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Abstract

A graph is said to be S-prime if, whenever it is a subgraph of a nont@aste-
sian product graph, it is a subgraph of one of the factors. A diag@th@artesian
product is obtained from a Cartesian product graph by connectingavices of
maximal distance by an additional edge. We show there that a diagonpiize:d
uct of S-prime graphs is again S-prime. Kiavet al. [Discr. Math.244: 223-230
(2002)] proved that a graph is S-prime if and only if it admits a nontripeth-
k-coloring. We derive here a characterization of all peitelorings of Cartesian
products of S-prime graphs.

1 Introduction and Preliminaries

A graphSis said to beS-prime(S stands for “subgraph”) w.r.t. to an arbitrary graph-
productx if for all graphsG andH with SC GxH holds: SCH or SC G. A graph

is S-compositéf it is not S-prime. The class of S-prime graphs was intretband
characterized for the direct product by Gert Sabidussi irtb]20]. He showed that the
only S-prime graphs with respect to the direct product anegiete graphs or complete



graphs minus an edge. Analogous notions of S-prime grapghgsegpect to other prod-
ucts are due to Lamprey and Barnes [8, 9]. They showed thatrtlyeS-prime graphs
w.r.t. the strong product and the lexicographic producttiessingle vertex grapiy,
the disjoint uniorK; UK; and the complete graph on two vertide€s Moreover, they
characterized S-prime graphs w.r.t. the Cartesian product

We consider finite, simple, connected and undirected gr&phsV, E). A graphH
is a subgraph of a graph, in symbolsH C G, if V(H) CV(G) andE(H) CE(G). We
will be concerned here with the Cartesian prodBciH. It has vertex se¥ (GCH) =
V(G) xV(H); two vertices(gi,h1), (g2,he) are adjacent itcOH if (g1,02) € E(G)
andhy = hy, or (hy,h2) € E(Gz) andgy = g2. A Cartesian producBIH is called
trivial if G~ Kj or H ~ K;. A graphG is primewith respect to the Cartesian product
if it has only a trivial Cartesian product representatioar etailed information about
product graphs we refer the interested reader to [4] and [5].

In the following we will consider the Cartesian product oniherefore, the terms
S-prime and S-composite refer to this product from here on.

S-prime graphs can be characterized in termisagfic S-prime graph, 9]. Fol-
lowing [8, 9], we define basic S-prime graphs recursively:Shprime graph is basic if
it has at least three vertices and contains no proper bgsiti& subgraphs. Moreover,
these same authors showed that every S-prime graph is aitfesic S-prime graph or
can be obtained from basic S-prime graphs using two speg@btions. The only ba-
sic S-prime graphs with less than 7 verticeskgandKy 3. Other examples of S-prime
graphs include the complete gragswith n > 1 vertices and the complete bipartite
graphsKmn with m> 2,n > 3. Not much is known, however, about the structure of
(basic) S-prime graphs, although Kiar et al. [6, 7] and Bré&ar [1] proved several
characterizations of (basic) S-prime graphs. For our meppthe characterization of
S-composite graphs in terms of particular colorings [6]fimost direct interest.

Before we proceed, we introduce some notation. Gi8en (V,E), we will write
G 1 (uv) for the graph with vertex s&t andE % (u,v) for each of the set operations
fe{\,un}

The Cartesian product is associative. Therefore, a vartéha Cartesian product
0" ,G; is properly “coordinatized” by the vectafx) := (ci(X),...,Cn(X)) whose en-
tries are the verticeg(x) of its factor graphss;. Two adjacent vertices in a Cartesian
product graph therefore differ in exactly one coordinatea Cartesian produtd ;G;,
the induced subgrap@* with vertex set{(ci(x),...Cj—1(X),V,Cj+1(X),...,Cn(X)) €
V(G) | ve V(Gj)} is isomorphic to the facto; for everyx € V(G). We call this
subgraph &;-layer. Throughout this contribution we will use= {1,...,n} to index
the factors.

