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ABSTRACT and Goodrich, 2007). Emerging evidence suggests, furibrem

Motivation It has been proven that the accessibility of the target that RNA-RNA interactions also play a role for the functibitya

sites has a critical influence on RNA-RNA binding in general and of long mMRNA-like ncRNAs (Hekimoglu and Ringrose, 2009). A
the specificity and efficiency of miRNAs and siRNAs in particular. common theme in many RNA classes, including miRNAs, snRNAs,
Recently, O(N®) time and O(N*) space dynamic programming gRNAs, snoRNAs, and in particular many of the procaryotic
algorithms have become available that compute the partition function small RNAs is the formation of RNA-RNA interaction struatsr

of RNA-RNA interaction complexes, thereby providing detailed that are much more complex than simple complementary sense-

insights into their thermodynamic properties. antisense interactions. Thermodynamically, the bindifgtwm
Results Modifications to the grammars underlying earlier approaches RNA moleculesA and B can be described by the binding energy
enables the calculation of interactions probabilities for any given AGPM = Gap — Ga — Gp, e, by the difference of the

interval on the target RNA. The direct computation of the “hybrid energy of structure formatiotr 45 of the AB complex and the
probabilities” is complemented by a stochastic backtracing algorithm folding energiesG 4 and G of the two individual RNAsA and
that produces samples from the Boltzmann ensemble of RNA-RNA B. Thus, the binding or hybridization energy has been widekdu
interaction structures. The sampling of k structures requires only as a criterion to predict RNA-RNA interactions (Rehmsmetedl.,

negligible additional memory resources and runs in O(k - N3). 2004; Tjaderet al,, 2006; Busctlet al., 2008).

Availability The algorithms described here are implemented in The interaction between two RNAs is governed by the same
C as part of the rip package. The source code of rip2 physical principles that determine RNA folding: the foriat of

can be downloaded from http://wmv. conbinatorics.cn/ specific base pairing patterns whose energy is largelyméated by
cbpc/rip2.htm andhttp://www. bi oi nf. uni -1 eipzig.de/ base pair stacking and loop strains. Secondary structina®fore,
Software/rip. htni. are an appropriate level of description to quantitativelderstand
Contact Christian Reidys duck @ant af e. edu the thermodynamics of RNA-RNA binding. Just as the genel#AR

folding problem with unrestricted pseudoknots (AkutsuQ@)0 the

RNA-RNA interaction problem (RIP) is NP-complete in its rhos

1 INTRODUCTION general fo_rm (Alkaret al, 2906; Mneimneh, 2007)._ P_olynomial-
S ) ) . time algorithms can be derived, however, by restrictinggpace
RNA-RNA binding is a major mode of action of various classes o giqed configurations in ways that are similar to pseudk
of non-coding RNAs and plays a crucial role in many reguiator ¢, 4ing aigorithms (Rivas and Eddy, 1999). The simplestrapph

processes in _aII living organisms. Examples include thelatipn concatenates the two interacting sequences and subskgquent
of translation in both prokaryotes (Narberhaus and Vod#,72 and employs a slightly modified standard secondary structulgirig

eukaryotes (McManus and Sharp, 2002; Banerjee and SIaBR).20 514 rithm, The software tooBNAcof ol d (Hofackeret al, 1994:
the targeting of chemical modifications (Bachellegteal., 2002), Bernhartet al, 2006), pai rfol d (Andronescuet al, 2005),
insertion editing (Benne, 1992), and transcriptional oaniKugel and NUPACK (?) subscribe to this strategy. The main problem
of this approach is that it cannot predict important motifEhs

*to whom correspondence should be addressed. Phone: *@8826800;  as kissing-hairpin loops. The paradigm of concatenatich aiso
Fax: *86-22-2350-9272duck @ant af e. edu
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Fig. 1. Examples of RNA-RNA interactions structures. The primarieiaction region(s) are highlighted in red in the experitally supported structural

models from the literatureompAMicA: Udekwu et al. (2005); sodBRyhB

Geissmann and Touati (2004JhlA-OxyS Argaman and Altuvia (2000).

