate. In a Cartesian product $\square_{i=1}^n G_i$, the induced subgraph G_j^x with vertex set $\{(c_1(x), \ldots c_{j-1}(x), v, c_{j+1}(x), \ldots, c_n(x)) \in V(G) \mid v \in V(G_j)\}$ is isomorphic to the factor G_j for every $x \in V(G)$. We call this subgraph a G_j -layer. Throughout this contribution we will use $I_n = \{1, \ldots, n\}$ to index the factors.

A *k-coloring* of *G* is a surjective mapping $F:V(G)\to\{1,\ldots,k\}$. This coloring need not be proper, i.e., adjacent vertices may obtain the same color. A path P in G is *well-colored* by F if for any two consecutive vertices u and v of P we have $F(u)\neq F(v)$. Following [6], we say that F is a *path-k-coloring* of G if $F(u)\neq F(v)$ holds for the endpoints of every well-colored u,v-path P in G. For k=1 and k=|V| there are trivial path-k-colorings: For k=1 the coloring is constant and hence there are no well-colored paths. On the other hand if a different color is used for every vertex, then every path, of course, has distinctly colored endpoints. A path-k-coloring is nontrivial if $2 \le k \le |V(G)| - 1$.

Theorem 1 ([6]). A connected graph G is S-composite if and only if there exists a nontrivial path-k-coloring.

The next corollary, which follows directly from Theorem 1, will be useful in the subsequent discussion.

Corollary 1. Consider an S-prime graph S and let F be a path-k-coloring of S. If there are two distinct vertices $u, v \in V(S)$ with F(u) = F(v) then F is constant, i.e., k = 1.

Now consider a product graph $\Box_i G_i$. We say that all vertices *within* the G_j -layer G_j^x have the same color if F(a) = F(b) holds for all vertices $a, b \in V(G_j^x)$. Note that this does not imply that vertices of different G_j -layer obtain the same color.

The main topic of this contribution are *diagonalized* Cartesian product graphs.

Definition 1. A graph G is called a diagonalized Cartesian product, if there is an edge $(u,v) \in E(G)$ such that $H = G \setminus (uv)$ is a nontrivial Cartesian product and u and v have maximal distance in H.

Figure 1: A diagonalized Cartesian Product of the graph $K_2 \square K_2 \square K_3$.

For an example of a diagonalized Cartesian product see Figure 1. Clearly, diagonalized Cartesian products need not be basic S-prime graphs because Cartesian products of basic S-prime graphs contain basic S-prime graphs as their layers. Likewise, diagonalized Cartesian products of K_2 's, i.e., diagonalized hypercubes, are not basic S-prime graphs in general, even though the graph K_2 is not itself a basic S-prime graph. As an example consider the diagonalized hypercube Q_2 and Q_3 that contain K_3 and $K_{2,3}$ as subgraphs, respectively, see Figure 2. Furthermore, there are families of (basic) S-prime graphs that are not diagonalized Cartesian products, e.g., K_3 , $K_{2,3}$ and the construction of the graph A_n in [6].

Nevertheless, in this contribution we will show that diagonalized Cartesian products of S-prime graphs are S-prime. Diagonalized Cartesian products of S-prime graphs play a crucial role in the local prime factor decomposition algorithm for strong product graphs, see [3, 2]. Furthermore, we will give a necessary and sufficient condition for k-colorings of S-prime graphs to be path-k-colorings of Cartesian products of S-prime graphs.

Figure 2: Diagonalized Hypercubes Q_2 and Q_3 are not basic S-prime, since they contain basic S-prime graphs K_3 , resp. $K_{2,3}$, highlighted by dashed edges.

2 Path-k-colorings of Cartesian Products of S-prime graphs

Let us start with a brief preview of this section. We first establish that every nontrivial Cartesian product $G_1 \square G_2$ has a nontrivial path-k-coloring. For instance, choose $k = |V(G_1)|$ and assign to every vertex x with coordinates (x_1, x_2) the color x_1 .

