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ABSTRACT
Motivation It has been proven that the accessibility of the target
sites has a critical influence on RNA-RNA binding in general and
the specificity and efficiency of miRNAs and siRNAs in particular.
Recently, O(N6) time and O(N4) space dynamic programming
algorithms have become available that compute the partition function
of RNA-RNA interaction complexes, thereby providing detailed
insights into their thermodynamic properties.
Results Modifications to the grammars underlying earlier approaches
enables the calculation of interactions probabilities for any given
interval on the target RNA. The direct computation of the “hybrid
probabilities” is complemented by a stochastic backtracing algorithm
that produces samples from the Boltzmann ensemble of RNA-RNA
interaction structures. The sampling of k structures requires only
negligible additional memory resources and runs in O(k · N3).
Availability The algorithms described here are implemented in
C as part of the rip package. The source code of rip2

can be downloaded from http://www.combinatorics.cn/

cbpc/rip2.html and http://www.bioinf.uni-leipzig.de/
Software/rip.html.
Contact Christian Reidys duck@santafe.edu

1 INTRODUCTION
RNA-RNA binding is a major mode of action of various classes
of non-coding RNAs and plays a crucial role in many regulatory
processes in all living organisms. Examples include the regulation
of translation in both prokaryotes (Narberhaus and Vogel, 2007) and
eukaryotes (McManus and Sharp, 2002; Banerjee and Slack, 2002),
the targeting of chemical modifications (Bachellerieet al., 2002),
insertion editing (Benne, 1992), and transcriptional control (Kugel

∗to whom correspondence should be addressed. Phone: *86-22-2350-6800;
Fax: *86-22-2350-9272;duck@santafe.edu

and Goodrich, 2007). Emerging evidence suggests, furthermore,
that RNA-RNA interactions also play a role for the functionality
of long mRNA-like ncRNAs (Hekimoglu and Ringrose, 2009). A
common theme in many RNA classes, including miRNAs, snRNAs,
gRNAs, snoRNAs, and in particular many of the procaryotic
small RNAs is the formation of RNA-RNA interaction structures
that are much more complex than simple complementary sense-
antisense interactions. Thermodynamically, the binding of two
RNA moleculesA andB can be described by the binding energy
∆Gbind = GAB − GA − GB, i.e., by the difference of the
energy of structure formationGAB of the AB complex and the
folding energiesGA and GB of the two individual RNAsA and
B. Thus, the binding or hybridization energy has been widely used
as a criterion to predict RNA-RNA interactions (Rehmsmeieret al.,
2004; Tjadenet al., 2006; Buschet al., 2008).

The interaction between two RNAs is governed by the same
physical principles that determine RNA folding: the formation of
specific base pairing patterns whose energy is largely determined by
base pair stacking and loop strains. Secondary structures,therefore,
are an appropriate level of description to quantitatively understand
the thermodynamics of RNA-RNA binding. Just as the general RNA
folding problem with unrestricted pseudoknots (Akutsu, 2000), the
RNA-RNA interaction problem (RIP) is NP-complete in its most
general form (Alkanet al., 2006; Mneimneh, 2007). Polynomial-
time algorithms can be derived, however, by restricting thespace
of allowed configurations in ways that are similar to pseudoknot
folding algorithms (Rivas and Eddy, 1999). The simplest approach
concatenates the two interacting sequences and subsequently
employs a slightly modified standard secondary structure folding
algorithm. The software toolsRNAcofold (Hofackeret al., 1994;
Bernhart et al., 2006), pairfold (Andronescuet al., 2005),
and NUPACK (?) subscribe to this strategy. The main problem
of this approach is that it cannot predict important motifs such
as kissing-hairpin loops. The paradigm of concatenation has also

c© Oxford University Press 2009. 1
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Fig. 1. Examples of RNA-RNA interactions structures. The primary interaction region(s) are highlighted in red in the experimentally supported structural
models from the literature:ompA-MicA: Udekwu et al. (2005); sodB-RyhB: Geissmann and Touati (2004);fhlA-OxyS: Argaman and Altuvia (2000).
Hybridization probabilities computed byrip2 are annotated by green boxes for region with a probability larger than 10%. In many cases, the computational
predictions identify additional hybridization regions that may further stabilize the interaction.

been generalized to the pseudoknot folding algorithm of Rivas and
Eddy (1999). The resulting model, however, still does not generate
all relevant interaction structures (Chitsazet al., 2009b; Qin and
Reidys, 2008). An alternative line of thought, implementedin
RNAduplex and RNAhybrid (Rehmsmeieret al., 2004), is to
neglect all internal base-pairings in either strand, i.e.,to compute the
minimum free energy (MFE) secondary structure of hybridization
of otherwise unstructured RNAs.RNAup (Mücksteinet al., 2006,
2008) andintaRNA (Buschet al., 2008) restrict interactions to
a single interval that remains unpaired in the secondary structure
for each partner. As a special case, snoRNA/target complexes are
treated more efficiently using a specialized tool (Taferet al., 2009)
due to the highly conserved interaction motif. Algorithmically, the
approaches mentioned so far are close relatives of the RNA folding
recursions Zuker and Sankoff (1984).