Hybridization probabilities computed byyi p2 are annotated by green boxes for region with a probabilityelathan 10%. In many cases, the computational
predictions identify additional hybridization regionstimay further stabilize the interaction.

been generalized to the pseudoknot folding algorithm o&&&and
Eddy (1999). The resulting model, however, still does notegate
all relevant interaction structures (Chitsezal., 2009b; Qin and
Reidys, 2008). An alternative line of thought, implemeniad
RNAdupl ex and RNAhybri d (Rehmsmeiert al, 2004), is to
neglect all internal base-pairings in either strand, icecompute the
minimum free energy (MFE) secondary structure of hybritiora
of otherwise unstructured RNARNAup (Micksteinet al., 2006,
2008) andi nt aRNA (Buschet al., 2008) restrict interactions to
a single interval that remains unpaired in the secondanctstre
for each partner. As a special case, snoRNA/target complare
treated more efficiently using a specialized tool (Tafeal., 2009)
due to the highly conserved interaction motif. Algorithallg, the
approaches mentioned so far are close relatives of the RN p
recursions Zuker and Sankoff (1984).

A different approach was taken independently by Pervoechin
(2004) and Alkanet al. (2006), who proposed MFE folding
algorithms for predicting thgoint structure of two interacting
RNA molecules. In this model, “joint structure” means thhae t
intramolecular structures of each partner is pseudokmeet-fthat
the intermolecular binding pairs are noncrossing, and thate
is no so-called “zig-zag” configuration (see below for dedai
The optimal joint structure can be computed@{N®) time and

the observation that the external interactions mostly obetween
pairs of unpaired regions of single structures. Chittaa. (2009a),
on the other hand, use tree-structured Markov Random Ftelds
approximate the joint probability distribution of multgl> 3)
contact regions.

The binding energies provides a useful over-all charazzigan
of an RNA-RNA interaction. In many cases, however, the liocet
of the intermolecular base pairs and the detailed struatiirihe
interaction complex is of crucial importance. BacterialN#&,
for example may either up- or down-regulate mRNA transtatio
depending on the structural changes induced by the intemact
(Urban and Vogel, 2007). In particular in RNA-RNA complexes
with multiple interaction sites, i.e., in the class of stures for
which the expensive computation of joint structures is ssagy,
Fig. 1, one is interested in the probabilities of hybridiaat
in individual regions and in the interdependencies of aHéve
conformations.

We therefore extend our previous framework in two direction
(1) A modification of the underlying grammar explicitly ttsa
hybrids, i.e., maximal regions with exclusively intermoléar
interactions. This allows us to investigate local aspegtsniich
more detail. (2) A stochastic bracktracing algorithm, imlagy to
similar approaches for RNA secondary structure predidfi@acker

O(N*) space by means of dynamic programming. More recentlyet al, 1996; Ding and Lawrence, 2003), which can be used to

extensions to the partition function were proposed by @higs al.
(2009b) pi RNA) and Huanget al. (2009) ¢i pl). In contrast to
the RNA folding problem, where minimum energy folding and
partition functions can be obtained by very similar alduris,
this is much more complicated for joint structures. The oeas

that simple unambiguous grammars are known for RNA secgndar

structures (Dowell and Eddy, 2004), while the disambiguraif
grammar underlying the Alkan-Pervouchine algorithm reggiihe
introduction of a large number of additional non-termin@iich
algorithmically translate into additional dynamic progmaing
tables). Although the partition function of joint struadsr can

produce representative structure and to generate sanmplasttie
thermodynamic properties. These samples can be usefubéssas
complex structural features for which it would be too tediar
expensive to design and implement dedicated exact bagkgrac
algorithms.