Given a Cartesian product $G = \Box_{i=1}^n S_i$ of S-prime graphs with a nontrivial path-k-coloring F, first we will show that there is an S_i -layer on which F is constant. Next, we prove that is true for all S_i -layers. We then proceed to show that F is constant even on any H-layer with $H = \Box_{j \in J} S_j$, provided that certain conditions are satisfied. This eventually leads us to necessary and sufficient conditions for path-k-colorings. This result, in turn, will be demonstrated to imply that diagonalized Cartesian products of S-prime graphs are S-prime.

We start our exposition with a simple necessary condition:

Lemma 1. Let $H \subseteq G$ and suppose F is a path-k-coloring of G. Then the restriction $F_{|V(H)}$ of F on V(H) is a path-k-coloring of H. Moreover, if V(H) = V(G) and F is a nontrivial path-k-coloring of G, then it is also a nontrivial path-k-coloring of G.

Proof. Suppose H is not path-k-colored. Then there is a u,v-path $P_{u,v}$ in H that is well-colored, but u and v have the same color. This path $P_{u,v}$ is also contained in G, contradicting the assumption that F is a path-k-coloring of G. The second statement now follows directly from |V(G)| = |V(H)|.

Lemma 2. Let F be a nontrivial path-k-coloring of G. Then there are adjacent vertices $u, v \in V(G)$ with F(u) = F(v).

Proof. Since $k \le |V(G)| - 1$ it follows that there are at least two vertices of the same color, say x and y. Assume now there is a path $P_{x,y}$ from x to y, such that all consecutive vertices have different colors. Then $P_{x,y}$ would be well-colored. But the endpoints of P_{xy} satisfy F(x) = F(y) so that F cannot be a path-k-coloring, a contradiction. Thus there are consecutive, and hence adjacent, vertices with the same color. □

For later reference, we state the following observation that can be verified by explicitly enumerating all colorings, see Figure 3 for a subset of cases.

Lemma 3. The hypercube $Q_2 = K_2 \square K_2$ has no path-3-coloring. In particular, every path-2-coloring of Q_2 has adjacent vertices with the same color.

Figure 3: Possible path-k-coloring of a square Q_2 for k = 1, 2, 4. A possible well coloring that is not a path 3-coloring is shown on the right-hand side graph

We next show that F is constant on each S_j -layer whenever there is one S_j -layer that contains two distinct vertices with the same color. More precisely:

Lemma 4. Let $G = \bigcap_{i=1}^n S_i$ be a given Cartesian product of S-prime graphs and let F be a nontrivial path-k-coloring of G. Furthermore let $u, w \in V(S_j^u)$ be two distinct vertices satisfying F(u) = F(w). Then F(x) = F(y) holds for all vertices $x, y \in V(S_j^b)$ in each S_i -layer S_i^b .

Proof. Corollary 1 and Lemma 1 imply that all vertices of the layer S^u_j have the same color. For $b \in V(S^u_j)$ there is nothing to show. Thus, assume $b \notin V(S^u_j)$, i.e., $S^u_j \neq S^b_j$, and an arbitrary edge $e = (u, v) \in E(S^u_j)$. Let $\tilde{u} \in V(S^b_j)$ be the vertex with coordinates $c_j(\tilde{u}) = c_j(u)$. Moreover, let $P_{u,\tilde{u}} := (u = u_1, u_2, ..., u_l = \tilde{u})$ be a path from u to \tilde{u} such that $c_j(u_k) = c_j(u)$ for all k = 1, ..., l. None of the edges (u_k, u_{k+1}) is contained in an S_j -layer. By definition of the Cartesian product there is a unique square (u, u_2, v_2, v) where v_2 has coordinates $c_i(v_2) = c_i(u_2)$ for $i \neq j$ and $c_j(v_2) = c_j(v)$. Lemma 3 now implies that the only F on the square is either constant or a path-2-coloring, i.e., the assumption F(u) = F(v) implies $F(u_2) = F(v_2)$.