A different approach was taken independently by Pervouchine
(2004) and Alkanet al. (2006), who proposed MFE folding
algorithms for predicting thejoint structure of two interacting
RNA molecules. In this model, “joint structure” means that the
intramolecular structures of each partner is pseudoknot-free, that
the intermolecular binding pairs are noncrossing, and thatthere
is no so-called “zig-zag” configuration (see below for details).
The optimal joint structure can be computed inO(N6) time and
O(N4) space by means of dynamic programming. More recently,
extensions to the partition function were proposed by Chitsazet al.
(2009b) (piRNA) and Huanget al. (2009) (rip1). In contrast to
the RNA folding problem, where minimum energy folding and
partition functions can be obtained by very similar algorithms,
this is much more complicated for joint structures. The reason is
that simple unambiguous grammars are known for RNA secondary
structures (Dowell and Eddy, 2004), while the disambiguation of
grammar underlying the Alkan-Pervouchine algorithm requires the
introduction of a large number of additional non-terminals(which
algorithmically translate into additional dynamic programming
tables). Although the partition function of joint structures can
be computed inO(N6) time and O(N4) space, the current
implementations require very large computational resources. Salari
et al. (2009) recently achieved a substantial speed-up making useof

the observation that the external interactions mostly occur between
pairs of unpaired regions of single structures. Chitsazet al.(2009a),
on the other hand, use tree-structured Markov Random Fieldsto
approximate the joint probability distribution of multiple (≥ 3)
contact regions.

The binding energies provides a useful over-all characterization
of an RNA-RNA interaction. In many cases, however, the locations
of the intermolecular base pairs and the detailed structureof the
interaction complex is of crucial importance. Bacterial sRNAs,
for example may either up- or down-regulate mRNA translation
depending on the structural changes induced by the interaction
(Urban and Vogel, 2007). In particular in RNA-RNA complexes
with multiple interaction sites, i.e., in the class of structures for
which the expensive computation of joint structures is necessary,
Fig. 1, one is interested in the probabilities of hybridization
in individual regions and in the interdependencies of alternative
conformations.

We therefore extend our previous framework in two directions:
(1) A modification of the underlying grammar explicitly treats
hybrids, i.e., maximal regions with exclusively intermolecular
interactions. This allows us to investigate local aspects in much
more detail. (2) A stochastic bracktracing algorithm, in analogy to
similar approaches for RNA secondary structure prediction(Tacker
et al., 1996; Ding and Lawrence, 2003), which can be used to
produce representative structure and to generate samples from the
thermodynamic properties. These samples can be useful to assess
complex structural features for which it would be too tedious or
expensive to design and implement dedicated exact backtracing
algorithms.

2 THE HYBRID-PARTITION FUNCTION

2.1 Some basic facts
We briefly review some basic concepts and outline the notation introduced in
Huanget al. (2009). Full details are given in the Supplement Material (SM).

Given two RNA sequencesR = (Ri)N
1 and S = (Sj)M

1 (e.g. an
antisense RNA and its target or an mRNA and its sRNA regulator) with N
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Fig. 2. A. A zig-zag, generated byR2S1, R3S3 and R5S4 (red). B.
the joint structureJ1,24;1,23, we color the different segments and tight
structures in whichJ1,24;1,23 decomposes.
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Fig. 3. The four basic types of tights.

andM vertices, we label the vertices such thatR1 is the5′ end ofR andS1

denotes the3′ end ofS. The arcs ofR andS then represent the respective,
intramolecular base pairs. An arc is calledexterior if it is of the form RiSj

andinterior, otherwise.
Next we formally define joint structures (Pervouchine, 2004; Alkan

et al., 2006; Chitsazet al., 2009b; Huanget al., 2009). A joint structure,
J(R, S, I), see Fig. 2B, is a graph such that

1. R, S are secondary structures (each nucleotide being paired with
at most one other nucleotide via hydrogen bonds, without internal
pseudoknots);

2. I is a set of exterior arcs without external pseudoknots, i.e., if Ri1Sj1 ,
Ri2Sj2 ∈ I theni1 < i2 impliesj1 < j2;

3. J(R, S, I) contains no “zig-zags”, see Fig. 2A;

where a “zig-zag” is defined as follows: suppose there is an exterior arc
RaSb with RiRj andSi′Sj′ , wherei < a < j andi′ < b < j′. Then
RiRj is subsumedin Si′Sj′ , if for any RkSk′ ∈ I, i < k < j implies
i′ < k′ < j′. A zigzag, is a subgraph containing two dependent interior arcs
Ri1Rj1 andSi2Sj2 neither one subsuming the other (Fig. 2). Dependence
here means that there exists at least one exterior arcRhSℓ such thati1 <
h < j1 andi2 < ℓ < j2.