2 THE HYBRID-PARTITION FUNCTION
2.1 Somebasicfacts

be computed inO(N®) time and O(N*) space, the current We briefly review some basic concepts and outline the netatimoduced in

implementations require very large computational resegirSalari
et al. (2009) recently achieved a substantial speed-up makingfuse

Huanget al. (2009). Full details are given in the Supplement Materidl\'S
Given two RNA sequence® = (R;)Y andS = (5;)M (e.g. an
antisense RNA and its target or an mRNA and its SRNA regylatdh N
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2.2 Thehybrid-gramm
Fig. 2. A. A zig-zag, generated byR>S1, R3S3 and RsS4 (red). B. € yb d grammar

the joint structureJy 24;1,23, we color the different segments and tight A hybrid structure, JlHlyZ[ 1.4, 1 @ maximal sequence of intermolecular
structures in which/ 24;1,23 decomposes. |nter|or Ioops consisting of exterior arqsR;, Sj,, ..., R;,S;j,) where

S

is nested withinR; int1

i1 and where the internal segments

zh + 1,ip41 — 1] andS[jp + 1,7n+1 — 1] consist of single-stranded
nucleotides only. That is, a hybrid is the maximal unbradckg&m-loop
formed by external arcs. Each hybrid thus forms a distiectiegion of
interaction between the two RNAs. Note that we can interptetractions
admitted byi nt aRNA/RNAup (Buschet al., 2008; Miicksteiret al,, 2008)

as joint structures with at most one hybrid.

o \V4 In the following we re-design the grammar outlined by Huagtigal.
(2009) so that it explicitly makes use of hybrids. An effidgisolution of
Fig. 3. The four basic types of tights. the partition function problem for RIP requires an unambiggi context

free grammar with the constraint that the number of brealntppii.e.,
the number of non-terminals in each individual producti@nas small as
possible. This is achieved by introducing several speciffjes of joint

andM vertices, we label the vertices such tiiatis the5’ end of R and Sy structures that are described in detail in the following. védl a joint
denotes the’ end of S. The arcs ofk and S then represent the respective, structureright-tight (RTS), JZRJTT LN iy jy ey s, iFits rightmost block is a
intramolecular base pairs. An arc is calkexterior if it is of the form R; S ; Jiy jriry.e, -TS anddouble-tight(DTS), JZDJTT i Jiy jyirys, if both of

andinterior, otherwise.

Next we formally define joint structures (Pervouchine, 208dkan
et al, 2006; Chitsazt al, 2009b; Huanget al, 2009). Ajoint structure
J(R, S, I), see Fig. 2B, is a graph such that

its leftmost and its rightmost blocks am®, ;,.r,,s,-TS’s. We remark that

this definition is a bit different from the notion of the doekight structured

defined in Huanget al. (2009). In particular, we consider single interaction

arcs as particular DTS. Adopting the point of view of AlgabrBynamic

Programming (Giegerich and Meyer, 2002) we regard eachnajgasition

1. R, S are secondary structures (each nucleotide being pairgd wit ;jje a5 a production in a suitable grammar. Fig. 4 summartizeshree
at most one other nucleotide via hydrogen bonds, withowtra  pasic steps of the hybrid-grammar: (1) “interior arc-remidvo reduce TS.

pseudoknots); The scheme is complemented by the usual loop decompositigtondary
2. I'is a set of exterior arcs without external pseudoknots,if.&;, S;, , structures, and (Il) “block-decomposition” to split a jostructure into two
R;,S;j, € Itheniy < i impliesj; < jo; smaller blocks.

The grammar in Fig. 4 corresponds to the decomposition ifEgrs
of a joint structure into interior arcs and hybrids. Figur& Shows the
corresponding parse tree. The full details of the decontipasprocedures
are described in Section 2 of the SM, where we show that foh eac
joint structure J ;1,07 We indeed obtain a unique decomposition-tree
(parse-tree), denoted ¥y, ., ,,. More precisely,T;, ., ,, has root
Ji,n;1,m and all other vertices correspond to a spe'cif’ic' substruattire

1,n;1, 0 Obtained by the successive application of the decompaosstieps
of Fig. 4 and the loop decomposition of the secondary strastuThus,
the hybrid grammar is unambiguous. The two panels of Fig. firast
the grammars of i p1 ((Huanget al, 2009)) and the hybrid-grammar of
ri p2 introduced here. Imi p1, hybrids were immediately decomposed
into individual external base-pairs and their associatéetior loops, so that
individual hybrids were not tractable in a straightforwandnner.