By induction on the length of the path $P_{u,\tilde{u}}$ we see that $F(u_k) = F(v_k)$, whenever $c_i(v_k) = c_i(u_k)$ for all $i \neq j$ and $c_j(v_k) = c_j(v)$. The assumption $\tilde{u} \in V(S_j^b)$ and our choice of the coordinates implies $(u_l,v_l) = (\tilde{u},v_l) \in E(S_j^b)$. We apply Lemma 3 to the square $(u_{l-1},\tilde{u},v_l,v_{l-1})$ with $F(u_{l-1}) = F(v_{l-1})$ to infer $F(\tilde{u}) = F(v_l)$. Corollary 1 and Lemma 1 imply that for all vertices $x,y \in V(S_j^b)$ holds F(x) = F(y).

It is important to notice that Lemma 4 only implies that F is constant on S_j -layers, but it does not imply that all S_j -layers obtain the same color.

Corollary 2. Let $G = \Box_{i=1}^n S_i$ be a given product of S-prime graphs and let F be a nontrivial path-k-coloring of G. Then there is a $j \in I_n$ such that, for every $v \in V(G)$, F is constant on S_j^v .

Proof. The assertion follows directly from Lemma 2, Lemma 4, and the definition of the Cartesian product. \Box

Lemma 5. Let F be a nontrivial path-k-coloring of the Cartesian product $G = \bigcap_{i=1}^n S_i$ of S-prime graphs S_i . Let $H = \bigcap_{j \in J} S_j$ be the product of a subset of factors of G, where $J \subseteq I_n$ denotes an arbitrary subset of indices. Moreover, let H^a be an H-layer such that F is constant on $V(H^a)$. Then F is constant within each H-layer.

Figure 4: Idea of the proof of Lemma 4. The path $P_{u,\bar{u}}$ connects vertices u and u_k ($k=2,\ldots,l$) of distinct S_j -layers. If $F(u_{k-1})=F(v_{k-1})$ then the squares $(u_{k-1},u_k,v_k,v_{k-1})$ located in adjacent S_j -layers must admit a path-1-coloring or a path-2-coloring, enforcing that u_k and v_k must have the same color. This, in turn, is used to show that F is constant on the entire layer $S_j^{u_k}$.

Proof. Let H^a be an H-layer defined as above and assume $H^a \neq H^b$. By assumption, F is constant on $V(H^a)$. Thus F is also constant on each S_j -layer $S_j \subseteq H^a$, $j \in J$, and Lemma 4 then implies that F is also constant within every S_j -layer with $j \in J$. Now choose two arbitrary vertices $x, y \in V(H^b)$. By connectedness of H^b there is a path $P_{x,y}$ from x to y consisting only of vertices of this H-layer H^b . Notice that any two consecutive vertices $x_k, x_{k+1} \in P_{x,y}$ are contained in some S_j -layer such that $j \in J$ and therefore $F(x_k) = F(x_{k+1})$. Therefore, the coloring F must be constant along P, hence F(x) = F(y). Thus F is constant on $V(H^b)$.

Next we consider two (not necessarily prime) factors H_1, H_2 of a Cartesian product of S-prime graphs and ask under which conditions a path-k-coloring on $(H_1 \square H_2)$ -layers must be constant.

Lemma 6. Let F be a nontrivial path-k-coloring on the Cartesian product $G = \bigcap_{i=1}^n S_i$ of S-prime graphs S_i . Let $H_1 = \bigcap_{j \in J} S_j$ and $H_2 = \bigcap_{k \in K} S_k$ be two distinct Cartesian products of factors S_i of G, where $J, K \subseteq I_n$ and $J \cap K = \emptyset$. Then F is constant on each $(H_1 \square H_2)$ -layer whenever F is constant on some H_1 -layer H_1^a and on some H_2 -layer H_2^b .

Proof. Let H_1^a and H_2^b as constructed above. Lemma 5 implies that all vertices within each H_1 layer and within each H_2 -layer, resp., have the same color. For all vertices $z \in V(H_1^a)$ there is an H_2 -layer H_2^z , Thus for all vertices $x, y \in V(H_2^z)$ holds F(x) = F(y) = F(z) = F(a). By definition of the Cartesian product, this implies in particular that all vertices within the layer $(H_1 \square H_2)^a$ have the same color F(a). Hence we can apply Lemma 5 and conclude that all vertices within each $(H_1 \square H_2)$ -layer have the same color.