The (induced) subgraphof G induced byV has vertex setV and
contains allG-edges having both incident vertices inV . The subgraph
of a joint structure J(R, S, I) induced by a pair of subsequences
(Ri, Ri+1, . . . , Rj) and (Sh, Sh+1, . . . , Sℓ) is denoted byJi,j;h,ℓ. In
particular, J(R, S, I) = J1,N;1,M and Ji,j;h,ℓ ⊂ Ja,b;c,d if and
only if Ji,j;h,ℓ is a subgraph ofJa,b;c,d induced by(Ri, . . . , Rj) and
(Sh, . . . , Sℓ). In particular, we useS[i, j] to denote the subgraph of the pre-
structureG(R, S, I) induced by(Si, Si+1, . . . , Sj), whereS[i, i] = Si

andS[i, i−1] = ∅. Given a joint structure,Ja,b;c,d, its tight structure (TS)
Ja′,b′;c′,d′ is either a single exterior arcRa′Sc′ (in the casea′ = b′ and
c′ = d′), or the minimal block centered around the leftmost and rightmost
exterior arcsαl, αr , (possibly being equal) and an interior arc subsuming
both, i.e.,Ja′,b′;c′,d′ is tight in Ja,b;c,d if it has either an arcRa′Rb′ or
Sc′Sd′ if a′ 6= b′ or c′ 6= d′.

In the following, a TS is denoted byJT
i,j;h,ℓ

. If Ja′,b′;c′,d′ is tight in
Ja,b;c,d, we call Ja,b;c,d its envelope. By construction, the notion of TS
is depending on its envelope. There are only four basic typesof TS, see
Fig. 3:

◦ : {RiSh} = J◦
i,j;h,ℓ

andi = j, h = ℓ;

▽ : RiRj ∈ J▽
i,j;h,ℓ

andShSℓ 6∈ J▽
i,j;h,ℓ

;

� : {RiRj , ShSℓ} ∈ J�
i,j;h,ℓ

;

△ : ShSℓ ∈ J△
i,j;h,ℓ

andRiRj 6∈ J△
i,j;h,ℓ

.

2.2 The hybrid-grammar

A hybrid structure,JHy
i1,iℓ;j1,jℓ

, is a maximal sequence of intermolecular
interior loops consisting of exterior arcs(Ri1Sj1 , . . . , Riℓ

Sjℓ
) where

Rih
Sjh

is nested withinRih+1
Sjh+1

and where the internal segments
R[ih + 1, ih+1 − 1] andS[jh + 1, jh+1 − 1] consist of single-stranded
nucleotides only. That is, a hybrid is the maximal unbranched stem-loop
formed by external arcs. Each hybrid thus forms a distinctive region of
interaction between the two RNAs. Note that we can interpretinteractions
admitted byintaRNA/RNAup (Buschet al., 2008; Mücksteinet al., 2008)
as joint structures with at most one hybrid.

In the following we re-design the grammar outlined by Huanget al.
(2009) so that it explicitly makes use of hybrids. An efficient solution of
the partition function problem for RIP requires an unambiguous context
free grammar with the constraint that the number of break points, i.e.,
the number of non-terminals in each individual production,is as small as
possible. This is achieved by introducing several specific types of joint
structures that are described in detail in the following. Wecall a joint
structureright-tight (RTS),JRT

i,j;r,s in Ji1,j1;r1,s1
if its rightmost block is a

Ji1,j1;r1,s1
-TS anddouble-tight(DTS),JDT

i,j;r,s in Ji1,j1;r1,s1
if both of

its leftmost and its rightmost blocks areJi1,j1;r1,s1
-TS’s. We remark that

this definition is a bit different from the notion of the double-tight structured
defined in Huanget al. (2009). In particular, we consider single interaction
arcs as particular DTS. Adopting the point of view of Algebraic Dynamic
Programming (Giegerich and Meyer, 2002) we regard each decomposition
rule as a production in a suitable grammar. Fig. 4 summarizesthe three
basic steps of the hybrid-grammar: (I) “interior arc-removal” to reduce TS.
The scheme is complemented by the usual loop decomposition of secondary
structures, and (II) “block-decomposition” to split a joint structure into two
smaller blocks.