3. J(R, S, I) contains no “zig-zags”, see Fig. 2A;

where a “zig-zag” is defined as follows: suppose there is deriex arc
RSy with R;R;j and S,/ S/, wherei < a < jandi < b < j'. Then
R;R; is subsumedn S,/ S/, if for any Ry Syr € 1,4 < k < j implies
i < k' < j'. Azigzagis a subgraph containing two dependent interior arcs
R;, R;, andS;, S;, neither one subsuming the other (Fig. 2). Dependence
here means that there exists at least one exterioRagtg, such thati; <
h < j1andiz < £ < jo.

The (induced) subgraphof G induced byV has vertex sef and
contains allG-edges having both incident vertices . The subgraph
of a joint structure J(R,S,I) induced by a pair of subsequences
(Ri, Ri+1, ceey Rj) and (Sh, Sh+1, ceey Sg) is denoted byJZ JGih, e In

articular, .S, 1) = . and J; .. if and )

partict J(R,5,1) J1 N1 M | Jijine C Jabie.d Let us now have a closer look at the energy evaluatiod,;ofj, ,. Each
only if Ji jn,e 1S @ subgraph oty e q induced by(R;,..., R;) and decomposition step in Fig. 4 results in substructures wieseegies are
(Sh,-..,S¢). Inparticular, we usé|i, 5] to denote the subgraph of the pre- p P 9. 9

assumed to contribute additively and generalized loogsc#rabe evaluated
directly. There are the following two basic scenarios:

I. Interior Arcremoval. The first type of decomposition is derived from the
decomposition of TS of Huangt al. (2009). Most of the decomposition
operations in Procedure (b) displayed in Fig. 4 can be vieasdhe
“removal” of an arc (corresponding to the closing pair of agoin
secondary structure folding) followed by decompositiorattB loop-type
as well as the subsequent decomposition steps depend oevtheaxposed
structural elements. Following the approach of Zuker andk&i& (1984)
for secondary structures, we treat the loop-decomposifiozblem by
introducing additional matrices. Without loss of genéyalive can assume
that we open an interior base péi R ;.

structureG(R, S, I) induced by(S;, Sit1,...,5;), whereS[i,i] = S;
andS[i,i— 1] = @. Given ajoint structure/, .., 4, its tight structure (TS)
Jor v5er.q0 18 either a single exterior arR,/ S, (in the cases’ = b" and
¢’ = d'), or the minimal block centered around the leftmost andtnigist
exterior arcsoy, o, (possibly being equal) and an interior arc subsuming
both, i.e.,Jalyb,;c@d/ is tight in Jg . q if it has either an ard?,/ Ry or
SerSyr if a’ #* b orc # d'.

In the following, a TS is denoted by i If Jor pricr IS tight in
Ja bse,d» We call Jg, 1. q its envelope. By construction, the notion of TS
is depending on its envelope. There are only four basic tgheES, see
Fig. 3:

o: {RiSp} = J7 .y, candi =4, h = ¢




F.W.D. Huang, J. Qin, C.M. Reidys, P.F. Stadler

Procedure (a)
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Fig. 4. lllustration of the reduction of arbitrary joint structsrand of right-
tight structures, Procedure (a), and of tight structuresc&ure (b). In the
bottom row the symbols for the 10 distinct types of strudtemmponents
are listed: A, B: maximal secondary structure segmemg, j|, S[r, s];
C: arbitrary joint structure/y n;1,s; D: right-tight structures/2T - E:

,7;57T,8’
double-tight structure?ZD]TT .; F tight structure of typey, A or [J; G: type
Otight structureJZDJ " : J: type A tight
structurer s K: hybrid struc'[ure]Hy ot L: substructure of a hybrid

th .n.¢ SUch thatk; S; and Ry, S, are extenor arcs andhj hot itself is not
a hybrid since it is not maximaM: isolated segmenk[i, j] or S[h, €].

H: type v tight structureJ .