A k-coloring of G is a surjective mappin§ : V(G) — {1,...,k}. This coloring
need not be proper, i.e., adjacent vertices may obtain tne salor. A pathP in G is
well-coloredby F if for any two consecutive verticasandv of P we haver (u) # F(v).
Following [6], we say thaF is apath-k-coloringof G if F(u) # F(v) holds for the
endpoints of every well-colored,v-pathP in G. Fork =1 andk = |V| there are
trivial pathk-colorings: Foik = 1 the coloring is constant and hence there are no well-
colored paths. On the other hand if a different color is usedefrery vertex, then
every path, of course, has distinctly colored endpointsahg-coloring is nontrivial
if2<k<|V(G)-1.



Theorem 1 ([6]). A connected graph G is S-composite if and only if there esists
nontrivial path-k-coloring.

The next corollary, which follows directly from Theorem 1lillvbe useful in the
subsequent discussion.

Corollary 1. Consider an S-prime graph S and let F be a path-k-coloring dftBere
are two distinct vertices,w € V(S) with F(u) = F(v) then F is constant, i.e., % 1.

Now consider a product gragh;G;. We say that all verticewithin the Gj-layer
G} have the same color F(a) = F(b) holds for all verticesa,b € V(GJ). Note that
this does not imply that vertices of differe@-layer obtain the same color.

The main topic of this contribution aiagonalizedCartesian product graphs.

Definition 1. A graph G is called aliagonalizedCartesian product, if there is an edge
(u,v) € E(G) such that H= G\ (uv) is a nontrivial Cartesian product and u and v
have maximal distance in H.

Figure 1: A diagonalized Cartesian Product of the grigphK,[1Ks.

For an example of a diagonalized Cartesian product seed-iguClearly, diago-
nalized Cartesian products need not be basic S-prime giagatsise Cartesian prod-
ucts of basic S-prime graphs contain basic S-prime grapliseislayers. Likewise,
diagonalized Cartesian productskfs, i.e., diagonalized hypercubes, are not basic S-
prime graphs in general, even though the griplis not itself a basic S-prime graph.
As an example consider the diagonalized hyperd@pend Qs that containKz and
K23 as subgraphs, respectively, see Figure 2. Furthermones ¢ine families of (ba-
sic) S-prime graphs that are not diagonalized Cartesiatiugte, e.9.Kz, K> 3 and the
construction of the graphy in [6].

Nevertheless, in this contribution we will show that diaglired Cartesian prod-
ucts of S-prime graphs are S-prime. Diagonalized Cartgsiaatucts of S-prime graphs
play a crucial role in the local prime factor decomposititgoaithm for strong product
graphs, see [3, 2]. Furthermore, we will give a necessarysaffitient condition for
k-colorings of S-prime graphs to be pdtkeolorings of Cartesian products of S-prime
graphs.
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Figure 2: Diagonalized Hypercub€&» andQs are not basic S-prime, since they con-
tain basic S-prime graph&s, resp.K» 3, highlighted by dashed edges.

2 Pathk-colorings of Cartesian Products of S-prime graphs

Let us start with a brief preview of this section. We first bfitsh that every nontrivial
Cartesian produdB;[JG;, has a nontrivial path-coloring. For instance, choose=
|V (G1)| and assign to every vertexwith coordinategxi, x2) the colorx;.

Given a Cartesian produ@ = ' ;S of S-prime graphs with a nontrivial pat-
coloring F, first we will show that there is a§-layer on whichF is constant. Next,
we prove that is true for al-layers. We then proceed to show tlkais constant even
on anyH-layer withH = Oj<;S;j, provided that certain conditions are satisfied. This
eventually leads us to necessary and sufficient conditionpdthk-colorings. This
result, in turn, will be demonstrated to imply that diagéredl Cartesian products of
S-prime graphs are S-prime.

We start our exposition with a simple necessary condition:

Lemma 1. Let H C G and suppose F is a path-k-coloring of G. Then the restnictio
FvH) of F on V(H) is a path-k-coloring of H. Moreover, if{H) =V (G) and F is a
nontrivial path-k-coloring of G, then it is also a nontrivipath-k-coloring of H.

Proof. SupposeH is not pathk-colored. Then there is & v-path R,y in H that is
well-colored, butu andv have the same color. This pafy is also contained G,
contradicting the assumption thiatis a pathk-coloring of G. The second statement
now follows directly from|V (G)| = [V(H)|. O

Lemma 2. Let F be a nontrivial path-k-coloring of G. Then there areaafnt vertices
u,v eV (G) with F(u) = F(v).