The grammar in Fig. 4 corresponds to the decomposition (parsing)
of a joint structure into interior arcs and hybrids. Figure 5A shows the
corresponding parse tree. The full details of the decomposition procedures
are described in Section 2 of the SM, where we show that for each
joint structureJ1,N;1,M we indeed obtain a unique decomposition-tree
(parse-tree), denoted byTJ1,N ;1,M

. More precisely,TJ1,N ;1,M
has root

J1,N;1,M and all other vertices correspond to a specific substructureof
J1,N;1,M obtained by the successive application of the decomposition steps
of Fig. 4 and the loop decomposition of the secondary structures. Thus,
the hybrid grammar is unambiguous. The two panels of Fig. 5 contrast
the grammars ofrip1 ((Huanget al., 2009)) and the hybrid-grammar of
rip2 introduced here. Inrip1, hybrids were immediately decomposed
into individual external base-pairs and their associated interior loops, so that
individual hybrids were not tractable in a straightforwardmanner.

Let us now have a closer look at the energy evaluation ofJi,j;h,ℓ. Each
decomposition step in Fig. 4 results in substructures whoseenergies are
assumed to contribute additively and generalized loops that can be evaluated
directly. There are the following two basic scenarios:
I. Interior Arc removal. The first type of decomposition is derived from the
decomposition of TS of Huanget al. (2009). Most of the decomposition
operations in Procedure (b) displayed in Fig. 4 can be viewedas the
“removal” of an arc (corresponding to the closing pair of a loop in
secondary structure folding) followed by decomposition. Both, loop-type
as well as the subsequent decomposition steps depend on the newly exposed
structural elements. Following the approach of Zuker and Sankoff (1984)
for secondary structures, we treat the loop-decompositionproblem by
introducing additional matrices. Without loss of generality, we can assume
that we open an interior base pairRiRj .

3
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Fig. 4. Illustration of the reduction of arbitrary joint structures and of right-
tight structures, Procedure (a), and of tight structures, Procedure (b). In the
bottom row the symbols for the 10 distinct types of structural components
are listed: A, B: maximal secondary structure segmentsR[i, j], S[r, s];
C: arbitrary joint structureJ1,N;1,M ; D: right-tight structuresJRT

i,j;r,s; E:

double-tight structureJDT
i,j;r,s; F tight structure of type▽, △ or �; G: type

� tight structureJ�
i,j;r,s; H: type▽ tight structureJ▽

i,j;r,s; J: type△ tight

structureJ△
i,j;r,s; K: hybrid structureJHy

i,j;h,ℓ
; L: substructure of a hybrid

Jh
i,j;h,ℓ

such thatRiSj andRhSℓ are exterior arcs andJh
i,j;h,ℓ

itself is not
a hybrid since it is not maximal;M: isolated segmentR[i, j] or S[h, ℓ].

(B)

(A)

Fig. 5. Different grammars lead to different (parse) trees. We showthe
parse treeTJ1,11;1,11

for the same joint structureJ1,11;1,11 according to
the grammars ofrip2 (top) andrip1 (bottom), respectively.

The set of base pairs onR[i, j] consists of all interior pairsRpRq with
i ≤ p < q ≤ j and all exterior pairsRpSh with i ≤ p ≤ j. An interior arc
is exposedonR[i + 1, j − 1] if and only if it is not enclosed by any interior
arc inR[i, j]. An exterior arc isexposedonR[i + 1, j − 1] if and only if it
is not a descendant of any interior arc inR[i+1, j−1]. GivenRij , the arcs
exposed onR[i+1, j−1] correspond to the base pairsimmediately interior
of RiRj . Let us writeER[i,j] = Ei

R[i,j]
∪̇Ee

R[i,j]
for this set of “exposed

base pairs” and its subsets of interior and exterior arcs. Asin secondary
structure folding, the loop type is determined byER[i,j] := ER as follows:
ER = ∅, hairpin loop;ER = Ei

R
and|ER| = 1, interior loop (including

bulge and stacks);ER = Ei
R

, |ER| ≥ 2, multi-branch loop;ER = Ee
R

,
kissing-hairpin loop;|Ei

R
|, |Ee

R
| ≥ 1, general kissing-loop.
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Fig. 6. Decomposition ofJDT,KKB

i,j;h,ℓ
(l.h.s.) andJRT,KKA

i,j;h,ℓ
(r.hs.).

This picture needs to be refined even further since the arc removal is
coupled with further decomposition of the intervalR[i + 1, j − 1]. This
prompts us to distinguish TS and DTS with different classes of exposed base
pairs on one or both strands. It will be convenient, furthermore to include
information on the type of loop in which it was found.