Now we are in the position to characterize nontrivial path-*k*-colorings.

Lemma 7. Let F be a nontrivial path-k-coloring of the Cartesian product $G = \bigcap_{i=1}^n S_i$ of S-prime graphs S_i , and consider two distinct vertices $u, v \in V(G)$ satisfying F(u) = F(v). Let $J = \{j \mid c_j(u) \neq c_j(v)\} \subseteq I_n$ denote the index set of the coordinates in which u and v differ, and let $H = \bigcap_{j \in J} S_j$ be the Cartesian product of the corresponding factors S_j of G. Then F is constant within each H-layer H^b .

Proof. First assume that $v \in V(S_l^u)$ for some l, which implies that $J = \{l\}$ by definition of the Cartesian product. In this case, the statement follows directly from Lemma 4. Now assume that there is no l such that $v \in V(S_l^u)$. Lemma 4 and Corollary 2 together imply that there is an index i such that all vertices within each S_i -layer have the same color. In particular, this is true for S_i^u and S_i^v . Together with Lemma 4, this observation implies that, since F(u) = F(v), F is constant on $V(S_i^u) \cup V(S_i^v)$. Now let $\tilde{u} \in V(S_i^v)$ be the vertex with coordinates $c_i(u) = c_i(\tilde{u})$ and denote by $J_1 = \{j \mid c_j(u) \neq c_j(\tilde{u})\} = J \setminus \{i\}$ the set of indices in which the coordinates of u and \tilde{u} differ. Notice that $J \setminus \{i\} = J$, if $v = \tilde{u}$.

Let $P_{u,\tilde{u}} := (u = u_1, u_2, ..., u_k = \tilde{u})$ be a path from u to \tilde{u} such that for all vertices $x \in P_{u,\tilde{u}}$ holds $c_r(x) = c_r(u)$ for all $r \in I_n \setminus J_1$. In other words, no edge of an S_r -layer, $r \notin J_1$ is contained in the path $P_{u,\tilde{u}}$, and hence in particular no edge of an S_i -layer. From $F(u) = F(\tilde{u})$ and the fact that G is path-k-colored, we can conclude that there is an edge $(u_l, u_{l+1}) \in P_{u,\tilde{u}}$ of some layer different from S_i such that $F(u_l) = F(u_{l+1})$.

Figure 5: Idea of the proof of Lemma 7. The path $P_{u,\bar{u}}$ connects a pair of vertices with the same color in S_i^u to S_i^v . It therefore must contain two consecutive vertices u_l and u_{l+1} with the same color. It follows that all vertices within the layer $S_i^{u_l}$ and $S_{j_1}^{u_l}$ have the same color $F(u_l)$ and finally one shows that all vertices within each H_1 -layer with $H_1 = S_i \square S_{j_1}$ have the same color.

These consecutive vertices u_l and u_{l+1} differ in exactly one coordinate c_{j_1} for some $j_1 \in J_1$, hence u_l and u_{l+1} are contained in some S_{j_1} -layer. Lemma 4 implies that all vertices of this layer $S_{j_1}^{u_l}$ and therefore all vertices within each S_{j_1} -layer have the same color. Lemma 6 now implies that F is constant on each H_1 -layer with $H_1 = S_i \square S_{j_1}$, and

in particular, all vertices $x, y \in V(H_1^u) \cup V(H_1^v)$ have the same color, we have again two different layers that have the same color. Just as before we will construct a path between these layers, which implies that the endpoints of this path have the same color. Since G is path-k-colored, this path must contain an edge (u_t, u_{t+1}) with $F(u_t) = F(u_{t+1})$.