Proof. Sincek < |V(G)| — 1 it follows that there are at least two vertices of the same
color, sayx andy. Assume now there is a palh, from xtoy, such that all consecutive
vertices have different colors. Thé&h, would be well-colored. But the endpoints of
Py satisfy F (x) = F(y) so thatF cannot be a patk-coloring, a contradiction. Thus
there are consecutive, and hence adjacent, vertices wetbatime color. O

For later reference, we state the following observation taa be verified by ex-
plicitly enumerating all colorings, see Figure 3 for a sulideases.

Lemma 3. The hypercube &= KoK, has no path3-coloring. In particular, every
path-2-coloring of @ has adjacent vertices with the same color.
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Figure 3: Possible patkcoloring of a square), for k = 1,2,4. A possible well
coloring that is not a path 3-coloring is shown on the rigaih side graph

We next show thaF is constant on eac§j-layer whenever there is orig-layer
that contains two distinct vertices with the same color. &precisely:

Lemma 4. Let G= [ ;S be a given Cartesian product of S-prime graphs and let

F be a nontrivial path-k-coloring of G. Furthermore letw € V(SJ-J) be two distinct
vertices satisfying Fu) = F(w). Then Kx) = F(y) holds for all vertices xy € V(Sﬁ’)
in each $-layer .

Proof. Corollary 1 and Lemma 1 imply that all vertices of the Ia%rhave the same
color. Forb € V(S)) there is nothing to show. Thus, assumé V(S/), i.e., S/ # e,

and an arbitrary edge= (u,v) € E(S/). Letl e V(Slj’) be the vertex with coordinates
¢j(0) = cj(u). Moreover, letR, g := (U= ug,Up,..,u = {) be a path fronu to U such
thatcj(ux) = cj(u) forallk=1,...,1. None of the edge@uy, Ux,1) iS contained in an
Sj-layer. By definition of the Cartesian product there is a usigquargu, up,va,V)
wherev, has coordinates;(v2) = ¢j(u2) for i # j andcj(v2) = ¢j(v). Lemma 3 now
implies that the onlyF on the square is either constant or a path-2-coloring,the.,
assumptior (u) = F(v) impliesF (u2) = F(v2).

By induction on the length of the paf®, g we see thafF (ux) = F(v), whenever
Ci(vk) = ci(uk) for all i # j andcj(vk) = cj(v). The assumptiom & V(Sﬁ’) and our
choice of the coordinates impliég;,v;) = (0,v|) € E(S?). We apply Lemma 3 to the
squargu 1, 0,vi,vi_1) with F(u_1) =F(v|_1) to inferF (0) = F (v ). Corollary 1 and
Lemma 1 imply that for all vertices y € V(SE’) holdsF (x) = F(y). O

Itis important to notice that Lemma 4 only implies tikats constant org;-layers,
but it does not imply that albj-layers obtain the same color.

Corollary 2. Let G=0,S be a given product of S-prime graphs and let F be a
nontrivial path-k-coloring of G. Then there is &jl, such that, for every & V(G), F
is constant on §

Proof. The assertion follows directly from Lemma 2, Lemma 4, anddégnition of
the Cartesian product. O

Lemma 5. Let F be a nontrivial path-k-coloring of the Cartesian prad® =1 ;S

of S-prime graphs;SLet H= [J;<;S; be the product of a subset of factors of G, where
J C I, denotes an arbitrary subset of indices. Moreover, [8td¢ an H-layer such that

F is constant on YH?). Then F is constant within each H-layer.
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Figure 4: Idea of the proof of Lemma 4. The p&ly connects vertices anduy (k=
2,...,1) of distinctS;-layers. IfF (ux_1) = F(w-1) then the square@i_1, U, Vi, Vk—1)
located in adjacersj-layers must admit a path-1-coloring or a path-2-colorergprc-
ing thatu, andv, must have the same color. This, in turn, is used to showRhat
constant on the entire lay&{*.