A TS J▽
i,j;h,ℓ

is of type E, if S[h, ℓ] is not enclosed in any base pair

(J▽,E
i,j;h,ℓ

). SupposeJ▽
i,j;h,ℓ

is located immediately interior to the closing
pairSpSq (p < h < ℓ < q). If the loop closed bySpSq is a multiloop, then

J▽
i,j;h,ℓ

is of typeM (J▽,M
i,j;h,ℓ

). If SpSq is contained in a kissing-loop, we
distinguish the typesF andK, depending on whether or notEe

S[h,ℓ]
= ∅.

Analogously, there are in total four types of a hybridJHy

i,j;h,ℓ
,

i.e. {JHy,EE

i,j;h,ℓ
, JHy,EK

i,j;h,ℓ
, JHy,KE

i,j;h,ℓ
, JHy,KK

i,j;h,ℓ
}.

II. Block decomposition. The second type of decomposition is the splitting
of joint structures into “blocks”. Here the hybrid grammar differs from the
grammar of Huanget al. (2009) in two ways. First, we use the hybrid as a
new block of the grammar, decomposing a hybrid by removing its exterior
arcs in parallel simultaneously starting from the right. Second, we split a
joint structure into blocks via alternating decompositions of RTS and DTS
as shown in the Procedure (a) of Fig. 4.

In order to guarantee the maximality hybrids, we observe that the RTS’s
JRT,KK

i,j;h,ℓ
, JRT,KE

i,j;h,ℓ
, JRT,EK

i,j;h,ℓ
andJRT,EE

i,j;h,ℓ
can appear in two scenarios,

depending on whether or not there exists an exterior arcRi1Sj1 such that
R[i, i1 − 1] andS[j, j1 − 1] are isolated segments. In case such an exterior
arc exists, we say the RTS is of type (B) or (A), otherwise. Similarly, a
DTS, JRT,KK

i,j;h,ℓ
, JRT,KE

i,j;h,ℓ
, JRT,EK

i,j;h,ℓ
or JRT,EE

i,j;h,ℓ
is of type (B) or (A)

depending on whetherRiSh is an exterior arc. In Fig. 6 (I) we display the
decomposition ofJDT,KKB

i,j;h,ℓ
into hybrids and RTS of type (A) and in Fig. 6

(II) we display the decomposition ofJRT,KKA

i,j;h,ℓ
into secondary structure

segments and DTS accordingly.
SupposeJDT

i,j;r,ℓ
is a DTS contained in a kissing loop, that is we have

eitherEe
R[i,j]

6= ∅ or Ee
S[h,ℓ]

6= ∅. Without loss of generality we may

assumeEe
R[i,j]

6= ∅. Then at least one of the two “blocks” contains at least

an exterior arc belonging toEe
R[i,j]

labeled byK or F, otherwise, see Fig. 6
(I).

2.3 Forward Recursions
The computation of the partition function proceeds “from the inside
to the outside”, see eq. (2.3). The recursions are initialized with the
energies of individual external base pairs and empty secondary structures
on subsequences of length up to four. In order to differentiate multi- and
kissing-loop contributions, we introduce the partition functions Qm

i,j and

Qk
i,j . Here, Qm

i,j denotes the partition function of secondary structures
on R[i, j] or S[i, j] having at least one arc contained in a multi-loop.
Similarly, Qk

i,j denotes the partition function of secondary structures on
R[i, j] or S[i, j] in which at least one arc is contained in a kissing loop. Let
J
ξ,Y1Y2Y3

i,j;h,ℓ
be the set of substructuresJi,j;h,ℓ ⊂ J1,N;1,M , induced from

some joint-structureJ1,N;1,M , such thatJi,j;h,ℓ appears inTJ1,N ;1,M
as

an interaction structure of typeξ ∈ {DT, RT,▽,△, �, ◦} with loop-
subtypesY1, Y2 ∈ {M,K,F} on the sub-intervalsR[i, j] and S[h, ℓ],
Y3 ∈ {A, B}. Let Qξ,Y1Y2Y3

i,j;h,ℓ
denote the partition function of the set
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J
ξ,Y1Y2Y3

i,j;h,ℓ
. All recursions forQξ,Y1Y2Y3

i,j;h,ℓ
represent a reformulation of the

hybrid-grammar specified in Fig. 4.
For instance, the recursion forQDT,KKB

i,j;h,ℓ
displayed in Figure 6(I) is given

by:

QDT,KKB

i,j;h,ℓ
=

X

i1,h1

QHy,KK

i,i1;h,h1
QRT,KKA

i1+1,j;h1+1,ℓ
+ QHy,KK

i,i1;h,h1
QRT,KF

i1+1,j;h1+1,ℓ

+ QHy,KK

i,i1;h,h1
QRT,FF

i1+1,j;h1+1,ℓ
+ QHy,KK

i,i1;h,h1
QRT,FK

i1+1,j;h1+1,ℓ
+ QHy,KK

i,j;h,ℓ
,

(2.1)

where the corresponding recursion forQHy,KK

i,j;h,ℓ
is

QHy,KK

i,j;h,ℓ
=

X

i1,h1

QHy,KK

i,i1;h,h1
e
−(σ0+σGInt

i1,h1,j,ℓ+(j+ℓ−i1−h1−2)β3)
.