More precisely, let \tilde{u} be a vertex of this new H_1 -layer H_1^v such that $c_i(\tilde{u}) = c_i(u)$ and $c_{j_1}(\tilde{u}) = c_{j_1}(u)$. Again we choose a Path $P_{u,\tilde{u}}$ constructed as above, where J_1 is replaced by $J_2 = J_1 \setminus \{j_1\}$. In other words for all vertices $x \in P_{u,\tilde{u}}$ holds $c_r(x) = c_r(u)$ for all $r \in I_n \setminus J_2$, i.e. in particular no edge of $P_{u,\tilde{u}}$ is contained in any H_1 -layer. Notice that $|J_2| = |J_1| - 1$. Again we can conclude that there are consecutive vertices $u_t, u_{t+1} \in P_{u,\tilde{u}}$ such that $F(u_t) = F(u_{t+1})$, since $F(\tilde{u}) = F(u)$ and G is path-k-colored. Let these consecutive vertices u_t and u_{t+1} differ in coordinate c_{j_2} for some $j_2 \in J_2$. Using the same arguments as before we can infer that all vertices in between each $H_2 = (S_i \square S_{j_1} \square S_{j_2})$ -layer must have the same color.

Repeating this procedure generates, in each step, a new index set J_s with $|J_s| = |J_{s-1}| - 1$ for $s = 2, \ldots, |J_1|$, and all vertices within each H_s -layer with $H_s = S_i \square \left(\square_{j \in J_1 \setminus J_s} S_j \right) \square S_{j_s}$ for some $j_s \in J_s$ are shown to have the same color. For $s^* = |J_1|$ we have $|J_{s^*}| = 1$. Moreover the path $P_{u,\tilde{u}}$ with $c_r(\tilde{u}) = c_r(u)$ for all $r \in I_n \setminus \{j^*\}$ with $j^* \in J_{s^*}$ consists only of vertices that are included in this S_{j^*} -layer $S_{j^*}^u$. Since $F(u) = F(\tilde{u})$ and $u, \tilde{u} \in S_{j^*}^u$ we can conclude that all vertices $x \in S_{j^*}^u$ have the same color F(u). From Lemma 5 and Lemma 6 it follows that F is constant on each H_{s^*} -layer, where $H_{s^*} = \left(S_i \square (\square_{j \in J_1 \setminus J_{s^*}} S_j) \square S_{j^*}\right)$. Since $\{i\} \cup (J_1 \setminus J_{s^*}) \cup \{j^*\} = \{i\} \cup (J \setminus \{i\}) \setminus \{j^*\}\} \cup \{j^*\} = J$, we conclude that all vertices within each $(\square_{j \in J} S_j)$ -layer have the same color, completing the proof of the lemma. \square

Since two vertices with maximal distance contained in a Cartesian product of non-trivial factors differ in all coordinates we can conclude the following corollary.

Corollary 3. Let F be a path-k-coloring of the Cartesian product $G = \Box_{i=1}^n S_i$ of S-prime graphs S_i and suppose $u, v \in V(G)$ are two vertices with maximal G-distance that have the same color. Then F is constant on G, i.e., k = 1.

3 Main Results

We are now in the position to give a complete characterization of path-*k*-colorings of Cartesian products of S-prime graphs.

Theorem 2 (Path-*k*-coloring of Cartesian products of S-prime Graphs). Let $G = \Box_{j=1}^n S_j$ be a Cartesian product of S-prime graphs, and let F be a *k*-coloring of G. Then F is a path-*k*-coloring of G if and only if there exists an index set $I \subseteq I_n$ such that the following two conditions hold for the graph G defined as G and G are G and G and G are G are G and G are G and G are G are G and G are G are G and G are G and G are G are G and G are G are G and G are G and G are G are G are G and G are G are G and G are G are G are G and G are G are G are G are G and G are G are G and G are G and G are G are G and G are G and G are G are G are G are G and G are G are G and G are G are G are G are G and G are G are G and G are G are G and G are G are G are G and G are G and G are G and G are G and G are G are

- 1. F(a) = F(b) for all $a, b \in V(H^x)$ for all $x \in V(G)$ and
- 2. $F(a) \neq F(b)$ for all $a \in V(H^x)$ and $b \in V(H^y)$ with $H^x \neq H^y$.

The coloring F consists of k = |V(G)|/|V(H)| distinct colors. F is nontrivial if and only if $I \neq I_n$ and $I \neq \emptyset$.