Proof. Let H2 be anH-layer defined as above and assurfe# HP. By assumption,
F is constant oV (H?). ThusF is also constant on ea@-layerS; C H?, j € J, and
Lemma 4 then implies thdt is also constant within everg;-layer with j € J. Now
choose two arbitrary verticesy € V(HP). By connectedness ¢1® there is a path
Py from x to y consisting only of vertices of thisl-layer HP. Notice that any two
consecutive vertices,, x«1 € Py are contained in som@-layer such thaj € J and
thereforeF (xx) = F(x+1). Therefore, the coloring must be constant alorigy hence
F(x) = F(y). ThusF is constant oV (HP). O

Next we consider two (not necessarily prime) factdisH, of a Cartesian product
of S-prime graphs and ask under which conditions a gatbloring on (H1OH>)-
layers must be constant.

Lemma 6. Let F be a nontrivial path-k-coloring on the Cartesian pratlG =1 ;S

of S-prime graphs;S Let H = Ojc3S; and H = Dk S¢ be two distinct Cartesian
products of factors;®f G, where JK C I, and JNK = 0. Then F is constant on each
(I—LlDHz)-Iayer whenever F is constant on some-ldyer H? and on some btayer
HS.

Proof. Let H? andH? as constructed above. Lemma 5 implies that all verticesimvith
eachHs layer and within eaclid,-layer, resp., have the same color. For all vertices
z e V(H2) there is anH-layer H3, Thus for all vertices,y € V(H3) holdsF (x) =
F(y) = F(z) = F(a). By definition of the Cartesian product, this implies in parar
that all vertices within the layefHi(0H,)? have the same cold¥(a). Hence we can
apply Lemma 5 and conclude that all vertices within eéldhiC]H,)-layer have the
same color. O

Now we are in the position to characterize nontrivial plttelorings.



Lemma 7. Let F be a nontrivial path-k-coloring of the Cartesian prad® =00 ;S

of S-prime graphs;Sand consider two distinct verticeswe V (G) satisfying Ku) =
F(v). LetJ={]j|cj(u) #c;j(v)} C I, denote the index set of the coordinates in which u
and v differ, and let H= O;<;S; be the Cartesian product of the corresponding factors
Sj of G. Then F is constant within each H-layePH

Proof. First assume thate V(S') for somel, which implies thatl = {I} by definition

of the Cartesian product. In this case, the statement fslldivectly from Lemma 4.
Now assume that there is heuch thav € V(S'). Lemma 4 and Corollary 2 together
imply that there is an indexsuch that all vertices within eac-layer have the same
color. In particular, this is true fdg' andS’. Together with Lemma 4, this observation
implies that, sincé (u) = F(v), F is constant oV (§') UV (S'). Now leti e V(S’) be
the vertex with coordinates(u) = ¢;(G) and denote by = {j | ¢j(u) # ¢j(0)} = J\
{i} the set of indices in which the coordinatesuaindu differ. Notice thatl\ {i} = J,

if v=2a.

LetRya:= (u=ug,Uy,..,u = {) be a path fronu to ( such that for all vertices € R, g
holdsc, (x) = ¢, (u) for all r € 15\ J1. In other words, no edge of &&-layer,r ¢ J;

is contained in the patR, g, and hence in particular no edge of §nlayer. From
F(u) = F(0) and the fact thaG is pathk-colored, we can conclude that there is an
edge(u,ui4+1) € Ry, g of some layer different fron§ such thaf (u) = F (uj41).

]

Figure 5: Idea of the proof of Lemma 7. The p&ly connects a pair of vertices with
the same color i1§' to §'. It therefore must contain two consecutive verticeand
U1 with the same color. It follows that all vertices within theyerS" andS;! have
the same coloF (u;) and finally one shows that all vertices within eddhlayer with
H; = §OS;, have the same color.

These consecutive verticasandu, 1 differ in exactly one coordinate, for some
j1 € J1, henceu; andu, 1 are contained in som§, -layer. Lemma 4 implies that all
vertices of this IayelS‘j"1 and therefore all vertices within ea8j -layer have the same
color. Lemma 6 now implies th&t is constant on eadH;-layer withH, = SOS;,, and



in particular, all verticex,y € V(H{') UV (HY) have the same color, we have again two
different layers that have the same color. Just as beforeilveowstruct a path between
these layers, which implies that the endpoints of this patlelthe same color. Since
G is pathk-colored, this path must contain an edgg 1) with F(u) = F (U1+1).