1,757,

(A)

“Tm.,

I

L A
T e
~

Fig. 5. Different grammars lead to different (parse) trees. We skivsv
parse treel’y, |, ,, for the same joint structurdy,11;1,11 according to
the grammars of i p2 (top) andr i p1 (bottom), respectively.

The set of base pairs aR[:, j] consists of all interior pairsz, R, with
i < p < ¢ < jand all exterior pairf?, Sy, with ¢ < p < j. An interior arc
is exposedn R[i + 1, j — 1] if and only if it is not enclosed by any interior
arc in R[, j|. An exterior arc isexposedn R[i + 1,5 — 1] if and only if it
is not a descendant of any interior archfii + 1, j — 1]. Given R;;, the arcs
exposed orR[i+ 1, j — 1] correspond to the base painsmediately interior
of R;R;. Letus writeEgy; j) = E;‘mj]uE;M for this set of “exposed
base pairs” and its subsets of interior and exterior arcsinAsecondary
structure folding, the loop type is determined By, ; ; := Er as follows:
Er = &, hairpin Ioop;ER = E% and|Eg| = 1, interior loop (including
bulge and stacks}ir = EY,, |[Er| > 2, multi-branch loop;Er = E
kissing-hairpin loop{ E’%, |, \E | > 1, general kissing-loop.

e
R’

M0 < B0 — 00
VR /N
[0 Mo mo

U] (n

Fig. 6. Decomposition of]ZD]ThKZKB (Lh.s.) and]ﬁjThK;A (r.hs.).

This picture needs to be refined even further since the arovanis
coupled with further decomposition of the inten&li + 1, — 1]. This
prompts us to distinguish TS and DTS with different clas§exposed base
pairs on one or both strands. It will be convenient, furthenento include
information on the type of loop in which it was found.

A TS Jv ) is of typeE, if S[h, /] is not enclosed in any base pair

(JZ i o) Suppose]v hot is located immediately interior to the closing
palrSqu p<h<t? < q). If the loop closed bys), Sq is a multiloop, then
Jv hot is of typeM (Jv M ). If SpSq is contained in a kissing-loop, we
dlstlngmsh the typeb andK depending on whether or natg, S h = = .

Analogously, there are in total four types of a hybrll‘if4

ie {JHy,EE JHY.EK  gHy KE Hy,KK}
h, 024,53k, 00 Ya, 5k, 00 V4L

1. Block decomposmon The second type of decomposition is the splitting
of joint structures into “blocks”. Here the hybrid grammaifets from the
grammar of Huangt al. (2009) in two ways. First, we use the hybrid as a
new block of the grammar, decomposing a hybrid by removisgxterior
arcs in parallel simultaneously starting from the rightc@el, we split a
joint structure into blocks via alternating decomposisiaf RTS and DTS
as shown in the Procedure (a) of Fig. 4.

In order to guarantee the maximality hybrids, we observettt@RTS'’s
J RThIfZK J RTh}iE J RThEZK andJ RThEZE can appear in two scenarios,
dependmg oh whether or not there xists an exterior/yrcS;, such that
R[i,41 — 1] andS[j, j1 — 1] are isolated segments. In case such an exterior
arc exists we say the RTS is of typB)(or (A), otherwise. Similarly, a
DTS, J KK , JRT’EK or JRT;EE is of type @) or (A)
dependmg on whetlzla‘l% Sh is an extenor arc. In Fig. 8) we display the
decomposition otIDT KKB into hybrids and RTS of typeA) and in Fig. 6
o/

NHRA

(1) we display the decomposmon
segments and DTS accordingly.
SupposeJDT y) is a DTS contained in a kissing loop, that is we have

into secondary structure

either £, ;A gorEg ht) # ©. Without loss of generality we may
assumEE ;é . Then at Ieast one of the two “blocks” contains at least
an exterlor arc belonging tB'%, Rli, ] labeled byK or F, otherwise, see Fig. 6