Proof. Let F be an arbitrary path-k-coloring of G. If F is trivial, then it follows that k = 1 or k = |V(G)| and thus we can conclude that $I = I_n$ or $I = \emptyset$, respectively. In both cases, conditions (1) and (2) are satisfied. If F is nontrivial, then $k \le |V(G)| - 1$ and there are two vertices with the same color. Conditions (1) and (2) now follow directly from Lemma 6 and Lemma 7.

We will prove the converse by contraposition. Thus assume that F satisfied properties (1) and (2) for some $I \subseteq I_n$ and F is not a path-k-coloring of G. Thus, there must be a well colored path $P_{u,v}$ between two vertices u and v with F(u) = F(v). If there is an edge $(a,b) \in P_{u,v}$ such that (a,b) is contained in an H-layer H^x for some $x \in V(G)$ we would contradict Condition (1). Thus assume there is no edge $(a,b) \in P_{u,v}$ that lies in any H-layer. Notice that this implies that u and v are not contained in the same H-layer, otherwise some edge $(a,b) \in P_{u,v}$ must be an edge of an H-layer, by definition of the Cartesian product. Since $P_{u,v}$ is a well colored path between u and v with F(u) = F(v) and $H^u \neq H^v$, we contradict Condition (2).

It remains to show that F consists of k = |V(G)|/|V(H)| different colors. For $I = I_n$ and $I = \emptyset$ this assertion is trivially true. Therefore assume $I \neq I_n$ and $I \neq \emptyset$. Condition (2) implies that all pairwise different H-layer are colored differently and from Condition (1) we can conclude that all vertices in between each H-layer have the same color. Thus we have just as many colors as H-layers exists. In a Cartesian product $G = H \square H'$ the number of different H-layers is |V(H')| = |V(G)|/|V(H)| and thus k = |V(G)|/|V(H)|.

Finally, we have to show that F is nontrivial if and only if $I \neq I_n$ and $I \neq \emptyset$. If F is nontrivial the assumption is already shown at the beginning of this proof. Thus assume now that $I = I_n$, i.e., $H = \Box_{i \in I} S_i = G$. Condition (1) implies that all vertices $v \in V(G)$ have the same color and hence k = 1, contradicting that F is nontrivial. Now let $I = \emptyset$, i.e. $H = K_1$. As for all vertices $v, x \in V(G)$ holds $v \in V(K_1^x)$ if and only if v = x, we can conclude that $F(a) \neq F(b)$ for all $a, b \in V(G)$. Hence k = |V(G)|, again contradicting that F is nontrivial.

In the following, let F_I denote a path-k-coloring F of a Cartesian product G of S-prime graphs S_i that satisfies the conditions of Theorem 2 with index set I. We can now proceed proving the main result of this contribution.

Theorem 3. The diagonalized Cartesian Product of S-prime graphs is S-prime.

Proof. Let $G = H \cup (uv)$ be a diagonalized Cartesian product of graphs S_i , i.e., $H = \Box_{i=1}^n S_i$ is a Cartesian product of S-prime graphs and the vertices u and v have maximal distance in H. Lemma 1 shows that any nontrivial path-k-coloring of G gives rise to a nontrivial path-k-coloring of H, which in turn implies that there is a nontrivial subset $I \subset I_n$ and an according nontrivial path-k-coloring F_I such that the conditions of Theorem 2 are satisfied for H. We can conclude that $F_I(u) \neq F_I(v)$, since otherwise the coloring of H is trivial with k = 1 according to Corollary 3 and F_I would be constant. Let H_I denote the Cartesian product $\Box_{i \in I} S_i$ of prime factors of G and let H_I^u and H_I^v be the $H_I - layer$ containing u and v, respectively. Clearly, $H_I^u \neq H_I^v$, since $I \neq \{1, \ldots, n\}$, by definition of the Cartesian product and since u and v have maximal distance in H. Let $\tilde{u} \in V(S_i^v)$ be the vertex with coordinates $c_i(\tilde{u}) = c_i(u)$ for all $i \in I$. Note that $v \neq \tilde{u}$,

because $c_i(\tilde{u}) = c_i(u) \neq c_i(v)$ for all $i \in I$, otherwise u and v would not have maximal distance.