(2.2)
Analogously, the recursions forQHy,EE

i,j;h,ℓ
, QHy,EK

i,j;h,ℓ
andQHy,KE

i,j;h,ℓ
read:

QHy,EE

i,j;h,ℓ
=

X

i1,h1

QHy,EE

i,i1;h,h1
e
−(σ0+σGInt

i1,h1,j,ℓ);

QHy,EK

i,j;h,ℓ
=

X

i1,h1

QHy,EK

i,i1;h,h1
e
−(σ0+σGInt

i1,h1,j,ℓ+(ℓ−h1−1)β3)
;

QHy,KE

i,j;h,ℓ
=

X

i1,h1

QHy,KE

i,i1;h,h1
e
−(σ0+σGInt

i1,h1,j,ℓ+(j−i1−1)β3)
.

(2.3)

2.4 Hybrid-probabilities
Since the probabilities of individual base pairs are not independent, it is not
possible to compute the probabilities for particular hybrids directly from
them. Hybrid probabilities thus cannot be obtained in a simple way from
the backward recursions described by Huanget al. (2009).

Given two RNA sequences, our notion of probability is based on the
ensemble of all possible joint interaction structures. LetQI denote the
partition function of all these joint structures that can formed by two input
RNA sequences. The probability of a fixed joint structureJ1,N;1,M is given
by

PJ1,N ;1,M
= QJ1,N ;1,M

/QI . (2.4)

In difference to the computation of the hybrid-partition function “from the
inside to the outside” (IO), the computation of probabilities of specific
substructures is obtained “from the The same principle applies to the
computation of base pairing computation of base pairing probabilities of
secondary structures (McCaskill, 1990) and joint structures Huanget al.
(2009).

Let J = J1,N;1,M , with associated decomposition treeT (J) and let
ΛJi,j;h,ℓ

= {J | Ji,j;h,ℓ ∈ T (J)} denote the set of all joint structures
J such thatJi,j;h,ℓ is contained in the decomposition treeT (J). Then we
have, by construction,

PJi,j;h,ℓ
=

X

J∈Λi,j;h,ℓ

PJ . (2.5)

Following the (OI)-paradigm, the probability of a parent structure,Pθs
, is

computed prior to the calculation ofPJi,j;h,ℓ
. The conditional probability

PJi,j;h,ℓ|θs
equalsQθs

(Ji,j;h,ℓ)/Q(θs), where Q(θs) is the partition
function of θs, and Qθs

(Ji,j;h,ℓ) the partition function of all thoseθs,
that have in additionJi,j;h,ℓ as a child in their parse trees. Consequently,
PJi,j;h,ℓ

can inductively be computed by summing over all probabilities
Pθs

, i.e.

PJi,j;h,ℓ
=

X

θs

PJi,j;h,ℓ|θs
Pθs

=
X

θs

ˆ

Qθs
(Ji,j;h,ℓ)/Q(θs)

˜

Pθs
.

(2.6)
Let P

Hy

i,j;h,ℓ
denote the probability of the set of substructuresJ such that

the specific hybrid-substructure,JHy

i,j;h,ℓ
, appears in the decomposition tree

T (J), i.e.JHy

i,j;h,ℓ
∈ T (J). Since each joint-structureJHy

i,j;h,ℓ
is either one

1 24

1 23

11 19

9 17

11 15

9 13

1 24

1 23

11 19

9 17

11 19

9 17

15

13

Fig. 7. Hybrid-probability: the maximality of hybrids implies that although
the intervals[h1, ℓ1] and[h2, ℓ2] overlap, distinct hybrids (grey) are being
induced.

of the four typesJHy,EE

i,j;h,ℓ
, JHy,EK

i,j;h,ℓ
, JHy,KE

i,j;h,ℓ
, or JHy,KK

i,j;h,ℓ
, we arrive at

P
Hy

i,j;h,ℓ
= P

Hy,EE

i,j;h,ℓ
+ P

Hy,EK

i,j;h,ℓ
+ P

Hy,KE

i,j;h,ℓ
+ P

Hy,KK

i,j;h,ℓ
. (2.7)