More precisely, leube a vertex of this newd;-layer Hy such thatc; (0) = cj(u)
andcj, (0) = cj, (u). Again we choose a Path,; constructed as above, wheje
is replaced byd, = J1\ {j1}. In other words for all vertices € P, g holdsc,(x) =
¢ (u) for all r € 14\ J, i.e. in particular no edge d®, g is contained in any;-layer.
Notice that|/Jz| = |J1] — 1. Again we can conclude that there are consecutive vertices
Ut, U1 € Ryg such that (u) = F(u1), sinceF (0) = F(u) andG is pathk-colored.
Let these consecutive vertices and iy differ in coordinatec;, for somej, € Jp.
Using the same arguments as before we can infer that alcesrtn between each
H, = (§0OS;,3S;, )-layer must have the same color.

Repeating this procedure generates, in each step, a new setld; with |Js| =
|Js-1| —1fors=2,...,]J|, and all vertices within eadHs-layer withHs = S0 (0jc;,5.S;) OS;,
for somejs € Js are shown to have the same color. Bor= |J;| we have|Js| = 1.
Moreover the pathR, g with ¢, (0) = ¢, (u) for all r € I\ {j*} with j* € Js« con-
sists only of vertices that are included in ti8s-layer Sj.. SinceF (u) = F({) and
u,0 € S\, we can conclude that all verticas= S%. have the same cold¥(u). From
Lemma 5 and Lemma 6 it follows th&t is constant on eacHs -layer, whereHs =
(SO(Ojea\, $)0Sy)- Since{i U3\ s ) U{i*} = {iHU(Q\ I\ ("} u{i*} =
J, we conclude that all vertices within ea@lj<;S;)-layer have the same color, com-
pleting the proof of the lemma. O

Since two vertices with maximal distance contained in a&3gah product of non-
trivial factors differ in all coordinates we can conclude following corollary.

Corollary 3. Let F be a path-k-coloring of the Cartesian product=G1! ;S of S-
prime graphs Sand suppose ,w € V(G) are two vertices with maximal G-distance
that have the same color. Then F is constant on G, i.e. 1k

3 Main Results

We are now in the position to give a complete characterimatiopathk-colorings of
Cartesian products of S-prime graphs.

Theorem 2(Pathk-coloring of Cartesian products of S-prime GrapHsgt G= D?:lsj
be a Cartesian product of S-prime graphs, and let F be a kraajoof G. Then F is a
path-k-coloring of G if and only if there exists an index sét Il such that the follow-
ing two conditions hold for the graph H defined as=H ¢S for | # 0 and H=K;
forl =0.

1. F(a) =F(b) foralla,beV(HX) forallx € V(G) and
2. F(a) #F(b) for alla € V(H*) and be V (HY) with H* # HY,

The coloring F consists of ¥ [V(G)|/|V(H)| distinct colors. F is nontrivial if and
only if I # 1, and | £ 0.



Proof. Let F be an arbitrary patk-coloring of G. If F is trivial, then it follows that
k=1 ork=|V(G)| and thus we can conclude tHat |,, or | = 0, respectively. In both
cases, conditions (1) and (2) are satisfiedr s nontrivial, thenk < [V(G)| — 1 and
there are two vertices with the same color. Conditions (&) @) now follow directly
from Lemma 6 and Lemma 7.

We will prove the converse by contraposition. Thus assuragrtisatisfied proper-
ties (1) and (2) for someC I, andF is not a pathk-coloring of G. Thus, there must be
a well colored patfr,, between two verticeas andv with F(u) = F(v). If there is an
edge(a,b) € R,y such that(a,b) is contained in ail-layerH* for somex € V(G) we
would contradict Condition (1). Thus assume there is no €dg® < R, that lies in
anyH-layer. Notice that this implies thatandv are not contained in the sarHelayer,
otherwise some edge@, b) € B,y must be an edge of afi-layer, by definition of the
Cartesian product. Sind®,y is a well colored path betweenandv with F (u) = F(v)
andH" # HY, we contradict Condition (2).