Let $P_{u,\bar{u}}$ be a path between u and \tilde{u} such that for all vertices $x \in P_{u,\bar{u}}$ holds $c_i(x) = c_i(u)$ for all $i \in I$. Thus no edge of any H_I -layer is contained in this path $P_{u,\bar{u}}$. From Theorem 2 and the fact that F_I is nontrivial, it follows that $F_I(a) \neq F_I(b)$ for all $a \in V(H_I^x)$ and $b \in V(H_I^y)$ with $H_I^x \neq H_I^y$. This is true in particular also for any two distinct vertices a and b in the path $P_{u,\bar{u}}$, since $H_I^a \neq H_I^b$ by choice of the coordinates. Thus $P_{u,\bar{u}}$ is well colored. Moreover it holds $F_I(u) \neq F_I(\bar{u})$.

Figure 6: Sketch of the proof of Theorem 3. The H_I -layers H_I^u and H_I^v are connected by a well-colored path $P_{u,\tilde{u}}$ with distinct colors at the endpoints, $F_I(u) \neq F_I(\tilde{u})$. The path $P^* = P_{u,\tilde{u}} \cup (u,v)$ is well colored, but $F_I(u) = F_I(v)$, i.e., F_I is not a path-k-coloring.

Now consider the path $P^* = P_{u,\tilde{u}} \cup (u,v)$ in G, which is by construction a well colored path from v to \tilde{u} . However, $F_I(v) = F_I(\tilde{u})$. Thus F_I is not a path-k-coloring of G for any nontrivial $I \subset I_n$. Theorem 1 and Lemma 1 imply that $G = H \cup (uv)$ is S-prime, from what the assumption follows.

Corollary 4. Diagonalized Hamming graphs, and thus diagonalized Hypercubes, are S-prime.

We conclude our presentation with an example that shows that not every diagonalized Cartesian product is S-prime, see Figure 7, and open problems:

Problem 1. Are there other classes of diagonalized Cartesian products that are Sprime?

Problem 2. Which of the (known) families of S-prime graphs that are not diagonalized Cartesian products can be non-trivially isometrically embedded into diagonalized Cartesian products of S-prime graphs, i.e., they are not contained in single layers?

References

[1] B. Brešar. On subgraphs of Cartesian product graphs and S-primeness. *Discr. Math.*, 282:43–52, 2004.

Figure 7: Shown are two diagonalized Cartesian products that have a nontrivial path-4-coloring. Therefore these graphs are S-composite.

- [2] M Hellmuth. *Local Prime Factor Decomposition of Approximate Strong Product Graphs*. PhD thesis, University Leipzig, Department of Mathematics and Computer Science, 2010.
- [3] M. Hellmuth. A local prime factor decomposition algorithm. *Discr. Math.*, 2011. in press.
- [4] W. Imrich and S Klavžar. *Product graphs*. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley-Interscience, New York, 2000.
- [5] W. Imrich, S. Klavžar, and F. D. Rall. *Topics in Graph Theory: Graphs and Their Cartesian Product.* AK Peters, Ltd., Wellesley, MA, 2008.
- [6] S. Klavžar, A. Lipovec, and M. Petkovšek. On subgraphs of Cartesian product graphs. *Discr. Math.*, 244:223–230, 2002.
- [7] S. Klavžar and I. Peterin. Characterizing subgraphs of Hamming graphs. *J. Graph Theory*, 49(4):302–312, 2005.
- [8] R. H. Lamprey and B. H. Barnes. A new concept of primeness in graphs. *Networks*, 11:279–284, 1981.
- [9] R. H. Lamprey and B. H. Barnes. A characterization of Cartesian-quasiprime graphs. *Congressus Numerantium*, 109:117–121, 1995.
- [10] G. Sabidussi. Subdirect representations of graphs in infinite and finite sets. *Colloq. Math. Soc. Janos Bolyai*, 10:1199–1226, 1975.