We remark that, by construction, for[h1, ℓ1] 6= [h2, ℓ2] the hybrid
probabilities P

Hy

i,j;h1,ℓ1
and P

Hy

i,j;h2,ℓ2
quantify disjoint classes of joint

structures. This is a consequence of the maximality of hybrids, which implies
that, for fixed interval[i, j], each[h1, ℓ1] corresponds to a unique hybrid
JHy

i,j;h1,ℓ1
. Based on the notion of hybrid probability, we can introduce

P
target

[i,j]
=

X

h,ℓ

P
Hy

i,j;h,ℓ
, (2.8)

which is, according to the above, the probability of the target site[i, j] and
furthermore

πR(i) =
X

p,q: p≤i≤q

X

h,ℓ

P
Hy

p,q;h,ℓ
, (2.9)

measuring, for each basei in R the probability thati is contained in a hybrid.
A particulary instructive observable is the interaction base pairing matrix,
given by

πi,k =
X

p,q: p≤i≤q

X

r,s:r≤k≤s

P
Hy
p,q;r,s. (2.10)

Clearly, πi,k measures the probability that a pair of nucleotides(i, k),
located on different strands, is contained in an interaction region. In contrast
to the base pairing probabilities, large values ofπi,k do not imply thati
andk actually from an exterior base pair. Instead, it highlightsregions of
intermolecular interactions.

2.5 Boltzmann sampling
A dynamic programming scheme for the computation of a partition function
gives implies a corresponding stochastic backtracing procedure that can be
used to sample from the associated distribution Tackeret al. (1996). The
usefulness of this approach for RNA secondary structures isdiscussed by
Ding and Lawrence (2003). The same ideas can of course also produce
representative samples from the Boltzmann equilibrium distribution of RNA
interaction structures, Fig. 8.

The basic data structure of the algorithm is a stackA that stores tuples of
the form{(i, j;h, ℓ; ξ)} describing a pair of intervals[i, j] in R and [h, ℓ]
in S and the typeξ of the – not further specified – joint structure formed
by the two intervals. The stackA, initialized with (1, N ; 1, M, ?) where
“?” denotes the unspecified type, guides the backtracing which is complete
as soon asA is empty. A listL is used to collect the interior and exterior
arcs and unpaired bases generated by the decompositions andeventually
define the sampled interaction structure. In the first step,(1, N ; 1, M, ?)
is decomposed according to the grammar in Fig. 4 into either (1) a pair of
secondary structures, or (2) a RTS(i, N ; j, M ;RTEE) with probabilities
derived as explained above. Depending on the stochastic choice we push
either (1)(1, N ; 0, 0; sec) and(0, 0; 1, M ; sec) or (2)(1, i−1; 0, 0, sec),
(0, 0; 1, j − 1; sec) and(i, N ; j, M ;RTEE) into the stackA.
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Stack A
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Fig. 8. Stochastic backtracing algorithm: elements of stackA are
successively decomposed according to the hybrid-grammar.The resulting
arcs and unpaired vertices are stored in the listL which, onceA is empty,
eventually contains the Boltzmann-sampled interaction structure.

Given A and L, we can associate a probability by considering the
decomposition of the particular type of joint structure. For instance, suppose
we have extracted(i, j;h, ℓ, DTKKB) from stackA, see Fig. 6. Then the
probabilities for continuing with one of the five decompositions displayed in
Fig. 6, for each position of the break pointsi1 ∈ [i, j] andj1 ∈ [h, ℓ], is
given by

P
0
i1,j1

= QHy,KK

i,i1;h,h1
QRT,KKA

i1+1,j;h1+1,ℓ
/QDT,KKB

i,j;h,ℓ
,

P
1
i1,j1

= QHy,KK

i,i1;h,h1
QRT,KF

i1+1,j;h1+1,ℓ
/QDT,KKB

i,j;h,ℓ
,

P
2
i1,j1

= QHy,KK

i,i1;h,h1
QRT,FF

i1+1,j;h1+1,ℓ
/QDT,KKB

i,j;h,ℓ
,

P
3
i1,j1

= QHy,KK

i,i1;h,h1
QRT,FK

i1+1,j;h1+1,ℓ
/QDT,KKB

i,j;h,ℓ
,

P
4
i1,j1

= QHy,KK

i,j;h,ℓ
/QDT,KKB

i,j;h,ℓ
.

One of these decompositions is accordingly sampled and the respective
output is pushed back into stackA. For instance, ifP1

i′,j′
is selected, then

we push(i, i1; h, h1;HyKK) and(i1 + 1, j;h1 + 1, ℓ;RTKF) back into
stackA.