It remains to show thdt consists ok = [V (G)|/|V (H)| different colors. Fof =1,
and| = 0 this assertion is trivially true. Therefore assumg I, and|l # 0. Con-
dition (2) implies that all pairwise differerit-layer are colored differently and from
Condition (1) we can conclude that all vertices in betwearhéilayer have the same
color. Thus we have just as many colorskidayers exists. In a Cartesian product
G = HOH’ the number of differentH-layers is|V(H’)| = [V(G)|/|V(H)| and thus
k= V(G)|/IV(H)].

Finally, we have to show th&t is nontrivial if and only ifl # I, andl £0. If F is
nontrivial the assumption is already shown at the beginafrtgis proof. Thus assume
now thatl = I, i.e.,H = j¢|S = G. Condition (1) implies that all verticese V (G)
have the same color and herice 1, contradicting thaF is nontrivial. Now letl = 0,
i.e. H=Kj. As for all verticesy,x € V(G) holdsv € V (KY) if and only if v= x, we can
conclude thaF (a) # F(b) for all a,b € V(G). Hencek = |V (G)|, again contradicting
thatF is nontrivial. O

In the following, letk denote a patlk-coloring F of a Cartesian producs of S-
prime graphs§ that satisfies the conditions of Theorem 2 with index s&¥e can now
proceed proving the main result of this contribution.

Theorem 3. The diagonalized Cartesian Product of S-prime graphs isiS

Proof. Let G = H U (uv) be a diagonalized Cartesian product of graghs.e.,H =
0" ,S is a Cartesian product of S-prime graphs and the vertigeglv have maximal
distance inH. Lemma 1 shows that any nontrivial pdtreoloring of G gives rise
to a nontrivial pathk-coloring of H, which in turn implies that there is a nontrivial
subsel C I, and an according nontrivial patieoloringF such that the conditions of
Theorem 2 are satisfied fét. We can conclude th# (u) # F (v), since otherwise the
coloring ofH is trivial with k = 1 according to Corollary 3 ang would be constant.
Let H, denote the Cartesian produgic| S of prime factors ofG and letH" andH,’ be
theH, — layer containingu andv, respectively. ClearlyH" # HY, sincel # {1,...,n},
by definition of the Cartesian product and sincandv have maximal distance iH.
Letl e V(S') be the vertex with coordinates((i) = c;(u) for all i € 1. Note thatv # G,



because; () = ¢i(u) # ci(v) for all i € I, otherwiseu andv would not have maximal
distance.

Let R, g be a path betweemandu'such that for all verticeg € R, g holdsc;(x) =
ci(u) for all i € 1. Thus no edge of any-layer is contained in this patR, . From
Theorem 2 and the fact th& is nontrivial, it follows thatF (a) # F (b) for all a €
V(H}) andb € V(H) with HX # H}. This is true in particular also for any two distinct
verticesa andb in the pathR, g, sinceH? # HF by choice of the coordinates. ThBs;
is well colored. Moreover it holdB; (u) # F (0).

Figure 6: Sketch of the proof of Theorem 3. THelayersH" andH)’ are connected by
a well-colored patt®, g with distinct colors at the endpoints, (u) # F (). The path
P* = PR,aU(u,v) is well colored, buf (u) = F (v), i.e.,FR is not a pathk-coloring.

Now consider the patf®* = R, 3U (u,v) in G, which is by construction a well
colored path fronv to 0. HoweverF (v) = F ({). Thush is not a pathk-coloring ofG
for any nontriviall C I,. Theorem 1 and Lemma 1 imply th@t=H U (uv) is S-prime,
from what the assumption follows. O

Corollary 4. Diagonalized Hamming graphs, and thus diagonalized Hyydeegs, are
S-prime.

We conclude our presentation with an example that showstitagvery diagonal-
ized Cartesian product is S-prime, see Figure 7, and opdnigmms:

Problem 1. Are there other classes of diagonalized Cartesian prodtlws are S-
prime?

Problem 2. Which of the (known) families of S-prime graphs that are nagahal-
ized Cartesian products can be non-trivially isometrigambedded into diagonalized
Cartesian products of S-prime graphs, i.e., they are notaiard in single layers?
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