O}

2.3 Forward Recursions

The computation of the partition function proceeds “frone tmside

to the outside”, see eq. (2.3). The recursions are inigdlizvith the
energies of individual external base pairs and empty sesgnstructures
on subsequences of length up to four. In order to differentraulti- and
kissing-loop contributions, we introduce the partitiomdtions QT and
Qk . Here, Qm] denotes the partition function of secondary structures
on R[z j] or S[s, 5] having at least one arc contained in a multi-loop.
Similarly, Q% 5 ; denotes the partition function of secondary structures on
R[4, j] or S[i, 7] in which at least one arc is contained in a kissing loop. Let
J€ JY}LY2Y" be the set of substructures ., ¢ C J1,n;1,0, induced from
some joint-structure/y 1,27, Such that/;, .j;h,¢ @ppears mZ“J1 N1 @S

an interaction structure of typ¢ € {DT,RT,~/,A,0 0} with loop-
subtypesYi,Y2> € {M,K,F} on the sub-intervalsk[s, j| and S[h, ],

Y3 € {A,B}. Let ijy}byfy?’ denote the partition function of the set
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,.]I€ 1 Y2Y” . All recursions forQ€ 1 Y2Y3 represent a reformulation of the
hyl?Jnd -grammar specified in F|g 4
For instance, the recursion fOJDT KKB displayed in Figure 6(1) is given

by:
QPT; KKB _ Hy,KK QFRT: KKA Hy,KK RT,KF
Qe = D Qidyihm @iy giha 1.6 T Qorishny @iy 41,55 41,0
i1,h1
Hy,KK RT,FF Hy,KK RT,FK Hy,KK
+ Qiiiihn Qi 41,501 +1,6 T Qiitinng Qi 41,5011, T Qigine
(2.1)
where the corresponding recursion oK is
©,5:h,0
Hy KK z Hy, KK 00+0G11 hy,getHE—ir—h1-2)B3)
zghl_ szl,hhl
i1,h1
(2.2)
: Hy,EE  ~Hy,EK Hy,KE .
Analogously, the recursions fap, TR Q; Tihe anin’j;hJ_, read:
Int
Hy,EE __ Hy,EE —(0'0+UG s [)
Quine= D Qitynme i
i1,hy
Hy,EK _ Hy,EK —(a0+aG',.“t1h et (d—=h1=1)B3)
Q; he = Eh: Qi hny © g i (2.3)
i1,h1
| L
Q??'ZEZ — Z Q:iz K}E ., —(00+0G,i"1‘ﬁ1yj’@+(]—11—1)ﬁ3)‘
EVATLES 13 1
i1,h1

2.4 Hybrid-probabilities

Since the probabilities of individual base pairs are noepehdent, it is not
possible to compute the probabilities for particular hgbriirectly from
them. Hybrid probabilities thus cannot be obtained in a &nvay from
the backward recursions described by Huahgl. (2009).

Given two RNA sequences, our notion of probability is basedtle
ensemble of all possible joint interaction structures. (Xt denote the
partition function of all these joint structures that camfied by two input
RNA sequences. The probability of a fixed joint structuiey ., a/ is given
by
= QJI,N;I,JW/QI'

In difference to the computation of the hybrid-partitiométion “from the
inside to the outside” (I0), the computation of probal#hktiof specific
substructures is obtained “from the The same principle ieppio the
computation of base pairing computation of base pairindaldities of
secondary structures (McCaskill, 1990) and joint strieguHuanget al.
(2009).

Let J = Jy,n;1,m, With associated decomposition tr@&.J) and let
Ag; sne = | Jijine € T(J)} denote the set of all joint structures
J such thatJ; .5, ¢ is contained in the decomposition trég.J). Then we
have, by construction,

>

JEN jin,e

(2.4)

PJI,N;I,JW

Priine= Py. (2.5)

Following the (Ol)-paradigm, the probability of a parertusture,Py,, is
computed prior to the calculation &f;, idihae” The conditional probability
P, inelos equals Qo (Js,j;h,0)/Q(0s ), Where Q(6) is the partition
function of 65, and Qg (J; ;;n.e) the partition function of all thosés,
that have in addition/; ;. . as a child in their parse trees. Consequently,
Py, ;... can inductively be computed by summing over all probabiti
Py_, i€

s

ZPJ,L el Po, = Z [Qo. (Ji jsn,e)/Q(6s)] Py, .