3 RESULTS AND CONCLUSIONS
We presented here a modified and improved unambiguous grammar
for the RNA-RNA interaction problem. Compared to our previous
rip1 approach Huanget al. (2009), it reduces the computational

AUACGCACAAUAAGGCUAUUGUACGUAUGCAAAUUAAUAAUAAAGGAGAGUAGCAAUGUCAUUCGAAUUACCUGCACUACCAUAUGC

UUUUCGGUCGUGGGCCGACCGAUUCAUUAUGACCUUCGUUACACUCGUUACAGCACGAAAGUCCAAGAGGCGCUCCCAGAAGGACUAGCG
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AUACGCACAAUAAGGCUAUUGUACGUAUGCAAAUUAAUAAUAAAGGAGAGUAGCAAUGUCAUUCGAAUUACCUGCACUACCAUAUGC

UUUUCGGUCGUGGGCCGACCGAUUCAUUAUGACCUUCGUUACACUCGUUACAGCACGAAAGUCCAAGAGGCGCUCCCAGAAGGACUAGCG

sodB

R hyB

3’

5’

3’

5’

5’

3’

5’

3’

Fig. 9. Interaction of sodB-RhyB. (A) Base pairing probability matrix.
The upper-right triangle shows the probabilities obtainedfrom the exact
backwards recursion, the lower-left triangle is the estimate from a sample
of 10,000 structures obtained by stochastic backtracing, showing that the
estimates converge quickly.(B) Comparison of the structure proposed in
Geissmann and Touati (2004) and therip2 prediction. While the major
stable hairpins agree andrip2 correctly predicts the primary interaction
region,rip2 also identifies additional interaction regions that may stabilize
the interaction.(C) Sampled joint structures (here the 20 most frequent ones)
are represented as dot-bracket strings:() and[] represent pairs of interior and
exterior arc, respectively, while dots indicate unpaired bases.| separates the
two RNA sequences which are both written in5′ → 3′ direction.

efforts, and in particular the memory consumption, by abouta third.
The complete set of recursions is compiled in section 3 of theSM.
It comprises 9 4D-arraysQ△,▽,�

i,j;r,s for tight structures of various
types, 20 4D-arraysQRT

i,j;r,s for right-tight structures, and 20 4D-
arraysQDT

i,j;r,s for double-tight structures. The implementation has
been extended by a stochastic backtracing facility. Fig. 9 gives an
example of some of the output than is produced byrip2, see also
SM, Fig.4. Despite algorithmic improvements,rip2 still requires
quite substantial computational resources for practical applications
and is in practise limited to problem sizes ofN1 + N2 / 250 on
current hardware. Still not a tool large-scale routine applications,
rip2 is however suitable for investigating the fine details of
particular interactions. Future work will thus focus on controlled
approximations with the aim of a drastic reduction of both: CPU
and memory consumption.

The major advantage of stochastic sampling is that it provides
a generic and convenient means to estimate quantities that cannot
be easily computed directly by backwards recursion (Ding and
Lawrence, 2003). Both theompA-MicA and the sodB-RhyB
complexes show a primary, highly likely, hybrid region and
several additional less stable points of contact, as shown by their
“interaction maps” in Fig. 10. In these examples it is of interest to
investigate in detail how the putative interaction regionsinfluence
each other: is the binding co-operative so that the major hybrids
in Fig. 10 are positively correlated, or do they constitute mutually
exclusive contacts? Once a sufficiently large Boltzmann sample
we can easily compute e.g. correlationsρPQ between indicator
variablesP andQ that measure the existence of external base pairs
in two different hybrids. The r.h.s. panels in Fig. 10 give typical
examples, showing that typically there are strong correlations
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Fig. 10. Interaction maps. TheompA-MicA interaction (l.h.s.) has a
dominating interaction region that brings together the 3’ end of ompAand
the 5’ terminus ofMicA. ThesodB-RhyBinteractions (middle) has two clear
hybridization regions in the middle of the molecules and a diffuse contact
area at the 3’ end ofsodB. The grayscale show the probabilitiesπik that
(i, k) is contained in a hybrid. Tick marks indicate every 10th nucleotide.
The correlations between the major binding regions can be computed easily
from Boltzmann samples. The heatmaps show the correlation coefficients
for the most probable interaction regions (indicated by numbers in the
interaction maps). ForsodB-RhyB we observe fairly weak correlations,
except for the cooperative interaction between contacts3 and4. In the case
of ompA-MicA, on the other hand, we observe strong negative correlations
between conflicting hybridization regions.

between hybridization regions. The multiple contacts thatcan
contribute substantially to the total interaction energy.
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