0s

L]hé

(2.6)

Let IE"Hy denote the probability of the set of substructuresuch that

NHNA

the specific hybrid- substructuréi ikt

T(J), ie. JHy .0 € T(J). Since each joint- structuré ikt is either one

appears in the decomposition tree

i ::Ia:l:lmmmml

Fig. 7. Hybrid-probability: the maximality of hybrids implies thalthough
the intervals|h1, ¢1] and[hz, ¢2] overlap, distinct hybrids (grey) are being
induced.

Hy Hy,EK Hy,KE Hy, KK .
of the fourtypes] Wi, l, J; e J; b OF J; in,e We arrive at
Hy Hy, Hy,E Hy,K Hy,KK
Pi,]’;h,f P h[+P'L],hZ+P h[+P'L]hZ (27)

We remark that, by construction, fdhi,¢1] # [he,¥2] the hybrid
probabilities P, Hy ka0 and IP?? ha o quantify disjoint classes of joint
structures. Th|s is a'consequence of the maximality of ligbrzhich implies

that, for fixed intervalls, j], each[h1, ¢1] corresponds to a unique hybrid

?V.Ah », - Based on the notion of hybrid probability, we can introduce
EVELLRES
t t
P = Z]P’Z e (2.8)

which is, according to the above, the probability of the ¢arjte [, 5] and
furthermore

p,q: p<i<q h,l

Hy
P
p,q;h, 0’

(2.9)

R (1)

measuring, for each basé R the probability that is contained in a hybrid.
A particulary instructive observable is the interactiorsdgairing matrix,

given by
> X

p,q: p<i<qgr,s:ir<k<s

Hy
Pp,q T8

(2.10)

ik =

Clearly, 7; ;, measures the probability that a pair of nucleotidesk),
located on different strands, is contained in an interaatégion. In contrast
to the base pairing probabilities, large valuesmgf;, do not imply thati
and k actually from an exterior base pair. Instead, it highligtggions of
intermolecular interactions.

2.5 Boltzmann sampling

A dynamic programming scheme for the computation of a pamtfunction
gives implies a corresponding stochastic backtracingqaioe that can be
used to sample from the associated distribution Taekeal. (1996). The
usefulness of this approach for RNA secondary structuressussed by
Ding and Lawrence (2003). The same ideas can of course atstuge
representative samples from the Boltzmann equilibriurtridision of RNA
interaction structures, Fig. 8.

The basic data structure of the algorithm is a stdcthat stores tuples of
the form{ (¢, j; h, ¢; €) } describing a pair of intervalg, j] in R and|h, (]
in S and the type of the — not further specified — joint structure formed
by the two intervals. The stacK, initialized with (1, N; 1, M, ?) where
“?” denotes the unspecified type, guides the backtracinglwisicomplete
as soon asA is empty. A listL is used to collect the interior and exterior
arcs and unpaired bases generated by the decompositionsvantlally
define the sampled interaction structure. In the first stgpN; 1, M, ?)
is decomposed according to the grammar in Fig. 4 into either (pair of
secondary structures, or (2) a RT& N; j, M; RTEE) with probabilities
derived as explained above. Depending on the stochasticecha®e push
either (1)(1, N; 0, 0; sec) and(0, 0; 1, M;sec) or (2) (1,i—1;0, 0, sec),
(0,0;1,5 — 1;sec) and(i, N; 4, M; RTEE) into the stackA.
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Step1
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Fig. 8. Stochastic backtracing algorithm: elements of stadk are
successively decomposed according to the hybrid-gramifre. resulting
arcs and unpaired vertices are stored in thedisvhich, onceA is empty,
eventually contains the Boltzmann-sampled interactioucsire.

Given A and L, we can associate a probability by considering the
decomposition of the particular type of joint structurer Fstance, suppose
we have extractedi, j; h, ¢, DTKKB) from stackA, see Fig. 6. Then the
probabilities for continuing with one of the five decompimsis displayed in
Fig. 6, for each position of the break points € [z, 5] andji € [h, ], is
given by

Phai = Qunom @416/ Qg
Pigs = Qi @i tigsnn 1,0/ @it
P?Ml = Q%ﬁff,hlQﬁqlfjsh1+1,2/Qfgf’fZB’
Pl = Q';.Zﬁflf,hlQﬁifz;hlﬂ,z/fohlf;Bv
Lo = Qe Qi

One of these decompositions is accordingly sampled and ebgective
output is pushed back into stack For instance, ifPll,yj, is selected, then
we push(s, i1; h, h1; HyKK) and (i1 + 1,55 h1 + 1, ¢; RTKF) back into

stackA.

3 RESULTS AND CONCLUSIONS

(A)

Fig. 9. Interaction of sodBRhyB (A) Base pairing probability matrix.
The upper-right triangle shows the probabilities obtairfiesn the exact
backwards recursion, the lower-left triangle is the estinfeom a sample
of 10,000 structures obtained by stochastic backtracingwimg that the
estimates converge quicklyB) Comparison of the structure proposed in
Geissmann and Touati (2004) and thiep2 prediction. While the major
stable hairpins agree armd p2 correctly predicts the primary interaction
region,r i p2 also identifies additional interaction regions that mapitize
the interaction(C) Sampled joint structures (here the 20 most frequent ones)
are represented as dot-bracket strir{ysind|] represent pairs of interior and
exterior arc, respectively, while dots indicate unpairedds) separates the
two RNA sequences which are both writtensth— 3’ direction.

efforts, and in particular the memory consumption, by alacthird.
The complete set of recursions is compiled in section 3 oS
It comprises 9 4D—arr.31yx§2fj’¥_jsD for tight structures of various

types, 20 4D-array§);'/., , for right-tight structures, and 20 4D-

arraysQ;’}",. . for double-tight structures. The implementation has
been extended by a stochastic backtracing facility. FigivBsgan
example of some of the output than is produced by2, see also
SM, Fig.4. Despite algorithmic improvementsj p2 still requires
quite substantial computational resources for practipplieations
and is in practise limited to problem sizes&f + N2 < 250 on
current hardware. Still not a tool large-scale routine mpiplons,

ri p2 is however suitable for investigating the fine details of
particular interactions. Future work will thus focus on troiled
approximations with the aim of a drastic reduction of botiPLC
and memory consumption.

The major advantage of stochastic sampling is that it pesvid
a generic and convenient means to estimate quantities dnabt
be easily computed directly by backwards recursion (Dind an
Lawrence, 2003). Both theompAMicA and the sodBRhyB
complexes show a primary, highly likely, hybrid region and
several additional less stable points of contact, as showiidir
“interaction maps” in Fig. 10. In these examples it is of et to
investigate in detail how the putative interaction regiamftuence
each other: is the binding co-operative so that the majoritiyb
in Fig. 10 are positively correlated, or do they constitutetunally
exclusive contacts? Once a sufficiently large Boltzmannpéam
we can easily compute e.g. correlationsg between indicator

We presented here a modified and improved unambiguous gnammaariablesP and(@ that measure the existence of external base pairs

for the RNA-RNA interaction problem. Compared to our preso
ri pl approach Huangt al. (2009), it reduces the computational

in two different hybrids. The r.h.s. panels in Fig. 10 giv@ital
examples, showing that typically there are strong coriaat
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Fig. 10. Interaction maps. ThempAMicA interaction (lL.h.s.) has a
dominating interaction region that brings together ther8l ef ompAand
the 5" terminus oMicA. ThesodBRhyBinteractions (middle) has two clear
hybridization regions in the middle of the molecules andféusié contact
area at the 3’ end o$odB The grayscale show the probabilities;, that
(¢, k) is contained in a hybrid. Tick marks indicate every 10th eatitle.
The correlations between the major binding regions can bepoted easily
from Boltzmann samples. The heatmaps show the correlatefficients
for the most probable interaction regions (indicated by bers in the
interaction maps). FosodBRhyB we observe fairly weak correlations,
except for the cooperative interaction between contd@rd4. In the case
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